
ANALISANDO OS EFEITOS DA REFATORAÇÃO

EM BAD SMELLS

CLEITON SILVA TAVARES

ANALISANDO OS EFEITOS DA REFATORAÇÃO

EM BAD SMELLS

Dissertação apresentada ao Programa de

Pós-Graduação em Ciência da Computação

do Instituto de Ciências Exatas da Univer-

sidade Federal de Minas Gerais como re-

quisito parcial para a obtenção do grau de

Mestre em Ciência da Computação.

Orientadora: Mariza Andrade da Silva Bigonha

Coorientador: Eduardo Magno Lages Figueiredo

Belo Horizonte

Março de 2021

CLEITON SILVA TAVARES

ANALYZING THE EFFECTS OF REFACTORINGS

ON BAD SMELLS

Thesis presented to the Graduate Program

in Computer Science of the Federal Univer-

sity of Minas Gerais in partial fulfillment of

the requirements for the degree of Master

in Computer Science.

Advisor: Mariza Andrade da Silva Bigonha

Co-Advisor: Eduardo Magno Lages Figueiredo

Belo Horizonte

March 2021

© 2021, Cleiton Silva Tavares.
 Todos os direitos reservados

 Tavares, Cleiton Silva.

T231a Analyzing the effects of refactorings on bad smells
 [manuscrito] / Cleiton Silva Tavares – 2021.
 xviii, 78 f. il.

 Orientadora: Mariza Andrade da Silva Bigonha.
 Coorientador: Eduardo Magno Lages Figueiredo.
 Dissertação (mestrado) – Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f.67-75.

 1. Computação – Teses. 2. Engenharia de Software –
 Teses. 3. Software - Refatoração– Teses. 4. Bad smell – Teses.
 I. Bigonha, Mariza Andrade da Silva. II. Figueiredo, Eduardo
 Magno Lages. III Universidade Federal de Minas Gerais;
 Instituto de Ciências Exatas, Departamento de Ciência da
 Computação. IV. Título.

CDU 519.6*32.(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6ª Região nº 1510

Resumo

Refatoração visa aumentar a manutenibilidade de sistemas de software melhorando a

sua estrutura sem alterar seu comportamento, podendo ser aplicada para remover bad

smells. Mesmo com a existência de ferramentas para auxiliar a refatoração, muitos

desenvolvedores não confiam em suas soluções, alegando que alguns estudos mostram

que a refatoração pode introduzir novos bad smells no código-fonte. Contudo, não

encontramos um catálogo completo que indique quando isso ocorre. Para investigar

esse assunto em detalhe, o objetivo desta dissertação é avaliar os efeitos da refatoração

em bad smells. Especificamente, investigamos se e qual refatoração remove bad smells

ou os introduz. Para atingir esse objetivo, realizamos uma Revisão Sistemática da

Literatura (RSL) para identificar a relação entre as refatorações e os bad smells pro-

postos por Fowler. Conduzimos um estudo empírico com oito sistemas de software,

aplicando cinco refatorações para analisar seus efeitos em dez bad smells com o auxílio

de cinco ferramentas. Como resultado do estudo empírico, apresentamos via os dados

estudados, quais bad smells são removidos ou introduzidos pelo processo de refatoração

automatizada. A RSL resultou em 20 artigos mostrando a relação direta entre 31 refa-

torações e 16 bad smells. Produzimos um catálogo exibindo essas relações e também

apresentamos um contraste com as relações discutidas por Fowler. Identificamos que a

relação mais discutida na literatura se dá entre Move Method e Feature Envy. A RSL

também revelou que existem estratégias de refatoração diferentes daquelas discutidas

por Fowler para lidar com bad smells. No estudo empírico, observamos que os tipos de

refatoração geraram diminuição, aumento e variações neutras no número de bad smells.

Diferente da definição de Fowler, surpreendentemente descobrimos que a diminuição

no número de bad smells foi a mais baixa em comparação com casos de aumento e

variações neutras. Em uma análise adicional, contrastamos os resultados encontrados

nos dois estudos realizados, classificando-os, validando-os e complementando-os.

Palavras-chave: Refatoração, Bad Smells, Impactos da Refatoração, Efeitos da Refa-

toração.

vi

Abstract

Refactoring aims to increase software systems’ maintainability by improving their struc-

ture without changing their behavior, may applied to remove bad smells. Even with

tools to assist refactoring, many developers do not trust their solutions, claiming that

some studies show that refactoring can introduce new bad smells into the source code.

However, we have not found a complete catalog that states when this may occur. To

investigate this subject deeply, the goal of this dissertation is to evaluate the effects

of refactoring on bad smells. Specifically, we want to know if and what refactoring

removes bad smells or introduces them. To achieve this goal, we conducted a Systema-

tic Literature Review (SLR) to identify the relationship between refactorings and bad

smells proposed by Fowler. We also conducted an empirical study with eight software

systems applying five refactorings to analyze their effects on ten bad smells with the

assist of five tools. As a result of the empirical study, we present, through the data

studied, which bad smells tend to be removed or introduced by the automated refacto-

ring process. In the SLR, we found 20 papers showing the direct relationship between

31 refactorings and 16 bad smells. We produced a catalog showing these relationships,

and we also showed a contrast with relationships discussed by Fowler. We identified

that the most discussed relationship in the literature is between Move Method and

Feature Envy. The SLR also revealed different refactoring strategies than those dis-

cussed by Fowler for dealing with bad smells. In the empirical study, we observed

that refactoring generated decrease, increase, and neutral variations in the number of

bad smells. Unlike Fowler’s definition, we surprisingly found that the number of bad

smells decrease was the lowest compared to cases of increase and neutral variations.

In an additional analysis, we contrast the results found in the two studies carried out,

classifying, validating and complementing them.

Keywords: Refactoring, Bad Smell, Refactoring Impacts, Refactoring Effects.

vii

List of Figures

3.1 Number of Papers Filtered in Each Step 18

3.2 Publication Year . 20

4.1 Preparation Phases . 30

4.2 Steps of This Empirical Study . 33

5.1 Agglutinate Analysis Vote Level 1 . 56

5.2 Agglutinate Analysis Vote Level 2 . 56

5.3 Bad Smells Introduced and Removed by Refactoring 57

5.4 Bad Smells and Refactoring Contrast . 59

viii

List of Tables

3.1 Eletronic Databases . 17

3.2 Inclusion and Exclusion Criteria . 17

3.3 Relationships Between Bad Smell and Refactoring Perfect Match 22

3.4 Relationships Between Bad Smell and Refactoring Discussed Only by Fowler 22

3.5 Relationships Between Bad Smell and Refactoring 24

3.6 Characteristics of Each Tool . 26

4.1 Selected Systems . 31

4.2 Bad Smell Detections by Tools . 32

5.1 Bad Smells Detected Before Refactoring 37

5.2 Bad Smells Detected Before Refactoring - Vote Level 38

5.3 Refactorings Applied . 40

5.4 Original Bad Smells Detected . 42

5.5 Standardized Bad Smells Detected . 43

5.6 Vote Level 1 Bad Smells Detected . 44

5.7 Vote Level 2 Bad Smells Detected . 45

5.8 Anwsering the Request Questions with Original Detections 51

5.9 Anwsering the Request Questions with Standardized Detections 52

5.10 Anwsering the Request Questions with Vote Level 1 53

5.11 Anwsering the Request Questions with Vote Level 2 54

5.12 Agglutinate Total Smells Vote Level 1 . 55

5.13 Agglutinate Total Smells Vote Level 2 . 55

A.1 Published Events . 74

A.2 Tools . 75

ix

Contents

Resumo vi

Abstract vii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Proposed Work . 2

1.3 Publications . 3

1.4 Dissertation Outline . 4

2 Background and Related Work 5

2.1 Bad smell . 5

2.2 Refactoring . 7

2.3 Refactoring and Bad Smell Detection Tools 9

2.4 Bad Smell and Refactoring . 10

2.5 Refactoring Impacts . 11

2.6 Final Remarks . 13

3 Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 15

3.1 Planning Stage . 16

3.2 Execution Stage . 18

3.3 Analysis Stage . 20

3.4 SLR Results . 21

3.4.1 Relationships between Bad Smells and Refactoring 21

x

3.4.2 Tools for Refactoring . 25

3.5 Threats to Validity . 26

3.6 Final Remarks . 27

4 Empirical Study Design 29

4.1 Goal and Research Questions . 30

4.2 Research Phases . 30

4.3 Impacts Assessment . 32

4.4 Final Remarks . 35

5 Empirical Study Analyses and Results 36

5.1 Primary Result . 36

5.2 Impacts of Refactorings . 40

5.3 Comparative Results . 46

5.3.1 Extract Class Refactoring . 47

5.3.2 Extract Method Refactoring . 48

5.3.3 Move Method Refactoring . 49

5.3.4 Replace Refactoring . 50

5.4 Results Summarization . 50

5.5 Analyzes . 54

5.6 Discussions . 57

5.7 Threats to Validity . 60

5.8 Final Remarks . 61

6 Conclusion 62

6.1 Contributions . 63

6.2 Future Work . 64

Bibliography 65

A Complementary Data of the SLR 74

xi

Chapter 1

Introduction

Software systems must evolve to cope with new requirements from stakeholders. Hence,

they require a great effort for developers to understand and make the necessary mod-

ifications in the source code. This effort is greatly affected by aspects of the source

code’s quality, such as comprehensibility, complexity, and maintainability. Bad Smells

are indicators that there are code structure problems, which refactoring may solve [37].

Refactoring is a strategy used to increase the maintainability of the code by changing

the source code’s internal structure without changing the software system behavior.

Refactoring is often recommended to solve bad smells [34].

We may find in the literature numerous tools for detecting bad smells [14, 26, 30,

40, 51, 64, 70] and for refactoring [35, 36, 42, 60, 72, 73, 74]. However, some studies

show that the refactoring process often does not solve the source code’s bad smells

[7, 43]. Furthermore, other studies show evidence that the refactoring process may

not only remove bad smells in the source code but also may introducing new ones

[54, 65, 82]. Such a problem may lead the developer not to trust automated refactoring

since there are high chances of not completely removing the bad smells present in the

code.

1.1 Motivation

Refactoring is a tricky activity since developers have to analyze the source code (i) to

identify the code fragment to refactor, (ii) the operation that will solve it, and (iii)

where allocate the refactored code. These steps are challenging since they depend on

the system context, although we may address them using automatic refactoring tools.

However, some developers do not use these tools because they a) do not know when

and how to refactor [49], b) do not fully trust the tool behavior [45], and c) because

1

1. Introduction 2

existing refactoring tools may introduce new bad smells after the refactoring process

[84]. As a result, many developers prefer to refactor code manually, which leads them

to face the mentioned challenges.

Studies that perform analysis based on the refactoring process argue that re-

factoring is effective in removing bad smells in less than 10% of the time [7, 15, 16].

Therefore, refactoring should be done in a disciplined manner to minimize the chances

of introducing (i) another bad smell [15, 16, 54, 82] and defects [8, 59, 69]; and (ii)

ensuring that the quality was enhanced [7, 34]. For instance, Xia et al. [87] have con-

ducted an empirical study by surveying developers, and they have identified the wide

use of refactoring. However, participants reported that this activity is often neglected

in academia, focusing on writing code from scratch. Therefore, they suggest that edu-

cators emphasize in classes the process of identifying and eliminating bad smells present

in the source code applying refactorings.

Even though some indications that the refactoring process may remove bad smells

in the source code, there is no complete catalog that shows which refactoring process

may even introduce bad smells. A catalog containing information about which re-

factoring process introduces bad smells may help developers perform the refactoring,

whether manual or automated. With this information, developers may perform the

most efficient and robust refactoring process to avoid introducing new bad smells in

the source code.

1.2 Proposed Work

In this dissertation, we propose a research study to evaluate refactoring operations’

impact on bad smells. We divided our study into two stages: the Systematic Literature

Review (SLR) and the empirical study. To conduct both studies, we defined Research

Questions (RQs) to guide us in each of them. The SLR is composed of two general

RQs, RQ1 and RQ2, and two specific RQ1.1 and RQ1.2, defined as follows.

RQ1 - Which relationships between refactoring and bad smells are the literature ex-

plicitly discussing?

RQ1.1 - Which are the most mentioned relationships between bad smells and refacto-

ring found in the literature?

RQ1.2 - Are the relationships we found different from those that Fowler presents?

RQ2 - Which tools found in papers perform refactoring from bad smell detection?

The empirical study is composed of one general RQ, RQ3, and two specific

RQ3.1 and RQ3.2. The RQs defined are as follows.

1. Introduction 3

RQ3 - What are the impacts of automated refactoring on the detection of bad smells?

RQ3.1 - Does the automated refactoring process remove bad smells?

RQ3.2 - Does the automated refactoring process introduce bad smells?

With the SLR, we were able to identify the relationships between bad smell and

refactoring discussed in the literature. In this study, we report only the situations

described by the authors of the papers found, without entering into the merit of classi-

fication between positive or negative impacts. We found 20 papers that show the direct

relationship between 31 refactoring types and 16 bad smells proposed by Fowler. We

also found seven tools that apply refactoring after detecting bad smells. We identified

that the most discussed relationship in the literature is between Move Method and

Feature Envy. It also revealed that there are different refactoring strategies of those

discussed by Fowler to address bad smells. The literature focuses mostly on strategies

defined in Fowler’s book [34] and shows that most refactoring tools do not detect bad

smells.

After conducting the SLR, we choose some refactorings and bad smells available in

the Fowler’s catalog [34] and mentioned in the literature to conduct our empirical study.

With the empirical study, we analyzed the impacts caused by the automatic refactoring

process on bad smells. We applied five refactorings (see Section 4.2) and measured their

effect on ten bad smells detected by five tools. We defined four perspectives to enable

the analyses of the effects caused by the refactoring process. We observed that these

perspectives had similar behavior. The refactorings types generate a decrease, increase,

and neutral variations in the number of bad smells. Unlike Fowler’s definition, we

surprisingly found that the number of bad smells decrease was the lowest compared to

the others. We also investigated which bad smells tend to be introduced and removed

by automatic refactoring. Finally, after the results obtained and presented by four

perspectives, we also present the aggregated data analysis.

With our SLR, we initially present only a relationship between bad smells and

refactoring’ while with our empirical study, we present which bad smells were intro-

duced and removed by the refactoring process. Therefore, as one of the analyses, we

contrast the results found in both studies conducted.

1.3 Publications

This dissertation generated the following publications:

1. Introduction 4

• Silva, Cleiton; Santana, A.; Figueiredo, Eduardo; Bigonha, Mariza A. S., Re-

visiting the Bad Smell and Refactoring Relationship: A Systematic Literature

Review. 23rd Iberoamerican Conference on Software Engineering (CIbSE), Ex-

perimental Software Engineering (ESELAW). Curitiba (online), Brazil, 2020.

• Tavares, Cleiton; Bigonha, Mariza; Figueiredo, Eduardo, Analyzing the Impact of

Refactoring on Bad Smells (short paper). Proceedings of the 34th Brazilian Sym-

posium on Software Engineering (SBES), pages 97-101. Natal (online), Brazil,

2020. https://doi.org/10.1145/3422392.3422408.

• Tavares, Cleiton; Bigonha, Mariza A. S.; Figueiredo, Eduardo, Quantifying the

Effects of Refactorings on Bad Smells. 10th Workshop on Theses and Disserta-

tions - Master Students (WTDSOFT). Natal (online), Brazil, 2020.

1.4 Dissertation Outline

We organized this Master dissertation into six chapters. This chapter introduced this

dissertation.

Chapter 2 presents a theoretical reference to assist this dissertation’s comprehen-

sion. It includes the main concepts related to the study, such as bad smell, refactoring,

and tools to support these operations. It also presents some related works disposed

of the literature. We discuss them in two aspects, (i) the bad smell and refactoring

subject and (ii) the refactoring impacts.

Chapter 3 describes the Systematic Literature Review and presents the protocol

used to conduct it, their execution, the analysis and, the results obtained after its

application.

Chapter 4 defines the empirical study design to assess the automatic refactoring

process’s impacts. It also defines the refactoring strategies we analyzed and the bad

smells used for its evaluation.

Chapter 5 presents the execution of the empirical study described in Chapter 4.

It presents the results obtained and also additional analyses covering a broad vision of

the data. It also contrasts the results obtained in the empirical study compared to the

systematic literature review.

Chapter 6 concludes the dissertation with a discussion regarding the results of

these studies and their importance for the software engineering area. We summarize

the contributions of the study and give suggestions for future work.

Chapter 2

Background and Related Work

Software engineering brings with it different phases and processes for the development

of a software system. One of its aspects is understanding what a bad smell is and when

to apply the refactoring. Therefore, in this chapter, we present the definition used in

this dissertation for the terms bad smell and refactoring in Section 2.1 and Section

2.2, respectively. Moreover, we present in Section 2.3 an overview of some tools used

to (i) detect bad smells and (ii) support the refactoring process. To identify these

tools, we used systematic literature reviews and a mapping study from the literature

[22, 28, 47, 75, 79]. Moreover, we perform an ad-hoc search to identify tools that were

recently published.

Based on what was presented by Fowler et al. [34] and discussions available in the

literature, we may establish a direct relationship between the application of refactoring

to solve the bad smells existing in the source code. In this way, we may identify different

situations in which the literature discussed these subjects. There are several literature

reviews in the context of bad smells [22, 28, 58, 61, 88] and refactoring [1, 2, 53, 79].

Although most studies deal with these subjects individually, focusing just on one theme,

others deal with more than one theme, and still, others discuss these subjects together.

Therefore, Section 2.4 presents some studies that discuss these subjects using different

ways. The literature also presents several works discussing different approaches to

evaluate the refactoring operation [7, 15, 23, 31], in Section 2.5 we discuss some of

them. Finally, Section 2.6 presents the final remarks of this chapter.

2.1 Bad smell

Bad smell is an evidence of problems in the code structure that may use refactoring to

solve it [37]. Fowler et al. [34] proposed one of the most complete lists containing 22

5

2. Background and Related Work 6

bad smells; besides that, they describe how we may identify them and what refactoring

strategies we may apply in their solution. In recent book edition, Fowler [33] presents a

new list containing 24 bad smells, where Fowler preserves much of the list presented in

its first work, updates some terms, and adds new bad smells assuming that the context

of bad smells is differentiated than presented in his first version.

Feature Envy is an example of a bad smell that occurs when a function in one

module spends more time communicating with functions or data inside another module

than it does within its module.

Algorithm 2.1 presents a Feature Envy example adapted from Elarning.1 To al-

low the user to distinctly the numbers that make up a North American mobile phone

number, we built the Phone class. In the Customer class, the method getMobilePho-

neNumber() provides a North American-formatted mobile phone number. In this sce-

nario, we can identify a Feature Envy. This fact is a piece of evidence in how customer

reaches into phone’s data to format the number, showing up a misplaced responsibility.

1 public class Phone {

2 private final String unformattedNumber;

3 public Phone(String unformattedNumber) {

4 this.unformattedNumber = unformattedNumber;

5 }

6 public String getAreaCode () {

7 return unformattedNumber.substring (0,3);

8 }

9 public String getPrefix () {

10 return unformattedNumber.substring (3,6);

11 }

12 public String getNumber () {

13 return unformattedNumber.substring (6,10);

14 }

15 }

16

17 public class Customer {

18 private Phone mobilePhone;

19 public String getMobilePhoneNumber () {

20 return "(" +

21 /* start feature envy code */

1https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=

recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=

Java

https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=Java
https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=Java
https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=Java

2. Background and Related Work 7

22 mobilePhone.getAreaCode () + ") " +

23 mobilePhone.getPrefix () + "-" +

24 mobilePhone.getNumber ();

25 /* end feature envy code */

26 }

27 }

Listing 2.1: Feature Envy Example

2.2 Refactoring

Refactoring is a process that improves the software system’s internal structure without

changing the code’s external behavior. One of the most well-known and complete

catalogs presents a list of 72 refactorings [34]. In his most recent book edition, Fowler

[33] updates your refactorings catalog considering a more current context and following

software development standards used today, assuming that the refactoring had become

a standard tool for any skilled programmer. In this new version, the author catalogs 61

refactorings, although its Web page2 displays a catalog with 66 refactorings, including

those refactorings described in the book Refactoring 2nd Edition, together with the

Ruby Edition.

Extract Method is an example of its refactoring, which consists of turning a code

fragment into its method to improve your clarity. We may perform this refactoring

when: (1) a method is too long, (2) it is difficult to understand the purpose of a code

fragment, and (3) we want to finely grain a method, increasing the chances that other

methods can use it.

Another refactoring example is the Move Method. This refactoring consists of

moving to another class a method, which seems to reference another object more than

the object it lives on. The classes may be made simpler by moving methods and end

up being a more crisp implementation of a set of responsibilities. We may perform this

refactoring when: (1) classes have too much behavior, and (2) besides high coupled,

the classes collaborating too much.

As presented in Algorithm 2.1, which presents a Feature Envy bad smell example,

a possible way to solve this bad smell would be the refactoring application process.

Algorithm 2.2 presents a possible refactoring strategy that solves the bad smell jointly

applying Extract Method and Move Method refactoring. This solution is an example

2https://refactoring.com/catalog/

https://refactoring.com/catalog/

2. Background and Related Work 8

adapted from Elarning.3 We can observe that after the application of the refactoring

process, the customer relies on Phone to do the formatting.

1 public class Phone {

2 private final String unformattedNumber;

3 public Phone(String unformattedNumber) {

4 this.unformattedNumber = unformattedNumber;

5 }

6 private String getAreaCode () {

7 return unformattedNumber.substring (0,3);

8 }

9 private String getPrefix () {

10 return unformattedNumber.substring (3,6);

11 }

12 private String getNumber () {

13 return unformattedNumber.substring (6,10);

14 }

15 /* extract and move method applied */

16 public String toFormattedString () {

17 return "(" + getAreaCode () + ") " + getPrefix () + "-" +

getNumber ();

18 }

19 }

20

21 public class Customer {

22 private Phone mobilePhone;

23 public String getMobilePhoneNumber () {

24 /* extract and move method applied */

25 return mobilePhone.toFormattedString ();

26 }

27 }

Listing 2.2: Extract and Move Method Example

3https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=

recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=

Java

https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=Java
https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=Java
https://elearning.industriallogic.com/gh/submit?Action=PageAction&album=recognizingSmells&path=recognizingSmells/featureEnvy/featureEnvyExample&devLanguage=Java

2. Background and Related Work 9

2.3 Refactoring and Bad Smell Detection Tools

This section presents the tools chosen to assist the research study conducted in our

dissertation.

DECOR/DETEX/PTIDEJ4 [55]. Ptidej is a tool suite for evaluating and improv-

ing the quality of object-oriented programs, reverse-engineering (AOL, C/C++,

Java), and promoting patterns. DECOR is a method of detection for code and

design smells. DETEX, an instantiation of DECOR, uses a unified vocabulary

and a dedicated language that allows the specification and the detection of code

smells and antipatterns. Ptidej integrates DECOR, but in this dissertation we

use the Eclipse Java project to identify code and design smells in the analyzed

source code.

Designite5 [71]. Designite is a tool used to assess the software system design quality.

It analyzes C# code and identifies software quality issues to reduce technical

debt and improve a software system’s maintainability. DesigniteJava detects nu-

merous design and implementation smells in its Java version and computes many

commonly used object-oriented metrics. In this dissertation, we use Designite-

Java Community, which is free and open-source. It also has an Enterprise edition,

offering additional features than the Community edition.

JDeodorant6 [29]. JDeodorant is an Eclipse plugin that employs various methods and

techniques to identify code smells and solves them by suggesting the appropriate

refactorings to be applied.

JSpIRIT7 [84]. JSpIRIT (Java Smart Identification of Refactoring opportunITies) is

a plugin for the Eclipse IDE that helps the developer to prioritize code smells

and identify code smells and their possible agglomerations. It provides different

rankings using different criteria, such as the application’s history, the relevance

of the code smell, or modifiability scenarios to prioritize the code smells.

Organic8 [56]. Organic is a plugin for the Eclipse IDE designed to identify design

problems in Java software systems’ source code. It also identifies the relationships

between code-anomaly agglomerations [57, 68] and software design degradation.

However, it does not provide a user interface or user interaction. It collects code

smells from Java projects using only command lines.

2. Background and Related Work 10

2.4 Bad Smell and Refactoring

Sousa et al. [77] present a systematic literature mapping of studies investigating the re-

lationship between design patterns and bad smells. The authors focus on co-occurrence

between design patterns and bad smells, providing a general analysis of the relationship

between the GOF design patterns [25] and bad smells described by Fowler et al. [34].

Singh and Kaur [76] perform a systematic literature review of refactoring con-

cerning code smells. Several data sets and tools for performing refactoring have been

revealed and categorized depending on the detection approach: traditional method,

visualization-based technique, automatic method, semi-automatic method, empirical

studies, and metric-based method.

Kaur and Singh [44] conduct a systematic mapping study evaluating the effect of

refactoring activities on software quality attributes of existing empirical studies. They

considered and presented code smells with a small and general focus on the studies

found. They select 142 primary studies following a multi-stage scrutinizing process

and classified them along with different aspects, which enable them to provide various

findings. One of their findings shows that the individual refactoring activities have

variable effects on most quality attributes explored in primary studies, indicating that

refactoring does not always improve quality attributes.

Lacerda et al. [47] present a tertiary systematic literature review of previous sur-

veys, secondary systematic literature reviews, and systematic mappings on code smell

and refactoring. They show that both subjects have a strong relationship with quality

attributes, such as understandability, maintainability, testability, complexity, functio-

nality, and reusability. Besides, they present a visualization that analyzes the relation-

ship among quality attributes, which code smells affected them, which refactoring may

be applying to these code smells, and its impact when using such refactoring.

Bafandeh Mayvan et al. [5] present an approach for bad smell detection in code

based on a multi-step process using software quality metrics and refactoring opportu-

nities. First, it obtained the bad smell formal specifications based on software metrics.

After that, it uses them to achieve a set of candidates for each bad smell. Finally,

each of the instances is examined and compared with the corresponding refactoring

situations specified for that bad smell, striking out the false positives created in the

previous stage. They evaluated and demonstrated the effectiveness of this approach.

Sousa et al. [77] studied the relationship between design patterns and bad smells.

Regarding the works done by Singh and Kaur [76], Kaur and Singh [44], Lacerda

et al. [47], and Bafandeh Mayvan et al. [5], even though these authors presented the

context of refactoring and code smells, they do not explored enough the relationship

2. Background and Related Work 11

between each other considering the Fowler’s catalog [34]. Therefore, unlike these works,

we want to focus on this subject profoundly, investigate how the literature discusses

and construct a complete list of the relationship between bad smell and refactoring

presented by Fowler et al. [34].

2.5 Refactoring Impacts

Bavota et al. [7] mined the evolution history of three Java open-source projects to inves-

tigate whether refactoring activities impact quality metrics or bad smells, suggesting a

need for refactoring operations. According to their results, quality metrics usually do

not show a clear relationship with refactoring; 42% performed refactoring operations on

code entities affected by code smells and, only 7% of the performed operations remove

the code smells.

Cedrim et al. [16] analyzed the version histories of 25 projects to find out how

2,635 refactorings distributed in 11 different types affect the density of five code smells.

Their results show that 95.1% of refactorings did not reduce or introduce code smells,

2.24% of refactoring changes removed code smells, and 2.66% introduced new ones.

In another work, Cedrim et al. [15] analyze how 16,566 refactorings distributed in ten

different types affect the density of 13 types of code smells in the version histories

of 23 projects. Their results reveal that 79.4% of the refactorings touched smelly

elements, 57% did not reduce their occurrences, 9.7% of refactorings removed smells,

and 33.3% induced new ones. They also characterized and quantified that 30% of

the Move Method and Pull Up Method induced God Class’s emergence, and Extract

Superclass in 68% of the cases created Speculative Generality.

Fontana and Spinelli [31] analyze the impact of refactoring applied to remove

code smells. They select four bad smells defined by Fowler, detected by three tools,

and apply the refactoring automatically using two tools. They performed this process

on the open-source, object-oriented system of about 400 classes. They analyzed and

reported a summary of the impact according to six metrics proposed to evaluate the

system’s code and its design quality.

Du Bois and Mens [23] presented a formalism for describing the impact of refac-

torings on internal program quality metrics as indicators of quality factors. The authors

described the formalist for three refactorings and six internal metrics. The abstract syn-

tax tree performed the representation of the source code extended with cross-references.

They elucidate how these metrics can be formally defined on top of this program struc-

ture representation and demonstrate how to project the impact of refactorings on their

2. Background and Related Work 12

values in the form of potential drifts or improvements.

Chaparro et al. [17] present a technique that estimates the impact of refactoring

operations on source code quality metrics, named RIPE (Refactoring Impact PrEdic-

tion). It supports 12 Fowler refactoring operations, the ones dealing with generalization

and composing methods, and 11 metrics that can be used together to refactoring rec-

ommendation tools. They evaluate this technique and estimate the impact on 8,103

metric values for 504 refactorings from 15 open-source Java systems. In general, 38% of

the estimates are correct, whereas the median deviation of the actual values’ estimates

is 5% (with a 31% average).

Alshayeb [3] investigates whether refactoring to patterns improves software qua-

lity. This investigation was realized empirically by examining the metric values of five

external quality attributes for three open-source Java systems before and after nine

refactorings to patterns is applied. These refactorings were applied manually, but the

author did not apply all refactorings to each system. He did not found consistent im-

provement in software quality attributes because each refactoring to patterns technique

has a particular purpose and effect, affecting software quality attributes differently.

Bibiano et al. [11] analyzed 19 smell types and 13 transformation types in 4,607

batches, each applied by the same developer on the same code element. They computed

the frequency in which five batch characteristics manifest, the probability of each batch

characteristics to remove smells, and the frequency in which batches introduce and

remove smells. According to their results, batches that apply on a single method are

more prone to removing smells than batches affecting more than one method. Still,

batches 51% of the time ended up introducing or 38% of the time not entirely removing

smells.

Eposhi et al. [24] evaluated the impact of refactoring, focused on removing design

problems, on the density and diversity of symptoms involving two C# systems. Their

results show that refactorings caused almost no positive impact on the density and

diversity of symptoms. However, the density and diversity of symptoms, such as the

violation of object-oriented principles, were not predominantly higher.

Fernandes et al. [27] investigate if re-refactoring operations are more effective in

improving attributes when compared to single operations. They analyzed 23 open soft-

ware projects with 29,303 refactoring operations, from which nearly 50% constitute re-

refactorings, assessed cohesion, complexity, coupling, inheritance, and size attributes.

They combined descriptive analysis and statistical tests to deeply understand the effect

of refactoring and re-refactoring on each attribute and revealed that 90% of refactoring

operations, and 100% of re-refactoring operations, were applied to code elements with

at least one critical attribute. 65% of the operations improve attributes presumably

2. Background and Related Work 13

associated with the refactoring type applied and, 35% keep those attributes unaffected.

Unlike Bibiano et al. [11], we focus on studying the relationship between bad

smells and refactoring. Different from Eposhi et al. [24], we decided to carry out our

analysis based on Java systems. We investigate different Java systems than those of

Bavota et al. [7]. Unlike Fontana and Spinelli [31] work, we intend to use many bad

smells among those proposed by Fowler et al. [34].

Different from Fernandes et al. [27], we do not distinguish our analysis between re-

factoring and re-refactoring, even though we identified this situation. Unlike Chaparro

et al. [17] and Du Bois and Mens [23], we evaluate the existing literature strategies

assessing the impacts that the refactoring process has on the bad smells proposed by

Fowler et al. [34]. Cedrim et al. [16], Cedrim et al. [15], and Alshayeb [3] detected

refactorings carried out in the source code, we intend to apply refactorings using tools

to assist these processes. Finally, as one of the results, we want to provide a cata-

log showing which bad smells we may remove and which ones, if they exist, we may

introduce by refactoring.

2.6 Final Remarks

Bad smells are symptoms present in the source code that indicate any anomaly that

refactoring operations may solve [20]. Refactoring aims to remove bad smells and

increase software maintainability by improving the software structure without changing

its behavior.

One of the precursors of the subject was Fowler, who, in 1999, presented one of

the most complete and discussed catalogs in the literature [47]. He recently published

a new edition of his work. He remained the definition of the concepts and updated his

catalog of bad smells that may exist in a software system and refactorings strategies

that a developer may use to improve their internal structure. As this dissertation’s

scope aimed at analyzing different bad smells and refactorings already consolidated in

the literature, we decided to focus on Fowler’s first catalog. Moreover, for the rest of

this dissertation, we only present the bad smell and refactoring names proposed in the

first edition of his work. Also, for the refactoring and bad smell detection tools chosen,

we only use the operations provided by them according to the name established by

Fowler et al. [34].

Refactoring and bad smells are two terms that may be work together. In the

literature, several studies use this principle [5, 7, 15, 16, 31], but many do not explore

this subject in detail. It is worth mentioning that both subjects are complete and

2. Background and Related Work 14

complex enough to justify studies that focus on only one of them. Someone may find

these terms directly linked to countless other software development contexts, and these

relationships may also be studied. To identify the relationship between bad smell and

refactoring, Chapter 3 conducts a systematic literature review to identify the specific

refactorings mentioned to those presented’ specific bad smells proposed by Fowler [34].

Chapter 3

Systematic Literature Review on

the Relationship Between Bad

Smell and Refactoring

Fowler et al. [34] presents a catalog of bad smells and refactoring consisting of 22 bad

smells and 72 refactorings, widely discussed in the literature [22, 53, 77]. However, in

many cases, the descriptions of bad smells and their relationships with refactorings are

not precise and lack a consistent level of details [6]. Moreover, we need more studies

in the area, not only in context-based evaluations of bad smells and how to eliminate

them [78] but also in research exploring the relationship between refactoring and bad

smell [13].

To better understand this relationship, this chapter presents a systematic lite-

rature review to find a direct relationship between the bad smell and the refactoring

proposed in Fowler’s catalog [34]. A Systematic Literature Review (SLR) is a study

that provides identification, analysis, and interpretation of evidence related to a parti-

cular research topic issue or the phenomenon of interest [86]. We conducted the SLR

protocol using the Kitchenham guidelines [46]. The SLR presented as part of this

dissertation addresses studies focusing on the direct relationship between refactoring

and bad smells. We carried out the SLR in three stages: (i) planning, (ii) execution,

and (iii) analysis [46]. The results provide insights to researchers and developers of the

existing relationships used to refactor code.

The remainder of this chapter has six sections. Section 3.1 presents the SLR

planning. Section 3.2 explains the SLR execution. Section 3.3 discusses how we con-

ducted the analysis. Section 3.4 reports the SLR results, answering the RQ1, RQ1.1,

RQ1.2, and RQ2. Section 3.5 presents the threats to validity. Section 3.6 concludes

15

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 16

this chapter.

3.1 Planning Stage

In this phase, we defined:

1. the topic investigated

2. the electronic databases used to search for papers

3. the search string to identify relevant studies

4. the inclusion and exclusion criteria to obtain primary studies

5. the timestamp to conduct this work.

Research Questions

To identify the relationships between refactoring and bad smells proposed by

Fowler [34], we defined the following two general Research Questions (RQs),

RQ1 and RQ2, and two specific ones, RQ1.1 and RQ1.2.

RQ1 - Which relationships between refactoring and bad smells are the literature

explicitly discussing?

RQ1.1 - Which are the most mentioned relationships between bad smells and

refactoring found in the literature?

RQ1.2 - Are the relationships we found different from those that Fowler presents?

RQ2 - Which tools found the papers perform refactoring from bad smell detec-

tion?

Electronic Databases

There are different electronic databases to be used in literature reviews to search

for primary studies. Some studies use one database [88, 89]; others use three

databases [39], six databases [4, 22, 28], seven databases [2], or even eight

databases [10, 53, 83]. We used seven of the most used ones [22], as shown

in Table 3.1. The first column in Table 3.1 shows the database name, while the

second one presents their respective websites.

Search String

The search string identifies the relevant studies in the selected databases, allowing

us to answer the proposed research questions. We conducted a pilot study with

search strings composed of multiple terms and applied them to each database.

We evaluated their results in each database to identify which search string has

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 17

Table 3.1: Eletronic Databases

Database Address Papers Returned

ACM Digital Library http://dl.acm.org/ 113
Engineering Village https://www.engineeringvillage.com 83
IEEE Xplore http://ieeexplore.ieee.org/ 47
Science Direct http://www.sciencedirect.com/ 07
Scopus http://scopus.com/ 70
Springer http://link.springer.com/ 2,025
Web of Science http://apps.webofknowledge.com/ 44

Total 2,389

reached as many studies as possible in the literature. In the end, the search string

was consolidated with three terms as follows.

(refactor OR refactoring) AND (relationship OR correlation OR

associate) AND (“code smell” OR “bad smell” OR bug OR “anti

pattern”)

Inclusion and Exclusion Criteria

We used four inclusion and two exclusion criteria to select the primary studies

(see Table 3.2). These criteria allow classifying each study under review as a

candidate to be included or excluded from the SLR. As an SLR may involve

many studies, we limited the scope of selecting only complete papers in English

and ignored short papers or documents classified as dissertations or thesis. We

decided to do so because usually, they are published as full papers by the authors.

Regarding short papers, they present emerging results.

Table 3.2: Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

• Written in English

• Published in conferences, journals,
workshops and book chapters*

• Available in electronic format

• Present refactoring and bad smells
defined by Fowler

• < 5 pages

• Thesis, dissertations, tutorials,
courses and magazines issues

*Papers published at conferences that appear as book chapters in digital libraries

Search Source

We searched all studies published up to 2018. We carried out the search process

http://dl.acm.org/
https://www.engineeringvillage.com
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://scopus.com/
http://link.springer.com/
http://apps.webofknowledge.com/

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 18

from February 6 to 9, 2019.

3.2 Execution Stage

This phase consists of (i) applying the search string in the selected databases, iden-

tifying primary studies, and (ii) selecting the relevant ones found through the exclu-

sion/inclusion criteria. Figure 3.1 presents the resulting number of primary studies

after each step, serving as input to the next step. 1.Remove Duplicates, 2.Reading

Title, 3.Reading Abstract, 4.Inclusion and Exclusion Criteria, 5.Reading Introduction

and Conclusion, and 6.Complete Reading of Paper represents these steps, discussed be-

low. The check symbols indicate the studies remaining in the step, while numbers near

cross symbols indicate the studies excluded. At the end of the process, we identified 20

papers that fit the scope of this work. These studies were analyzed and summarized

in order to collect information to answer our RQs.

Figure 3.1: Number of Papers Filtered in Each Step

Search Process

In the search process, we did not define any constraint, and, therefore, we con-

sidered all studies returned by non-filter databases per publication year. Table

3.1 presents the primary studies returned by the search in each database, with a

total of 2,389 studies, including duplicates.

Study Selection Process

Figure 3.1 presents the six steps focusing on selecting relevant papers according

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 19

to their content. The result regarding each database is available on our website.1

We discuss the six steps as follows.

Step 1 - Remove Duplicates. We merge the papers returned in all databases,

which causes the removal of duplicated papers, and randomly eliminated the

papers without favoring any database.

Step 2 - Reading Title. We retained only those papers with excerpts of the search

string used or those that could be relevant for the study. In case of doubts, we

kept the papers for the next filtering step.

Step 3 - Reading Abstract. Here, we selected those papers that show some

evidence of being linked to the SLR context.

Step 4 - Inclusion and Exclusion Criteria. We applied the inclusion criteria

defined in Section 3.1, if the paper fits in at least one of the exclusion criteria,

we removed it from our SLR.

Step 5 - Reading Introduction and Conclusion. We selected those papers that

present evidence to help answer our RQs and those relevant to the study.

Step 6 - Complete Reading of Paper. We included only those papers that are

directly related to our RQs.

Snowballing - Searching in the electronic database does not guarantee that we

will recuperate all relevant studies related to a particular topic. To mitigate this

limitation, we did a snowballing procedure. Snowballing is a search approach

that uses paper citations as a reference list to identify studies that are not found

in the search process [85]. Snowballing allows performing backward or forward.

Backward uses the reference list of the paper to find other studies. Forward refers

to identifying new articles analyzing the studies that cite a given study. In our

SLR, we execute backward snowballing. We performed this process with the 15

papers identified at the end of Step 6. Futhermore, for the papers identified,

we applied again these six steps to find new candidates to be included. The

snowballing has resulted in the inclusion of five new papers.

Data Extraction

Research questions are the main drivers of what information needs to be ex-

tracted. RQ’s main topic was identified and summarized as tabular data. For

each paper found, we documented: each bad smell mentioned in the study and

1https://cleitonsilvat.github.io/dissertation/

https://cleitonsilvat.github.io/dissertation/

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 20

the refactoring operations related to it, and each tool mentioned in the paper and

its characteristics.

This information allows us to identify the most studied relationship and com-

pare the Fowler suggestions against the literature’s proposed suggestions. It also

provides insights into which tools are proper to study both bad smells and refac-

toring.

The quality assessment is an integral part of an SLR to assess the evidence’s

strength and consider when synthesizing the results [12]. However, we did not

perform it in this SLR. The reason is that we consider that the Study Selection

Process and Data Extraction were sufficient to reach the most relevant papers in

our study. Besides, a good strategy to validate the relationships found would be

the conduction of an empirical study. We carried out this study in our dissertation

at Chapter 4 to validate, refute or complement the relationships found.

3.3 Analysis Stage

This section presents an overview of the primary studies, describing the papers’ char-

acterization found.

Figure 3.2: Publication Year

It is worth noting that the publication of all selected papers occurred between

2004 and 2018. Figure 3.2 shows the number of studies found per year. Observe that

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 21

2017 shows the largest number of relevant studies, and the years from 2013 to 2015

show three papers each. We did not find any study discussing the direct relationship

between refactoring and bad smells in 2005, 2007, 2008, and 2010 to 2012. Furthermore,

from the figure, we may argue that the topic has been recently researched.

Journals and conferences mainly published nine and eight studies from the se-

lected ones, respectively. They published them in 17 different events, most of them in

the IEEE Transactions on Software Engineering and the International Conference on

Agile Software Development (XP), with 3 and 2 papers, respectively. The remaining

events presented only one study, our Appendice A and website2 exhibit them. The

next section presents the SLR results and answers the research questions raised.

3.4 SLR Results

This section presents the results obtained in our SLR. Section 3.4.1 answers the RQ1

and Section 3.4.2 answers the RQ2 raised.

3.4.1 Relationships between Bad Smells and Refactoring

This section answers the research questions RQ1, RQ1.1, and RQ1.2.

RQ1 Which relationships between refactoring and bad smells are the literature

explicitly discussing?

Tables 3.3, 3.4, and 3.5 present the relationships between refactoring and bad

smells according to the analysis of the 20 papers found. These tables present, respec-

tively:

(i) a perfect match between discussions presented by Fowler et al. [34] and the

papers found in our SLR,

(ii) the relationships that were only discussed by Fowler et al. [34], and

(iii) other situations found about the relationships between bad smells and refacto-

ring discussed by Fowler et al. [34] and by papers found in our SLR.

Each line presents a different relationship between a bad smell and refactoring.

The first column presents the bad smell; the second column shows which refactoring

related to it; columns 3 and 4 check whether the relationship is discussed by Fowler or

2https://cleitonsilvat.github.io/dissertation/

https://cleitonsilvat.github.io/dissertation/

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 22

by the literature, respectively. A bullet indicates that refactoring was discussed. It is

worth noticing that a relationship may be discussed by Fowler and by the literature.

The last column presents a reference for the studies that discuss these relationships.

Table 3.3: Relationships Between Bad Smell and Refactoring Perfect Match

Bad Smell Refactoring Fowler Literature References

Alternative Classes with
Different Interfaces

Extract Superclass • • [19]
Move Method • • [19]
Rename Method • • [19]

Data Class

Encapsulate Collection • • [21, 69]
Encapsulate Field • • [19, 21, 69]
Extract Method • • [21, 69]
Hide Method • • [19, 21, 69]
Move Method • • [19, 21, 69]
Remove Setting Method • • [69]

Refused Bequest
Push Down Field • • [7, 19]
Push Down Method • • [7, 15, 19]
Replace Inheritance with Delegation • • [7]

Table 3.4: Relationships Between Bad Smell and Refactoring Discussed Only by Fowler

Bad Smell Refactoring Fowler Literature References

Comments
Extract Method •

Introduce Assertion •

Rename Method •

Data Clumps
Extract Class •

Introduce Parameter Object •

Preserve Whole Object •

Long Parameter List Replace Parameter with Explicit Methods •

Middle Man
Inline Method •

Remove Middle Man •

Replace Delegation with Inheritance •

Primitive Obsession

Extract Class •

Introduce Parameter Object •

Replace Data Value with Object •

Replace Type Code with Class •

Replace Type Code with Subclass •

Replace Type Code with State/Strategy •

Replace Array with Object •

Temporary Field
Extract Class •

Introduce Null Object •

We focused on bad smells and refactorings proposed by Fowler. However, we

have merged different terminologies into a single bad smell for specific situations since

their meaning and characteristics are similar, only changing their nomenclature. We

classified Clone [50] or Code Clone [41, 52] as Duplicated Code, and Parallel Inheritance

[63, 69] as Parallel Inheritance Hierarchies. There is a case where the authors explicitly

indicated State Checking as the Switch Statements smell [18]. For the refactoring

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 23

classification, we have the case of Polymorphism [18] named for Replace Conditional

with Polymorphism.

Every paper we have identified discusses more than one relationship between

bad smells and refactoring. Therefore, we individually documented each relationship

found. Observe that there are cases where different refactoring may be applied to

address the same bad smell. To answer RQ1, Tables 3.3, 3.4, and 3.5 present the 22

bad smells proposed by Fowler, which 16 of them (73%), exhibited in Tables 3.3 and

3.5, are also studied in the literature. They indicate the concern of researchers to

address most bad smells present in the catalog. However, the situation for refactoring

is different. From a total of 72 refactorings in the catalog, the literature cited only 31

(43%). Besides, this shows that not all refactoring operations mentioned by Fowler

are discussed in the literature, relating it to bad smells.

RQ1.1 Which are the most mentioned relationships between bad smells and refacto-

ring found in the literature?

Tables 3.3 and 3.5 show all relationships between refactoring and bad smells found

in this SLR. We do not consider the results described in Table 3.4 because it does not

present relationships discussed in the literature, only those presented by Fowler et al.

[34]. To answer this RQ, we consider the relationship discussed by the largest number

of different studies. We identified that the highest number of citations is related to

Move Method (refactoring) and Feature Envy (bad smell), totaling 14 different papers

targeting this relationship, as exhibited in Table 3.5.

According to the data presented in Tables 3.3 and 3.5, we also observed

that the refactoring operation that relates to the most considerable amount of bad

smells is Move Method, which relates to 11 types of smells, while Long Method is

the bad smell related with the highest number of operations; 13 refactorings relate to it.

RQ1.2 Are the relationships we found different from those that Fowler presents?

To answer this question, we performed an analysis based on columns 3 and 4 of

Tables 3.3, 3.4, and 3.5. We identified three cases:

Case 1: if Column 3 is marked and Column 4 is not, the relationship is discussed

only by Fowler, meaning that the relationship needs to be researched, or maybe

it is not discussed in the literature (see Table 3.4).

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 24

Table 3.5: Relationships Between Bad Smell and Refactoring

Bad Smell Refactoring Fowler Liter. References

Divergent Change

Extract Class • • [16, 63]
Extract Method • [15]
Extract Superclass • [16]
Move Field • [16]
Move Method • [16]
Pull Up Method • [16]

Duplicated Code

Extract Method • • [32, 41, 50, 52]
Form Template Method • [32]
Pull Up Method • • [19, 32, 41]
Replace Met. with Met. Obj. • [32]
Substitute Algorithm •

Feature Envy

Consolidate Dup. Cond. Frag. • [7]
Extract Method • • [7, 15, 21, 69, 81]
Move Field • [18, 21, 81]
Move Method • • [7, 8, 9, 18, 19, 21, 48, 52]

[63, 65, 66, 67, 69, 81]
Pull Up Method • [21]

Inappropriate Intimacy

Change Bidir. Assoc. to Unidir. •

Extract Class •

Hide Method •

Move Field • • [19]
Move Method • • [19]

Incomplete Library Class
Introduce Foreign Method •

Introduce Local Extension •

Move Method • • [19]

Large Class
Duplicate Observed Data •

Extract Class •

Extract Subclass • • [19]

Lazy Class

Collapse Hierarchy •

Inline Class • • [7]
Move Method • [65]
Push Down Method • [15]

Long Method

Add Parameter • [7]
Consolidate Cond. Expr. • [7, 21]
Decompose Conditional • • [21]
Extract Method • • [7, 16, 18, 21, 38, 50]
Inline Method • [7]
Introduce Explaining Variable • [7]
Introduce Parameter Object • • [21]
Preserve Whole Object • • [21]
Remove Control Flag • [7]
Remove Parameter • [7]
Rename Method • [7]
Replace Met. with Met. Obj. • • [21]
Replace Temp With Query • • [21]

Message Chains
Extract Method •

Hide Delegate •

Move Method • • [19]

Parallel Inheritance
Hierarchies

Extract Subclass • [63]
Move Field • • [19]
Move Method • • [19, 69]

Shotgun Surgery

Move Class •

Move Field • [16, 19, 63]
Move Method • • [16, 19, 63]
Pull Up Method • [16]

Speculative Generality

Collapse Hierarchy • • [7]
Inline Class •

Remove Parameter • • [19]
Rename Method • [19]

Switch Statement

Extract Method •

Move Method • • [19]
Rep. Cond. with Polymorphism • [18]
Rep. Type Code with Sta./Strat. •

Rep. Type Code with Subclass •

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 25

Case 2: if the opposite situation occurs, where Column 4 is marked, and Column

3 is not, it means that we found a new relationship not addressed in Fowler’s

catalog. Some situations in Table 3.5 shows it.

Case 3: if columns 3 and 4 are marked, this represents that the relationship found

in the literature agrees with what Fowler says. Table 3.3 exhibits it.

For example, in Table 3.5 we identified for Lazy Class all refactoring operations

related to it. We found a refactoring that only Fowler presents a relationship: Collapse

Hierarchy (Case 1). We also found that the literature proposes two new refactoring

operations related to it: Move Method and Push Down Method (Case 2). Finally, we

identified Inline Class in Fowler’s work and in the literature (Case 3).

From Table 3.3 and by the reasoning explained above, we may conclude that only

Alternative Classes with Different Interfaces, Data Class, and Refused Bequest have

both columns 3 and 4 being a perfect match, which indicates that there is no new

refactoring strategy related to them reported in the literature. Also, the literature did

not address six bad smells from the Fowler’s catalog (see Table 3.4), which may be due

to their nature, since some bad smells do not significantly impact the source quality

[62]. Observe that for seven of the 22 smells presented in Table 3.5, the literature has

proposed more refactoring operations than Fowler. However, for these smells, Fowler

has presented 18 refactoring strategies related to them, of which literature did not

confirm only three. In total, we have identified 35 relationships in Case 1, 24 in Case

2, and 35 in Case 3.

3.4.2 Tools for Refactoring

This section answers the research question RQ2.

RQ2 Which tools found in papers perform refactoring from bad smell detection?

It is worth noticing that to answer the RQ2 we do not search all proposed or

mentioned tools present in the literature. This SLR focuses on identifying studies that

explicitly cite the relationship between refactoring and bad smells, not identifying all

refactoring tools. Therefore, we documented only tools that appear in the resulting

studies, which detect bad smells, and propose refactoring to solve them. Out of 20

studies, 16 have mentioned the tools used to conduct them. Table 3.6 exhibits the

tools composed of both concepts and information about each one, such as if it has a

Graphical User Interface, or it is a Framework. The complete list of tools may be found

on our Appendice A and website.3 We observe that nine tools need more than one tool

3https://cleitonsilvat.github.io/dissertation/

https://cleitonsilvat.github.io/dissertation/

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 26

to perform the process of detecting bad smells and applying the refactoring. As our

study’s focus is to tackle the refactoring and bad smell context, we only report seven

tools that target both concepts in the same tool.

Table 3.6: Characteristics of Each Tool

Tool [Ref.] GUI FRA ONL PLG FRE OPS USG SL
Extract Method Detector [50] Yes - No Yes Yes Yes No Java
JDeodorant [8, 18, 69] Yes - No Yes Yes Yes Yes Java
JMove [67] Yes - - Yes Yes Yes Yes -
Liu’s Approach [48] - - - - - - - -
Methodbook [9] - - - - - - - Java
MMRUC3 [66] - Yes - - - - - Java
Tsantalis’s Methodology [81] - - - - - - - Java

GUI: graphical user interface; FRA: framework; ONL: online; PLG: plugin; FRE: free for use; OPS: open-source;
USG: user guide available; SL: supported language; “-” : information not available.

3.5 Threats to Validity

Even with careful planning, definition, and application of our design, some threats

to validity may invalidate our findings. We discuss the threats to validity listed by

Wohlin et al. [86]: (i) construct validity, which concerns the relationship between which

the experiment setting reflects the theory; (ii) internal validity, that may affect the

independent variable concerning causality; (iii) conclusion validity, which may affect

the ability to draw the correct conclusion; and (iv) external validity, that limits the

ability to generalize the results beyond the experiment setting.

Construct Validity

The electronic database selected might not retrieve all relevant papers. To mini-

mize this threat, we selected seven databases that aggregate papers from many

publishers. Also, the search string used may not find all papers that are relevant

to this SLR. To minimize this threat, we designed a search string that includes

standard terms for “refactoring” and “bad smell”. Furthermore, we performed a

pilot search in each database to select a subset of the most common terms used

in the research field, to retrieve the highest number of relevant papers. However,

we may not assume that this filtering strategy found all existing related works.

Internal Validity

This study’s guaranteed reproducibility is due to the detailed specification of the

search engines used, the search string, and the inclusion and exclusion criteria.

Possible limitations of the search results were overcome by including different

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 27

terms used by different authors but with similar concepts, staying in this SLR

scope. Another internal validity threat may be related to the judgment of the

information presented, which expresses only the researchers’ point of view. The

researchers have carried out the selection stage to minimize this threat, which in

the initial stages made comparisons of the selected papers to avoid bias in selec-

ting studies. Besides that, frequent meetings were held between three researchers

to discuss the relevant papers.

Conclusion Validity

The data summaries found in the literature and the Fowler’s catalog present the

researchers’ point of view, which may not present the papers’ actual concept.

To minimize this conclusion threat and maintain the information’s integrity, we

documented what was explicitly presented by the papers.

External Validity

This threat is related to the selected papers’ representativeness published up to

2018 regarding the systematic literature review’s primary goals. We used the

systematic protocol to support a comprehensive representation of the selected

papers, but some other papers may have been published after 2018 or indexed

after applying the search string in the databases. Our findings of the relationship

between refactoring and bad smells in the study period are accurate to the best of

our knowledge. Furthermore, we focus on the presentation of the bad smells and

refactorings presented in the first edition of Fowler’s book [34]. As the second

edition’s book was presented in 2018 [33], we believe that a period to be sought

after that date may be related to this second edition, which is not the focus of

our study.

3.6 Final Remarks

Refactoring from bad smell detection is not profoundly discussed in the literature. This

chapter presented the result of an SLR to identify the direct relationship between refac-

toring and bad smells. We have identified 20 papers that show the direct relationship

between 31 different refactoring and 16 bad smells. Analyzing these papers, we have

found that:

(i) the relationship between Move Method applied to Feature Envy appears as the

most discussed one in these studies;

3. Systematic Literature Review on the Relationship Between Bad

Smell and Refactoring 28

(ii) there are 24 different relationships between refactoring related to some bad

smells than those proposed by Fowler;

(iii) seven tools refactor through the identification of the bad smells proposed by

Fowler.

According to the results presented in this chapter, we identified some relationships

that Fowler did not initially discuss. These new relationships found may represent

situations that were not previously foreseen, patterns of certain development groups, or

some other situation. To identify and validate these possible situations, we conducted

a deep study in this context, via an empirical study aiming to analyze the impact of

refactoring on bad smells, that may validate or refute the new relationships found in

our SLR. We describe it in Chapter 4.

Chapter 4

Empirical Study Design

A software system requires much effort from developers to maintain its source code

[22]. To continue meeting its requirements and evolve or adapt to new technologies,

it must follow acceptable development practices to facilitate the team’s work. Thus,

being refactoring the code is expected to decrease the number of bad smells, which

are poor code implementations that indicate the need to be refactored [37]. However,

some studies show that the refactoring process often does not solve all source code’s bad

smells [7, 43]. Furthermore, other studies show evidence that the refactoring process

may not only remove bad smells in the source code but also may introducing new ones

[54, 65, 82]. Such a problem may lead the developer not to trust automated refactoring

since there are high chances of not completely removing the bad smells present in the

code.

This chapter defines an empirical research design to assess the automated refac-

toring process’s impacts in detecting bad smells to address the mentioned problem. To

assess this impact, we selected eight open-source Java systems available at Qualitas

Corpus[80]. We analyzed the impacts with the assistance of five tools (see Section 4.2),

using five refactorings, except for JDeodorant; this happens because refactorings of the

type Replace Type Code with State/Strategy and Replace Conditional with Polymor-

phism [34] are treated together by JDeodorant. We refer to them for documentation

criteria by Replace Refactoring. Therefore, given this union, from Section 4.1 to the

end of this dissertation, we treat the refactorings operation analyzed as being of four

types. We analyzed these refactoring impacts on ten bad smells proposed by Fowler

et al. [34].

We organized the remainder of this chapter as follows. Section 4.1 describes this

study’s goal and the research questions used to conduct it. Section 4.2 discussess the

research phases adopted to construct our datasets of systems, tools, bad smells, and

29

4. Empirical Study Design 30

refactorings to be analyzed. Section 4.3 describes the steps used to the assessment of

the impacts. Finally, Section 4.4 concludes this chapter.

4.1 Goal and Research Questions

Our goal in this study is to evaluate the impact of refactoring operations on detecting

bad smells in open-source Java systems. To conduct this study, we address four re-

factoring and ten bad smells proposed by Fowler et al. [34], discussed mainly in the

literature [47]. The research questions (RQs) to be analyzed are defined as follows.

RQ3 - What are the impacts of automated refactoring on the detection of bad

smells?

RQ3.1 - Does the automated refactoring process remove bad smells?

RQ3.2 - Does the automated refactoring process introduce bad smells?

To answer RQ3, we used an automated refactoring tool that created a new

refactored version from each system’s original version. We used bad smell detection

tools in the original version and also in the refactored version. With the detection of

bad smells carried out in the original and refactored versions, it was possible to assess

the refactoring operation’s impact on the bad smells detections, making it possible to

answer RQ3.1 and RQ3.2.

4.2 Research Phases

To assess the impacts caused by the refactoring operations, we initially defined three

phases to compose the data to be analyzed. Figure 4.1 shows these phases followed by

the description of each one.

Figure 4.1: Preparation Phases

4. Empirical Study Design 31

Phase 1 - Selection of Systems

To conduct our research, we initially selected a set of eight systems to compose

the study sample. We prioritize systems available through the Qualitas Corpus1

[80], which contains a curated collection of open-source Java software systems to

be used for empirical studies. Table 4.1 presents the selected systems. The first

column presents the abbreviation of each system. The second column presents

the name of the systems. Finally, the last six columns present some metrics which

demonstrate the heterogeneity of the selected systems. The calculated metrics

were: Number of Classes (NOC), Total Lines of Code (TLOC), Weighted Method

per Class (WMC), Number of Methods (NOM), Number of Packages (NOP), and

Method Lines of Code (MLOC). These metrics were calculated with the assistance

of Metrics2, an Eclipse plugin used for static code analysis.

Table 4.1: Selected Systems

Abbreviation System NOC TLOC WMC NOM NOP MLOC

S1 Checkstyle-5.6 492 36,641 5,164 2,665 42 21,070
S2 Commons-codec 136 20,400 2,757 1,262 13 12,314
S3 Commons-io 276 30,371 4,761 2,274 18 23,110
S4 Commons-lang 520 75,622 11,456 5,099 27 68,124
S5 Commons-logging 73 5,449 1,008 464 19 3,608
S6 JHotDraw-7.5.1 671 79,668 14,122 5,892 66 52,852
S7 Quartz-1.8.3 232 28,557 5,294 2,343 51 20,161
S8 Squirrel_sql-3.1.2 56 6,944 930 532 3 4,316

Phase 2 - Selection of Tools

This research uses some tools to automate the processes of refactoring and detec-

ting bad smells. We selected five tools for bad smell detection: Decor, Designite,

JDeodorant, SJpIRIT, and Organic. JDeodorant was the only one used to assist

the refactoring process, besides performing bad smell detection, also supports

automated refactoring.

Phase 3 - Selection of Bad Smells and Refactorings

To carry out our research, we focused on a sample composed of ten bad smells

and four refactorings available in the Fowler’s catalog [34]. These sample of bad

smells and refactorings were chosen because there are already tools supporting

them. We choose this catalog because it is the most completed one. Besides, the

1http://qualitascorpus.com/
2http://metrics.sourceforge.net/

http://qualitascorpus.com/
http://metrics.sourceforge.net/

4. Empirical Study Design 32

literature widely discusses it. Table 4.2 presents the list of the ten types of bad

smells evaluated and the tools we used to perform their detections.

Table 4.2: Bad Smell Detections by Tools

Abbreviation Bad Smell Decor Designite JDeodorant JSpIRIT Organic

DC Data Class • •

FE Feature Envy • •

LC Large Class •

ZC Lazy Class • •

LM Long Method • • •

LP Long Parameter List • •

MC Message Chains •

RB Refused Bequest • • •

SS Shotgun Surgery •

SG Speculative Generality • •

Total 7 2 2 4 4

It is worth mentioning that for Refused Bequest, we also consider Refused Parent

Bequest detections provided by the tools. We have not used the Fowler’s bad smell

Duplicated Code offered for JDeodorant because it requires the addition of another

tool, and we decided to use only the results of the tool itself. Moreover, the five

tools used to detect bad smells do not focus only on making the bad smell detections

proposed by Fowler. Considering this study focuses on the detections of bad smells

proposed by Fowler, we documented only them.

As said in the introduction of this chapter, we refer to Replace Type Code with

State/Strategy and Replace Conditional with Polymorphism by Replace Refactoring

in JDeodorant. Therefore, given this union, we treat the refactorings operation an-

alyzed as Extract Class, Extract Method, Move Method, and Replace Refactoring.

JDeodorant supported all of them.

4.3 Impacts Assessment

We choose to create a refactored version of each system with the support of an au-

tomated refactoring tool. The evaluated systems represent a sample of systems from

Qualitas Corpus. The tools used offer automated assistance to carry out the refactoring

and bad smell detection operations. Figure 4.2 shows the seven steps taken to assess

the automated refactoring impacts described as follows.

4. Empirical Study Design 33

Figure 4.2: Steps of This Empirical Study

Step 1 selects the system for evaluation. Before Refactoring, in Step 2, we com-

pute the results identified by the five bad smell detection tools in the original version

of the system. In Step 3, we filter the results returned by these bad smell detection

tools to find only the ones that are the focus of this study. It is worth remembering

that none of the five tools used supports detecting the ten bad smells mentioned. Some

tools detected only two bad smells, and others detected up to seven of the analyzed

bad smells.

Step 4 selects a Refactoring Strategy to be applied. For this step, aiming to use

the entirety tool, we carry out all the refactoring suggestions provided by JDeodorant.

After Refactoring, Step 5 computes the results identified by the five bad smell detection

tools in the refactored version of the system. In Step 6, we filter the results returned

by these bad smell detection tools to find only the ten bad smells that occur in this

study.

Step 7 is responsible for performing a comparative analysis of the results obtained

from steps 3 and 6, where these two steps represent the ten bad smells detected in the

original and refactored versions of the system, respectively. Comparing the results

allows us to analyze the impacts caused by the automated refactoring operation, for

instance, if this type of refactoring removes bad smells or introduces new ones. More-

over, it allows us to list the bad smells removed and show any new smells by a particular

refactoring strategy.

Considering that the agreement rate between the bad smells detection tools is only

high in situations of true negative [61], i.e., entities categorized as not containing any

smell. According to the precision and recall of these tools, we may conclude that the

false positive rate remains high. Thus, we decide to conduct our analyzes initially based

on four perspectives (see Section 5.1) to enable us to answer our research questions.

Besides, we also conduct two complementary analyzes: a) the aggregate analysis, and

4. Empirical Study Design 34

b) the comparative analysis. In the first case, we conduct an analysis considering the

total value of detections made by the tools, as will be described in Section 5.5. In the

second case, we present a general overview considering initially the four perspectives

used in our empirical study comparing with the findings presented in our SLR, as

presented in Chapter 3 (see Section 5.6).

Algorithm 1: How steps work
Result: Comparative analysis
Data: 8 systems, 4 refactoring types, 5 bad smell tools
foreach system in database do

list v1 = DetectBadSmell(system);
refactored = ApplyRefactoring(system);
list v2 = DetectBadSmell(refactored);
perform comparative analysis with v1 and v2;

end
Function DetectBadSmell(system):

foreach bad smell tool do
detect list of bad smells;
foreach list of bad smells do

select only Fowlers’ bad smells
end
return list of Fowlers’ bad smells;

end

Function ApplyRefactoring(system):
foreach type of refactoring do

while exist suggestion of refactoring do
if refactoring dont generate error then

apply refactoring;
end

end
return system refactored;

end

Algorithm 1 presents a pseudo-algorithm demonstration of the execution carried

out. Step 1 performs eight times, which represents the eight systems used in this

research. For each execution of Step 1, steps 2 and 3 performed five executions, repre-

senting the identification provided by the five tools used to detect the bad smells on

the original system. For each execution of Step 1, Step 4 performed four executions,

representing the four refactoring strategies adopted. In this step, the number of refac-

torings applied fluctuates according to the suggestions provided by JDeodorant, except

for some exceptions mentioned in Chapter 5.

4. Empirical Study Design 35

For each execution of Step 4, steps 5 and 6 performed five executions. Steps 5

and 6 represent the identification of the five tools used to detect the bad smells on the

refactored system. For Step 7, we carry out the comparative analysis for each applied

refactoring taking into account the detection of bad smells performed by each tool in

the original and refactored version of the system.

4.4 Final Remarks

This chapter presented the empirical research design to analyze the impact of refac-

toring on bad smells. To conduct this research, we selected eight open-source Java

systems available in the Qualitas Corpus. We selected four refactorings to be applied

and measured their impact on ten different bad smells detected by five different tools.

Chapter 5 presents the analyses and results of the empirical study described here in

this chapter.

Chapter 5

Empirical Study Analyses and

Results

Considering the experimental design presented in Chapter 4, we describe in this chap-

ter the analyses and results found in our experiment. We answer the research questions

based on our results and present some discussions about the analyses performed. We

applied a total of 668 refactorings providing by JDeodorant. After analyzing the re-

sults, we found that the refactoring process impacts different types of bad smells. As

expected, all types of refactoring identified cases in which there was a bad smell solu-

tion. Surprisingly, however, we also found cases where refactoring may introduce new

bad smells.

We organize the remainder of this chapter as follows. Section 5.1 describes the

detections made and used as a basis for conducting the analyzes. Section 5.2 presents

the refactorings applied, distributed in the eight systems. Section 5.3 presents the

comparative analyses conducted. Section 5.4 describes a summary of the results and

presents the raised research questions’ answers. Section 5.5 presents in higher-level the

analyses of the found results. Section 5.6 discusses and compares our empirical study

results with our systematic literature review results described in Chapter 3. Section

5.7 presents the threats to validity. Finally, Section 5.8 concludes this chapter.

5.1 Primary Result

We analyzed the impact caused by four types of refactoring on ten types of bad smells

evaluated in eight Qualitas Corpus systems using four perspectives to carry out this

comparative analysis. We describe the four perspectives analyzed in our empirical

study as follows.

36

5. Empirical Study Analyses and Results 37

(i) Original Detection. We consider the detections made by the bad smells de-

tection tools as valid without making any changes, union, intersection or merge

in this analysis’s returned data, e.g., the first detection.

(ii) Standardized Detection. In this analysis, we consider the results provided by

the tools as valid, but we perform a standardization in return made by the tools,

evaluating the common detections between them, e.g., for the same bad smell

detected, one tool presented the detection up to the class level and another tool

presented the detection up to the method level, for this situation the detections

for this type of smell were standardized considering up to the class level for both

tools.

Table 5.1: Bad Smells Detected Before Refactoring

(a) Original Detection

Bad Smell S1 S2 S3 S4 S5 S6 S7 S8

DC[T4 | T5] | 25 3 | | 2 22 | 4 1 | 2 22 | 52 5 | 10 | 8
FE[T3 | T4] 18 | 275 15 | 102 3 | 1 | 708 | 38 13 | 528 7 | 195 7 | 47
LC[T1]
ZC[T1 | T5] 3 | 260 4 | 36 | 63 | 153 1 | 18 30 | 176 4 | 67 1 | 17
LM[T1 | T2 | T3] 123 | 4 | 243 27 | 13 | 117 | 6 | 74 | 10 | 19 | 1 | 53 126 | 37 | 45 | 11 | 12 | 1 | 99
LP[T1 | T2] 12 | 32 6 | 9 | 29 | 94 70 | 155 17 | 56 1 | 10
MC[T1] 1 40 1
RB[T1 | T4 | T5] 52 | 51 | 18 | 11 | 4 | | 4 | 6 | 15 6 | 3 | 5 146 | 100 | 16 21 | 18 | 1
SS[T4] 39 1 20 9 167 49 2
SG[T1 | T5] 2 | 39 | 5 | 7 | 13 1 | 2 9 | 24 3 | 6

(b) Standardized Detection

Bad Smell S1 S2 S3 S4 S5 S6 S7 S8

DC[T4 | T5] | 25 3 | | 2 22 | 4 1 | 2 22 | 52 5 | 10 | 8
FE[T3 | T4] 18 | 274 15 | 102 3 | 1 | 639 | 36 13 | 512 7 | 191 7 | 47
LC[T1]
ZC[T1 | T5] 3 | 250 4 | 36 | 62 | 139 1 | 18 30 | 176 4 | 67 1 | 17
LM[T1 | T2 | T3] 123 | 4 | 104 27 | 13 | 59 | 6 | 33 | 10 | 19 | 1 | 42 126 | 36 | 45 | 11 | 12 | 1 | 42
LP[T1 | T2] 12 | 22 6 | 8 | 12 | 38 70 | 73 17 | 23 1 | 8
MC[T1] 1 40 1
RB[T1 | T4 | T5] 52 | 51 | 18 | 11 | 4 | | 4 | 6 | 15 6 | 2 | 5 145 | 100 | 16 21 | 18 | 1
SS[T4] 37 1 12 9 164 48 2
SG[T1 | T5] 2 | 39 | 5 | 7 | 13 1 | 2 9 | 24 3 | 6

S1: Checkstyle-5.6, S2: Commons-codec, S3: Commons-io, S4: Commons-lang, S5:
Commons-logging, S6: JHotDraw-7.5.1, S7: Quartz-1.8.3, S8: Squirrel_sql-3.1.2,
T1: Decor, T2: Designite, T3: JDeodorant, T4: JSpIRIT, and T5: Organic

For the last two perspectives, we developed a voting mechanism considering that

each bad smell detected by a tool consists of a vote. To differentiate the detections

made by tools, we consider two pieces of information. First, the vote is unique and

5. Empirical Study Analyses and Results 38

represents each type of bad smell detected. Second, the level is regarding the tool that

detected a type of bad smell. Therefore, we analyze it at two different levels.

(iii) Vote Level 1. This level consists of analyzing the bad smells detected by at

least one tool.

(iv) Vote Level 2. This level consists of analyzing the bad smells that at least two

tools detected.

Table 5.2: Bad Smells Detected Before Refactoring - Vote Level

(a) Vote Level 1 Detection

Bad Smell S1 S2 S3 S4 S5 S6 S7 S8 Total

Data Class 25 3 2 26 3 72 15 8 154

Feature Envy 289 113 3 639 36 522 197 53 1,852

Large Class
Lazy Class 250 37 62 139 18 189 67 18 780

Long Method 195 90 39 10 52 160 56 50 652

Long Parameter List 23 8 12 38 73 23 8 185

Message Chains 1 40 1 42

Refused Bequest 119 15 4 21 8 251 39 457

Shotgun Surgery 37 1 12 9 164 48 2 273

Speculative Generality 39 5 7 13 2 24 6 96

Total 977 273 129 898 128 1,495 451 140 4,491

(b) Vote Level 2 Detection

Bad Smell S1 S2 S3 S4 S5 S6 S7 S8 Total

Data Class 2 2

Feature Envy 3 4 1 3 1 1 13

Large Class
Lazy Class 3 3 1 17 4 28

Long Method 36 9 10 2 5 62

Long Parameter List 11 6 70 17 1 105

Message Chains
Refused Bequest 2 5 10 1 18

Shotgun Surgery
Speculative Generality 2 1 9 3 15

Total 57 22 1 17 113 26 7 243

S1: Checkstyle-5.6, S2: Commons-codec, S3: Commons-io, S4: Commons-lang, S5:
Commons-logging, S6: JHotDraw-7.5.1, S7: Quartz-1.8.3, S8: Squirrel_sql-3.1.2,
T1: Decor, T2: Designite, T3: JDeodorant, T4: JSpIRIT, and T5: Organic

5. Empirical Study Analyses and Results 39

Tables 5.1 and 5.2 present the ten bad smells and the five tools used to detect

them in each system’s original version, considering the four perspectives. The first

column of the tables shows the names of the bad smells analyzed and for tables 5.1a

and 5.1b the tools used to detect them. The next eight columns show the detection of

bad smells for each system analyzed. Tables 5.2a and 5.2b present in the last column

and line the total of bad smell detected for each type and system, respectively.

We may observe in tables 5.1 and 5.2 several entries with no values, which may

represent three different cases presented by the five tools, discussed in the sequence.

There is no case of those analyzed in which two or more tools detected the same number

of bad smells, except in the non-detection of them.

1º Case: Four situations with no values.

In the first situation, represented by Decor, the detection is performed, and it

did not present any bad smells in the analyzed systems. In the second situation,

represented by JDeodorant, the tool’s detection did not present results for a

bad smell. In this research, we consider that this situation might represent no

bad smell detected in the system or an internal error of the tool that failed to

complete the search process. We documented both situations the same because

the log system generated by JDeodorant is not easily accessible to the end-user;

and we decided not to investigate the reason for this occurrence further. The

third situation returned a complete list of all bad smells detected. Represent

this situation: Designite, JSpIRIT, and Organic tools. We consider that the

absence of a specific bad smell represents the non-existence of it. Finally, in the

fourth situation, representing exclusively cases existing in Table 5.2b, exhibits

the situation in which at least two tools did not detect the same bad smell.

2º Case: Same bad smell detection.

In the analysis of the original and standardized detection, as presented in

Table 5.1, we decided not to compute the intersection of the detections made

by the tools for two reasons. The first one was that two or more tools no

detected the same number of bad smells, except in the non-detection. The

second was due to the fluctuation in the number of bad smells of the same

type detected by different tools. For this reason, we analyzed all data individu-

ally, not prioritizing any tool used or compromising the results provided by them.

3º Case: Non-detection of bad smell.

In some situations, the same tool does not detect a specific bad smell in more than

5. Empirical Study Analyses and Results 40

one system. However, we kept bad smells in our analysis because the same tool

detects smells in other systems. In the specific case of Large Class and Message

Chains in which only Decor detects these bad smells, we decided to document

it to identify if these bad smells were introduced after the refactoring operation

performed.

We provide a website1 containing: (i) all systems analyzed; (ii) all data detected

by the refactoring tools; (iii) all versions of the refactored systems; (iv) notes of parti-

cular cases; and (v) all analyses carried out to assess the impacts caused by the applied

refactorings.

5.2 Impacts of Refactorings

After the detection of the bad smells, our focus was on the refactoring process. The

refactoring performed automatically was based on suggestions provided by JDeodorant.

JDeodorant suggests six different refactorings, namely: Extract Clone, Extract Class,

Extract Method, Move Method, Replace Type Code with State/Strategy, and Replace

Conditional with Polymorphism refactoring.

We carried out these refactorings focusing on solving Duplicated Code, God Class,

Long Method, Feature Envy, and the last two Type Checking. The tool’s first type of

refactoring was not analyzed in our research because it requires an additional tool or

strategy to detect Duplicated Code. The last two refactorings were considered together

and named Replace Refactoring.

Table 5.3: Refactorings Applied

System Extract Class Extract Method Move Method Replace Refactoring Total

Checkstyle-5.6 56 149 18 5 228
Commons-codec 10 77 15 102
Commons-io 5 45 3 2 55
Commons-lang 31 * 31
Commons-logging 4 44 * 1 49
JHotDraw-7.5.1 58 * 13 * 71
Quartz-1.8.3 26 * 6 11 43
Squirrel_sql-3.1.2 18 65 6 * 89

Total 208 380 61 19 668

Table 5.3 shows the number of refactorings carried out for each system. The first

column represents the systems used in our research. The next four columns represent

1https://cleitonsilvat.github.io/dissertation/

https://cleitonsilvat.github.io/dissertation/

5. Empirical Study Analyses and Results 41

the four types of refactoring performed. Furthermore, the last column shows the to-

tal number of refactorings performed for each system. Each line represents the data

from an analyzed system, and the last line represents the total number of refactorings

performed for each type of bad smell.

Some situations in Table 5.3 represent the no refactoring application for a given

type, the empty entry, and the * case. The empty entry represents situations where

JDeodorant provided suggestions for refactoring, but it could not perform it. For

instance, in the cases found when it tries to perform the refactoring, the Eclipse IDE

returned an error, making it impossible to perform it. The other case was when the

Eclipse IDE showed compilation errors after the refactoring was applied. We did not

perform the refactoring when it was not trivial to solve the compilation errors through

suggestions from the Eclipse IDE itself.

The * represents situations in which JDeodorant did not present any suggestions

for refactoring the system. The possible cause of this situation is that there is no

existing suggestion for refactoring the system for that type. Alternatively, there may

have been an internal error in the tool that made it impossible to find refactoring

possibilities. As the log system generated by the tool is not easily accessible to the

end-user, we decided not to investigate the reason for this occurrence.

In a brief summarization of the data, we identify 668 refactorings carried out,

where Replace Refactoring presented the lowest number of refactorings, and Extract

Method was the most applied refactoring with 19 and 380 refactorings, respectively.

The Commons-lang system had the lowest number of refactorings, and Checkstyle-5.6

had the highest, respectively, a total of 31 and 228 of the four types of refactorings

that were applied.

The refactoring process was always performed from the original version of the

system, thus generating the refactored version. We conducted all analyses separately

and compared the data according to the detections made in the original version.

Tables 5.4, 5.5, 5.6 and 5.7 present the ten bad smells detected using the five

tools to detect them after conducting the refactoring operation in each system. The

first column shows the names of the bad smells analyzed and the tools used to detect

them. The next eight columns show the systems analyzed, where each one may contain

between three, two, one or none entry separated by “|” containing the percentage of

increase or decrease bad smell detected. In a general analysis that includes the com-

bination of the ten types of bad smells and the five detection tools performed in the

eight systems used in this research, we have a total of 152 situations to be analyzed in

tables 5.4 and 5.5. Tables 5.6 and 5.7 present the Vote Level 1 Bad Smells Detected

and the Vote Level 2 Bad Smells Detected, respectively, with a total of 80 situations.

5. Empirical Study Analyses and Results 42

Table 5.4: Original Bad Smells Detected

(a) After Extract Class

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5] | +12 | +50 +4.5 | +50 +9.1 | +9.6 | +40 +? | +37.5
FE[T3 | T4] +11.1 | +1.1 +6.7 | +11.8 -100 | +1,500 | +3 | -2.6 +46.2 | +0.2 +14.3 | +1 +28.6 | +4.3
LC[T1]
ZC[T1 | T5] | +5.6 | +3.2 | +9.2 | +5.6 | +9.7 | +4.5 | +23.5
LM[T1 | T2 | T3] +8.1 | | +2.1 +3.7 | | +1.7 | | -73 +10.5 | | +1.9 +7.9 | | +13.3 | | +25 | | +3
LP[T1 | T2] -100 | | +1.1 +4.3 | +4.5 +5.9 | +1.8 +700 |
MC[T1] +5
RB[T1 | T4 | T5] +5.8 | -3.9 | +2.8 | -1 |
SS[T4] +5 +2
SG[T1 | T5]

(b) After Extract Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5]
FE[T3 | T4] +50 | +7.3 | +10.8 | -10.5 +100 | +31.9
LC[T1]
ZC[T1 | T5] +1,000 |
LM[T1 | T2 | T3] -1.6 | | -94.7 | | -90.6 | | -90.5 -10.5 | | -92.5 | | -98
LP[T1 | T2] +8.3 | +12.5 +83.3 | +77.8 | +6.9 | +20
MC[T1]
RB[T1 | T4 | T5] | +19.6 | | | -100
SS[T4] +2.6
SG[T1 | T5]

(c) After Move Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5] | -50 +4.5 | -1.9 +20 |
FE[T3 | T4] -100 | -0.4 -100 | -3.9 -100 | -84.6 | -0.2 -85.7 | -0.5 -85.7 | -2.1
LC[T1]
ZC[T1 | T5] | -2.8
LM[T1 | T2 | T3] | | -1.2 -1.6 | | +8.3 | |
LP[T1 | T2]
MC[T1] +2.5
RB[T1 | T4 | T5] | -2 | +0.7 | |
SS[T4] -0.6 +50
SG[T1 | T5]

(d) After Replace Refactoring

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5] | -8
FE[T3 | T4] | +0.7 | +2.1
LC[T1]
ZC[T1 | T5] | +3.1 | +11.1 | +5.6 | +10.4
LM[T1 | T2 | T3] +1.6 | | | | +2.7 +15.6 | |
LP[T1 | T2]
MC[T1]
RB[T1 | T4 | T5] +38.5 | | +111.1 | | +125 +100 | | +190.5 | | +4,000
SS[T4] +4.1
SG[T1 | T5] | +2.6 | +14.3

S1: Checkstyle-5.6, S2: Commons-codec, S3: Commons-io, S4: Commons-lang, S5:
Commons-logging, S6: JHotDraw-7.5.1, S7: Quartz-1.8.3, S8: Squirrel_sql-3.1.2,
T1: Decor, T2: Designite, T3: JDeodorant, T4: JSpIRIT, and T5: Organic

5. Empirical Study Analyses and Results 43

Table 5.5: Standardized Bad Smells Detected

(a) After Extract Class

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5] 0 | +12 0 | +50 +4.5 | +50 +9.1 | +9.6 0 | +40 +? | +37.5
FE[T3 | T4] +11.1 | +0.7 +6.7 | +11.8 -100 | 0 +600 | +2.5 0 | -2.8 +46.1 | +0.4 +14.3 | +1 +28.6 | +4.3
LC[T1]
ZC[T1 | T5] 0 | +5.6 0 | +3.2 0 | +10.1 0 | +5.6 0 | +9.7 0 | +4.5 0 | +23.5
LM[T1 | T2 | T3] +8.1 | 0 | +1.9 +3.7 | 0 | +3.4 0 | 0 | -72.7 +10.5 | 0 | +2.4 +7.9 | 0 | 0 +13.3 | 0 | 0 +25 | 0 | +7.1
LP[T1 | T2] -100 | 0 0 | +2.6 +4.3 | +4.1 +5.9 | +4.3 +700 | 0
MC[T1] +5
RB[T1 | T4 | T5] +5.8 | -3.9 | 0 +2.7 | -1 | 0
SS[T4] +8.3 +2.1
SG[T1 | T5]

(b) After Extract Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5]
FE[T3 | T4] +50 | +6.9 | +10.8 | -11.1 +100 | +31.9
LC[T1]
ZC[T1 | T5] +1,000 |
LM[T1 | T2 | T3] -1.6 | | -91.3 | | -84.7 | | -93.9 -10.5 | | -92.9 | | -95.2
LP[T1 | T2] +8.3 | +4.5 +83.3 | +87.5
MC[T1]
RB[T1 | T4 | T5] | +19.6 | | | -100
SS[T4] +2.7
SG[T1 | T5]

(c) After Move Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5] | -50 +4.5 | -1.9 +20 |
FE[T3 | T4] -100 | -0.4 -100 | -9.3 -100 | -84.6 | -85.7 | -0.5 -85.7 | -2.1
LC[T1]
ZC[T1 | T5] | -2.8
LM[T1 | T2 | T3] -1.6 | | +8.3 | |
LP[T1 | T2]
MC[T1] +2.5
RB[T1 | T4 | T5] | +2 | +0.7 | |
SS[T4] -0.6 +50
SG[T1 | T5]

(d) After Replace Refactoring

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

DC[T4 | T5] | -8
FE[T3 | T4] | +0.7 | +2.1
LC[T1]
ZC[T1 | T5] | +3.2 | +11.3 | +5.6 | +10.4
LM[T1 | T2 | T3] +1.6 | | +15.6 | |
LP[T1 | T2] |
MC[T1]
RB[T1 | T4 | T5] +38.5 | | +111.1 | | +125 +100 | | +190.5 | | +4,000
SS[T4] +4.2
SG[T1 | T5] | +2.6 | +14.3

S1: Checkstyle-5.6, S2: Commons-codec, S3: Commons-io, S4: Commons-lang, S5:
Commons-logging, S6: JHotDraw-7.5.1, S7: Quartz-1.8.3, S8: Squirrel_sql-3.1.2,
T1: Decor, T2: Designite, T3: JDeodorant, T4: JSpIRIT, and T5: Organic

5. Empirical Study Analyses and Results 44

Table 5.6: Vote Level 1 Bad Smells Detected

(a) After Extract Class

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class +12 +50 +11.5 +9.7 +26.7 +50
Feature Envy +1.7 +10.6 -100 +3.3 -2.8 +1.1 +1.5 +7.5
Large Class
Lazy Class +5.4 +3.2 +10.1 +5.5 +10.6 +4.5 +16.7
Long Method +5.6 +3.3 -61.5 +3.8 +6.2 +10.7 +12
Long Parameter List +2.6 +4.1 +4.3
Message Chain +5
Refused Bequest +0.8 +1.2
Shotgun Surgery +8.3 +2.1
Speculative Generality

(b) After Extract Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class
Feature Envy +9 +9.7 -11.1 +30.2
Large Class
Lazy Class +22.2
Long Method -31.8 -48.9 -79.5 -59.6 -72
Long Parameter List +4.3 +87.5
Message Chain
Refused Bequest +8.4
Shotgun Surgery +2.7
Speculative Generality

(c) After Move Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class -50 +6.7
Feature Envy -5.5 -13.3 -1.7 -3 -11.3
Large Class
Lazy Class -2.7
Long Method -1.2
Long Parameter List
Message Chain +2,5
Refused Bequest -0.8 +0.4
Shotgun Surgery -0.6 +50
Speculative Generality

(d) After Replace Refactoring

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class -8
Feature Envy +0.7 +2
Large Class
Lazy Class +3.2 +11.3 +5.5 +10.4
Long Method +1 +12.5
Long Parameter List
Message Chain
Refused Bequest +16.8 +125 +75 +102.6
Shotgun Surgery +4.2
Speculative Generality +2.6 +14.3

S1: Checkstyle-5.6, S2: Commons-codec, S3: Commons-io, S4: Commons-lang, S5:
Commons-logging, S6: JHotDraw-7.5.1, S7: Quartz-1.8.3, S8: Squirrel_sql-3.1.2

5. Empirical Study Analyses and Results 45

Table 5.7: Vote Level 2 Bad Smells Detected

(a) After Extract Class

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class
Feature Envy -33.3 +25 +100 +66.7
Large Class
Lazy Class -17.6 +?
Long Method +2.8 +10
Long Parameter List -100 +4.3 +5.9 +700
Message Chain
Refused Bequest
Shotgun Surgery
Speculative Generality

(b) After Extract Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class
Feature Envy +66.7 +600
Large Class
Lazy Class +600
Long Method -97.2 -66.7 -100 -80
Long Parameter List +9.1 +83.3
Message Chain
Refused Bequest -100
Shotgun Surgery
Speculative Generality

(c) After Move Method

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class
Feature Envy -100 -100 -66.7 -100 -100
Large Class
Lazy Class
Long Method -20
Long Parameter List
Message Chain
Refused Bequest
Shotgun Surgery
Speculative Generality

(d) After Replace Refactoring

Bad Smell S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%) S7 (%) S8 (%)

Data Class
Feature Envy
Large Class
Lazy Class
Long Method
Long Parameter List
Message Chain
Refused Bequest +1,000 +4,000
Shotgun Surgery
Speculative Generality

S1: Checkstyle-5.6, S2: Commons-codec, S3: Commons-io, S4: Commons-lang, S5:
Commons-logging, S6: JHotDraw-7.5.1, S7: Quartz-1.8.3, S8: Squirrel_sql-3.1.2

5. Empirical Study Analyses and Results 46

We classified the results obtained after a comparative analysis between the refac-

tored version’s data with the system’s original version into three different types: de-

crease, increase, and neutral refactoring.

Decrease

This result type represents the decrease in the number of bad smells found in

the system’s refactored version compared to its original version. We may see this

case easily in tables 5.4, 5.5, 5.6 and 5.7, with the minus sign (“-”), representing

the percentage of decrease in the number of bad smells found.

Increase

This result type represents the increase in the number of bad smells found in

the system’s refactored version compared to its original version. We may observe

this case easily in tables 5.4, 5.5, 5.6 and 5.7, represented by the plus sign (“+”),

indicating the percentage of increase in the number of bad smells found. We

may find special situations characterized by the appearance of bad smells in

the refactored version that were not in the original version. These particular

situations present the “?” after the “+” sign.

Neutral

This result type represents the non-existence or no-change in the number of bad

smells found in the system’s refactored version compared to its original version.

Tables 5.4, 5.5, 5.6 and 5.7 represent this case by an empty entry where there

was no change in the number of bad smells found. It is worth mentioning that

cases in which the refactoring process did not carry out, as mentioned above, fall

under the neutral cases.

5.3 Comparative Results

This section presents the comparative results after the application of (i) Extract Class,

(ii) Extract Method, (iii) Move Method and (iv) Replace Refactorings.

Tables 5.4a, 5.5a, 5.6a and 5.7a present the results after the application of Extract

Class; tables 5.4b, 5.5b, 5.6b and 5.7b presents the results after the application of the

Extract Method; tables 5.4c 5.5c, 5.6c and 5.7c present the results after the application

of Move Method, and tables 5.4d, 5.5d, 5.6d and 5.7d present the results after the

application of Replace Refactoring.

We identified in tables 5.4a and 5.5a regarding Extract class; tables 5.4b and 5.5b

for Extract method; tables 5.4c and 5.5c related Move method, and tables 5.4d and

5.5d, for Replace refactoring 152 situations according to our data.

5. Empirical Study Analyses and Results 47

Also, all the tables regarding the application of Extract Class, Extract Method,

Move Method and Replace Refactorings, respectively represented in tables 5.6a and

5.7a; 5.6b and 5.7b; 5.6c and 5.7c, and 5.6d and 5.7d, we have 80 situations, according

our data. In the next four subsections, we detail each one, separated by the type of

refactoring performed.

5.3.1 Extract Class Refactoring

Tables 5.4a and 5.5a show that from the 152 situations found, the number of bad

smells decreased by 3.95% (6), increased by 32.24% (49), and remained the same

number of bad smells in 63.82% (97).

The Refused Bequest bad smell presented a divergence of identification in the

same system by different tools. For the Checkstyle-5.6 and JHotDraw-7.5.1 sys-

tems, Decor computed an increase in the number of bad smells, and JSpIRIT

computed a decrease. The Data Class bad smell presents a unique situation. In

the original version of the Squirrel_sql-3.1.2 system, JSpIRIT did not detect this

type of bad smell.

Table 5.4a tell us that Feature Envy and Long Parameter List, for Commons-lang

and Squirrel_sql-3.1.2, present an increase of 1,500% and 700%. Their absolute

values represent an increase from 1 to 16 and from 1 to 8, respectively.

Table 5.5a, regarding Feature Envy and Long Parameter List, for Commons-lang and

Squirrel_sql-3.1.2, we observed that they present an increase of 600% and 700%,

and their absolute values increase from 1 to 7 and from 1 to 8, respectively.

Table 5.6a shows that after extract class refactoring, the number of bad smells de-

creased by 3.75% (3), increased by 41.25% (33), and remained the same number

of bad smells in 55% (44), according to the 80 situations found.

Tables 5.4a, 5.5a and 5.6a, observing these tables, we note that the refactoring pro-

cess did not influence the Large Class and Speculative Generality bad smells in

any evaluated systems. In both cases, the number of bad smells detected re-

mained the same. Message Chains bad smell only increased in one system, while

in the other systems, the number of this smell remained the same.

Table 5.7a shows that the number of bad smells decreased by 3.75% (3), increased

by 11.25% (9), and remained the same number of bad smells in 23.75% (19),

considering the 80 situations.

5. Empirical Study Analyses and Results 48

The refactoring process did not influence the Data Class, Refused Bequest, and

Speculative Generality bad smells in any evaluated systems. In these cases, the

number of bad smells detected remained the same. The Lazy Class bad smell

presents a unique situation. The original version of the Squirrel_sql-3.1.2 system

did not detect this type of bad smell. Its refactored version caused one bad smell.

Long Parameter List for Squirrel_sql-3.1.2, which present an increase of 700%,

their absolute values represent an increase from 1 to 8.

5.3.2 Extract Method Refactoring

Table 5.4b shows that in 5.92% (9) the number of bad smells decreased ; in 9.21%

(14) the number of bad smells increased, and in 84.87% (129) the number of bad

smells remained the same.

Table 5.5b shows that in 5.26% (8), the number of bad smells decreased ; in 7.89%

(12), the number of bad smells increased, and in 86.84% (132), the number of

bad smells remained the same.

Tables 5.4b and 5.5b show that the Lazy Class and Shotgun Surgery bad smells

only increased in one system. In the other systems, the number remained the

same. Lazy Class for the Commons-logging presents an increase of 1,000%, and

their absolute value represents an increase from 1 to 11.

Table 5.6b tell us that in 7.50% (6) the number of bad smells decreased ; in 10% (8)

the number of bad smells increased, and in 45% (36) the number of bad smells

remained the same.

The Lazy Class, Refused Bequest, and Shotgun Surgery bad smells only increased

in one system. In the remainder of the systems, the number remains the same.

Tables 5.4b, 5.5b and 5.6b, observing these tables, we see that the refactoring ope-

ration did not influence the Data Class, Large Class, Message Chains, and Spe-

culative Generality bad smells in any evaluated systems. In all these cases, the

number of bad smells detected remained the same.

Table 5.7b shows that in 6.25% (5) the number of bad smells decreased ; in 6.25% (5)

the number of bad smells increased, and in 8.75% (7) the number of bad smells

remained the same.

The refactoring operation did not influence the Speculative Generality bad smell

in any evaluated systems. In this case, the number of bad smells detected re-

5. Empirical Study Analyses and Results 49

mained the same. The Lazy Class and Refused Bequest bad smell only increased

and decreased in one system, respectively. In the other systems, the number

remained the same. Lazy Class for the Commons-logging, which presents an

increase of 600%, their absolute value represents an increase from 1 to 7.

5.3.3 Move Method Refactoring

Table 5.4c says that the number of bad smells decreased by 11.84% (18); in 3.95%

(6) the number of bad smells increased, and bad smells remained the same in

84.21% (128).

Table 5.5c, observing this table, we may see that the number of bad smells decreased

by 9.87% (15); in 4.61% (7), the number of bad smells increased, and bad smells

remained the same in 85.53% (130).

Tables 5.4c and 5.5c, we observe that the Message Chains bad smell increased in

one system, while Lazy Class bad smell decreased in one system. In the re-

mainder systems, both bad smells remain the same. The Data Class bad smell

presented divergence of identification in the same system by different tools. For

the JHotDraw-7.5.1 system, SpIRIT computed an increase in the number of bad

smells, and Organic computed a decrease.

Table 5.6c shows that the number of bad smells decreased by 12.50% (10); while

increased 5% (4). The bad smells remained the same in 70% (56).

The Message Chains bad smell only increased in one system, while Lazy Class

and Long Method bad smell only decreased in one system. In other systems, both

bad smells remained the same.

Tables 5.4c, 5.5c and 5.6c show that the refactoring operation did not influence the

Large Class, Long Parameter List, and Speculative Generality bad smells in any

of the evaluated systems; in these cases, the number of bad smells remained the

same.

Table 5.7c says that the number of bad smells decreased by 7.50% (6); in 0% (0) the

number of bad smells increased. The bad smells remained the same in 25% (20).

The refactoring operation did not influence the Data Class, Lazy Class, Long

Parameter List, Refused Bequest, and Speculative Generality bad smells in any

of the evaluated systems; in these cases, the number of bad smells remained

5. Empirical Study Analyses and Results 50

the same. The Long Method bad smell only decreased in one system. In other

systems, it remained the same.

5.3.4 Replace Refactoring

Table 5.4d, observing this table, we see that the number of bad smells decreased

0.66% (1), increased 11.84% (18), and in 87.50% (133) cases remained the same.

Table 5.5d, shows the number of bad smells decreased 0.66% (1), increased 11.18%

(17), and in 88.16% (134) cases remained the same.

Tables 5.4d and 5.5d say that Refused Bequest for Quartz-1.8.3 presented an in-

crease of 190.5% and 4,000%. Their absolute values represent an increase from

21 to 61 and from 1 to 41, respectively.

Table 5.6d. This table shows the number of bad smells decreased by 1.25% (1), in-

creased by 18.75% (15), and remaining the same in 55% (44) cases.

Tables 5.4d, 5.5d and 5.6d, here, the Large Class, Long Parameter List, and Mes-

sage Chains bad smells were not influenced by the refactoring process in any

evaluated systems. In all cases, the number of bad smells detected remained the

same. The Data Class and Shotgun Surgery bad smells only decreased and in-

creased, respectively, in one system; they remained the same in the other systems.

Table 5.7d shows that the number of bad smells decreased 0% (0), increased 2.50%

(2), and in 22.50% (18) cases remained the same.

The refactoring process did not influence the Feature Envy, Lazy Class, Long

Method, Long Parameter List, and Speculative Generality bad smells in any

evaluated systems. In all these cases, the number of bad smells detected remained

the same. Refused Bequest for Checkstyle-5.6 and Quartz-1.8.3 presented an

increase of 1,000% and 4,000%. Their absolute values represent an increase from

2 to 22 and from 1 to 41, respectively.

5.4 Results Summarization

The refactorings applied impacted a lot of the number of analyzed bad smells. For

three out of the four types of refactorings applied, the number of different bad smells

introduced was more significant than the number of different bad smells removed. For

5. Empirical Study Analyses and Results 51

Move Method, the number of different bad smells removed was higher than the number

of different bad smells introduced.

In some cases, different bad smells detection tools computed the introduction of a

bad smell type and removed them. For instance, the Extract Class refactoring was the

one that impacted the highest number of different bad smells, eight in total, positively

and negatively.

Table 5.8: Anwsering the Request Questions with Original Detections

RQ3.1. Does the automated RQ3.2. Does the automated
refactoring remove bad smells? refactoring introduce bad smells?

Answer: Affirmative Answer: Affirmative

Refactoring Bad Smell % of system Bad Smell % of system

Extract Class

Feature Envy 25% Data Class 75%
Long Method 12.5% Feature Envy 75%
Long Parameter List 12.5% Lazy Class 87.5%
Refused Bequest 25% Long Method 75%

Long Parameter List 50%
Message Chains 12.5%
Refused Bequest 25%
Shotgun Surgery 25%

Extract Method

Feature Envy 12.5% Feature Envy 37.5%
Long Method 62.5% Lazy Class 12.5%
Refused Bequest 12.5% Long Parameter List 50%

Refused Bequest 12.5%
Shotgun Surgery 12.5%

Move Method

Data Class 25% Data Class 25%
Feature Envy 75% Long Method 12.5%
Lazy Class 12.5% Message Chains 12.5%
Long Method 25% Refused Bequest 12.5%
Refused Bequest 12.5% Shotgun Surgery 12.5%
Shotgun Surgery 12.5%

Replace Refactoring

Data Class 12.5% Feature Envy 25%
Lazy Class 50%
Long Method 37.5%
Refused Bequest 50%
Shotgun Surgery 12.5%
Speculative Generality 25%

Using JDeodorant, we apply the Extract Method refactoring from detecting Long

Method bad smell. We know that for JDeodorant, the Long Method detection after the

Extract Method applied may have high positive effects if compared to the other tools.

Therefore, we decided to document the tool’s results to determine if the refactoring

suggestion proposed by JDeodorant may introduce another type of bad smell that it

may detect. According to tables 5.4 and 5.5 this situation occurred for the Checkstyle-

5.6 and Squirrel_sql-3.1.2 systems, where the Extract Method refactoring introduces

5. Empirical Study Analyses and Results 52

the Feature Envy bad smell. These also may occur with Move Method that performs

refactoring from detecting the Feature Envy bad smell. Nevertheless, we observe that

JDeodorant did not introduce another type of bad smell that may be detected for the

systems analyzed.

Table 5.9: Anwsering the Request Questions with Standardized Detections

RQ3.1. Does the automated RQ3.2. Does the automated
refactoring remove bad smells? refactoring introduce bad smells?

Answer: Affirmative Answer: Affirmative

Refactoring Bad Smell % of system Bad Smell % of system

Extract Class

Feature Envy 25% Data Class 75%
Long Method 12.5% Feature Envy 75%
Long Parameter List 12.5% Lazy Class 87.5%
Refused Bequest 25% Long Method 75%

Long Parameter List 50%
Message Chains 12.5%
Refused Bequest 25%
Shotgun Surgery 25%

Extract Method

Feature Envy 12.5% Feature Envy 37.5%
Long Method 62.5% Lazy Class 12.5%
Refused Bequest 12.5% Long Parameter List 25%

Refused Bequest 12.5%
Shotgun Surgery 12.5%

Move Method

Data Class 25% Data Class 25%
Feature Envy 75% Long Method 12.5%
Lazy Class 12.5% Message Chains 12.5%
Long Method 12.5% Refused Bequest 25%
Shotgun Surgery 12.5% Shotgun Surgery 12.5%

Replace Refactoring

Data Class 12.5% Feature Envy 25%
Lazy Class 50%
Long Method 25%
Refused Bequest 50%
Shotgun Surgery 12.5%
Speculative Generality 25%

For the specific situations of Extract Method to Long Method and Move Method

to Feature Envy for JDeodorant, we consider that it may cause an introduction of the

same type of smell. We observed these situations where re-refactorings were applied,

considering that all the tool’s suggestions have been applied for its entire use. However,

we decided not to focus the analyses in this aspect. Our website2 provide sufficient

data to find these cases.

Taking into account the results obtained in tables 5.4, 5.5, 5.6 and 5.7 according to

the analysis performed on the eight systems, tables 5.8, 5.9, 5.10 and 5.11, respectively,

2https://cleitonsilvat.github.io/dissertation/

https://cleitonsilvat.github.io/dissertation/

5. Empirical Study Analyses and Results 53

exhibits the bad smells removed and the ones introduced after applying the automatic

refactoring process. Therefore, we use Tables 5.8, 5.9, 5.10 and 5.11 to answer the

research questions RQ3.1 and RQ3.2.

Table 5.10: Anwsering the Request Questions with Vote Level 1

RQ3.1. Does the automated RQ3.2. Does the automated
refactoring remove bad smells? refactoring introduce bad smells?

Answer: Affirmative Answer: Affirmative

Refactoring Bad Smell % of system Bad Smell % of system

Extract Class

Feature Envy 25% Data Class 75%
Long Method 12.5% Feature Envy 75%

Lazy Class 87.5%
Long Method 75%
Long Parameter List 37.5%
Message Chains 12.5%
Refused Bequest 25%
Shotgun Surgery 25%

Extract Method

Feature Envy 12.5% Feature Envy 37.5%
Long Method 62.5% Lazy Class 12.5%

Long Parameter List 25%
Refused Bequest 12.5%
Shotgun Surgery 12.5%

Move Method

Data Class 12.5% Data Class 12.5%
Feature Envy 62.5% Message Chains 12.5%
Lazy Class 12.5% Refused Bequest 12.5%
Long Method 12.5% Shotgun Surgery 12.5%
Refused Bequest 12.5%
Shotgun Surgery 12.5%

Replace Refactoring

Data Class 12.5% Feature Envy 25%
Lazy Class 50%
Long Method 25%
Refused Bequest 50%
Shotgun Surgery 12.5%
Speculative Generality 25%

The first column of tables 5.8, 5.9, 5.10 and 5.11 shows the name of the refactoring

applied. The second column presents the name of the bad smells removed, and the

third column the ones introduced. We show the percentage of systems where the tools

detected the bad smells were removed or introduced.

With the results found, exhibited in tables 5.4, 5.5, 5.6, 5.7 and tables 5.8, 5.9,

5.10, 5.11, we answer the RQs raised as follows.

5. Empirical Study Analyses and Results 54

RQ3. What are the impacts of automated refactoring on the detection

of bad smells? The impacts caused by the automated refactoring process may be

positive and negative. As we evaluate different refactoring and bad smell detection

tools, we may analyze them from different perspectives.

RQ3.1. Does the automated refactoring process remove bad smells? The

answer to RQ3.1 is AFFIRMATIVE. A single refactoring strategy may remove more

than one bad smell.

RQ3.2. Does the automated refactoring process introduce bad smells? The

answer to RQ3.2 is AFFIRMATIVE. A single refactoring strategy may introduce

more than one bad smell.

Table 5.11: Anwsering the Request Questions with Vote Level 2

RQ3.1. Does the automated RQ3.2. Does the automated
refactoring remove bad smells? refactoring introduce bad smells?

Answer: Affirmative Answer: Affirmative

Refactoring Bad Smell % of system Bad Smell % of system

Extract Class

Feature Envy 12.5% Feature Envy 37.5%
Lazy Class 12.5% Lazy Class 12.5%
Long Parameter List 12.5% Long Method 25%

Long Parameter List 37.5%

Extract Method
Long Method 50% Feature Envy 25%
Refused Bequest 12.5% Lazy Class 12.5%

Long Parameter List 25%

Move Method
Feature Envy 62.5%
Long Method 12.5%

Replace Refactoring Refused Bequest 25%

5.5 Analyzes

To obtain a general overview of the analyzes carried out, we performed an aggregated

analyzes computing the total number of bad smells identified in each version of the

systems analyzed. To compute this data, we use two of the perspectives used in our

research, vote levels 1 and 2, considering that these were the only ones which it is

possible to guarantee the non-existence of detection carried out for the same bad smell,

i.e., duplicate detections made by the same tool or between different tools. Tables 5.12

and 5.13 show our data. The first column of these tables shows the name of the systems

5. Empirical Study Analyses and Results 55

analyzed. The next five columns show the total value of bad smells identified in each

version of the system.

Table 5.12: Agglutinate Total Smells Vote Level 1

System Original Version Move Method Replace Refactoring Extract Method Extract Class

Checkstyle-5.6 977 960 1008 953 997
Commons-codec 273 257 273 247 290
Commons-io 129 128 142 98 105
Commons-lang 898 898 898 938
Commons-logging 128 135 97 130
JHotDraw-7.5.1 1,495 1,485 1,546
Quartz-1.8.3 451 446 511 469
Squirrel_sql-3.1.2 140 135 120 157

Table 5.13: Agglutinate Total Smells Vote Level 2

System Original Version Move Method Replace Refactoring Extract Method Extract Class

Checkstyle-5.6 57 54 77 25 57
Commons-codec 22 18 22 21 17
Commons-io
Commons-lang 1 1 1 2
Commons-logging 17 17 8 18
JHotDraw-7.5.1 113 111 115
Quartz-1.8.3 26 25 66 27
Squirrel_sql-3.1.2 7 7 9 15

Figures 5.1 and 5.2 present a clearly visualization of our aggregated data, making

it possible to identify an increase or decrease in the number of bad smells after each

type of performed refactoring. The X-axis represents the name of the systems analyzed,

and the Y-axis represents each version of the system created from the application of a

refactoring type. We presented the scale with the percentage value and represented the

cases where there is a decrease in the number of bad smells by the negative values with

green coloring. Moreover, we represent the cases in which there is an increase in the

number of bad smells by the positive values with red coloring, and the cases in which

there is no change in the number of bad smells, we represented with white coloring,

with zero value on it.

The cases where (i) refactoring strategies were not applied, (ii) such bad smells

were not detected in this version and also for (iii) the specific case of Commons-io which

at least two tools detected no bad smells, as presented in Table 5.13, we represented

with grey coloring, with no value on it.

According to our data, we have 26 valid situations in Figure 5.1 and 22 valid

situations in Figure 5.2. In Figure 5.1, the number of bad smells decreased by 46.15%;

in 42.31% the number of bad smells increased, and bad smells remained the same in

5. Empirical Study Analyses and Results 56

11.54%. For Figure 5.2, the number of bad smells decreased by 36.36%; in 36.36% the

number of bad smells increased, and bad smells remained the same in 27.27%.

Figure 5.1: Agglutinate Analysis Vote Level 1

Figure 5.2: Agglutinate Analysis Vote Level 2

5. Empirical Study Analyses and Results 57

5.6 Discussions

Observing our analyses, we may see that the refactoring process oscillates the value of

the bad smells present in the analyzed codes.

Figure 5.3: Bad Smells Introduced and Removed by Refactoring

5. Empirical Study Analyses and Results 58

With the detailed analyses presented in this chapter, we may accurately identify which

bad smells are being introduced or removed by the refactoring process. To demonstrate

these situations, Figure 5.3 presents which bad smells may be introduced or removed

by the refactoring process according to our four perspectives addressed in our empirical

study.

Each connection in Figure 5.3 represents the sum of the cases found in the four

perspectives analyzed. Taking into account, the maximum value between a connection,

which may represent a bad smell introduced or removed by the refactoring process, will

be four. The first column of Figure 5.3 shows the list of bad smells removed by the

refactoring process with green coloring. The second column represents the name of the

refactorings analyzed. Finally, the last column lists the bad smells introduced by the

refactoring process with red coloring.

Given the results obtained in the studies carried out in this dissertation, the Sys-

tematic Literature Review (SLR), Chapter 3, and Empirical Study, the latter presented

in this chapter, and considering that the Empirical Study identified which bad smells

are introduced or removed by the refactoring process, we decide to make a compari-

son between their results. Although we conducted our empirical study analyzing four

different refactorings, we focused only on presenting insights about them. Figure 5.4

shows the comparison made.

Figure 5.4 exhibits which bad smells may be introduced or removed by the refac-

toring process considering the empirical study and SLR. The first column of the figure

shows the bad smells that the refactoring process may remove. The second column

shows the refactorings that were applied. The third column shows the bad smells that

the refactoring process may introduce. Finally, in the fourth column, we present the

bad smells related to refactorings, but we do not have enough data to characterize their

behavior according to our Empirical Study.

Columns one, two, and three clearly show the data obtained in our empirical

study. Columns two and four show the relationships mentioned in our SLR. There

are data found in our empirical study that prove the relationships found in our SLR.

As mentioned, columns one and three represent bad smells that have been removed,

with green color, or introduced, with red color, by the refactoring process according

to our empirical study data. To exhibits this classification under the relationships

found in our SLR, we used the grey color. Therefore, the grey color denotes the

relationship mentioned in our SLR and has now been classified in our empirical study.

We presented the cases in which we may not classify the type of relationship in column

four with blue color.

5. Empirical Study Analyses and Results 59

Figure 5.4: Bad Smells and Refactoring Contrast

In some cases, our SLR finds works that mention a relationship between bad

smell and refactoring which we have analyzed in our empirical study, but we could not

classify them with our data. These cases happen for the Data Class, Large Class, and

Message Chains bad smells presents in column four.

With the analysis of this information, we have data for:

(i) validate, in cases where our empirical study complies with the SLR

(ii) contrast, for cases in which the data found in our empirical study, the SLR did

not mention it, and

(iii) complementary, considering that our empirical study results are valid and con-

5. Empirical Study Analyses and Results 60

tribute to presenting new relationships, that should be considered in other works.

5.7 Threats to Validity

We discuss the threats to validity listed by Wohlin et al. [86]: construct, internal,

conclusion, and external. These threats show possible limitations found in the ex-

perimental paradigm: (a) theory, involving the direct relationship between cause and

effect; and (b) observations, transforming into treatment and output. Discussing these

raised threats, we present the strategies adopted to mitigate them.

Construct Validity

This threat concerns the relationship between which the experiment setting re-

flects the theory. The bad smell detection tool may not detect all bad smells

present in the system. To minimize this threat, we used five different bad smell

detection tools and consider all their detections as valid. The data analyses may

present cherry-pick, inducing the reader to focus only on the part of the data. We

present perspectives from different dimensions to represent the detection provide

by all the tools to minimize this threat.

Internal Validity

This threat may affect the independent variable concerning causality. The de-

tailed specification of the process performed and the tools used, guaranteed the

reproducibility of this study. Possible limitations may cause changes made to the

tools or the operations provided by them. For the refactoring tool used, we per-

formed only the refactorings suggested by it. The Eclipse IDE itself performed

and documented all the adjustments made to solve trivial errors to some refac-

torings that caused compilation errors. For the bad smell detection tools, only

the standard configuration of all of them was used, without any modification in

their process to run or change the results provided by them.

Conclusion Validity

This threat may affect the ability to draw the correct conclusion. The data’s

comparative analysis may induce the reader to focus only on what the researcher

wants. We performed the comparative analysis using four different perspectives

to minimize this threat, taking into account only the original version and applying

a single refactoring strategy. The results found were individually documented,

without favoring any information or tool.

5. Empirical Study Analyses and Results 61

External Validity

This threat limits the ability to generalize the results beyond the experiment

setting; for instance, the analyzed systems’ representativeness to generalize to

any other system. To reduce this threat’s impact, we chose to use a known

database focused on conducting empirical studies, the Qualitas Corpus. The

number and systems evaluated were selected randomly, and the eight systems

were sufficient to bring us insights into how the refactoring process can impact

certain bad smells.

5.8 Final Remarks

This chapter presented empirical research analyzing the impact of refactoring on bad

smells. To conduct this research, we selected eight open-source Java systems available

in Qualitas Corpus. We applied four refactorings, measured their impact on ten dif-

ferent bad smells detected by five different tools, and performed the analysis in four

different perspectives.

We have observed that the four types of refactorings generate a decrease, increase,

and neutral alterations on the number of bad smells. Surprisingly, the amount of

decrease in the number of bad smells was the lowest compared to the incease and neutral

variations, except in the analysis after the Move Method refactoring was applied. We

investigated which bad smells tend to be introduced and removed by the automatic

refactoring operation and compute our results in four perspectives.

Regardless of the perspectives analyzed, we found that a refactoring strategy may

introduce more bad smells types then remove them, except in the Move Method case.

We observed that in some cases a bad smell type might be introduced and removed for

the same refactoring strategy. For instance, this situation happened with the Feature

Envy bad smell, which may be removed and introduced by Extract Class.

According to the results found and discussed in this chapter, we were able to

achieve the goal of our dissertation. Therefore, in Chapter 6 we conclude our disserta-

tion.

Chapter 6

Conclusion

In this dissertation, we presented a research study to assess the effects of refactoring

on bad smells. First, we conduct a Systematic Literature Review (SLR) to identify

the relationships on the subject discussed in the literature. In our SLR, we decided to

demonstrate the existence of a relationship and not report which relationships represent

positive points in the case of removal; and negative in the case of introducing a new bad

smell. Second, to validate the SLR findings, we decided to conduct an Empirical Study

to provide enough data to confirm and complement what the literature has presented.

Our SLR found 20 papers that show the direct relationship between 31 refac-

toring types and 16 bad smells proposed by Fowler. We also found seven tools that

apply refactoring after detecting bad smells. We identified that the most discussed

relationship in the literature is between Move Method and Feature Envy. It identified

that:

1. there are different refactoring strategies than those discussed by Fowler to address

bad smells;

2. the literature addresses most strategies defined in the Fowler’s book, and

3. most refactoring tools found may not detect bad smells.

Therefore, in conducting our empirical study as it is a subjective matter, the

definition of threshold to define what is a bad smell and what code fragment to refactor,

we decided to use the tooling support. We attribute this subjectivity to the tools used,

considering the thresholds used by them as being valid when defining code fragments

to refactoring and identifying bad smells present in the source code.

Our analyses consider different perspectives to provide sufficient data for different

analyses, affections, and readers. For those who trust the result and the definition of

only one of the tools used, it is possible to perform the data’s isolation and use as

62

6. Conclusion 63

requested. For the more conservative in which they seek to define concepts through

different sources, exploring their union or intersection of their results and definitions,

we also provide sufficient data for this type of analysis.

In our Empirical Study, we analyzed the effects of automatic refactoring on bad

smells. To conduct this study, we selected eight open-source Java systems available in

the Qualitas Corpus. We applied four refactorings and measured their effects on ten

different bad smells detected by five different tools. We investigated which bad smells

tend to be introduced and removed by the refactoring operation. We have observed

that the four types of refactorings generate a decrease, increase, and neutral alterations

on the number of bad smells. Surprisingly the number of decrease cases was the lowest

compared to the others. We found that a refactoring strategy may introduce more bad

smells types than remove them, except in the Move Method case. We observed that in

some cases a bad smell type might be introduced and removed for the same refactoring

strategy. This situation happened with the Feature Envy bad smell, which may be

removed and introduced by Extract Class refactoring operation.

We organized the remainder of this chapter as follows. Section 6.1 summarizes

the contributions of our research. Finally, Section 6.2 suggests future work.

6.1 Contributions

With the results achieved in our dissertation, we present the contributions with our

research as follows.

• a catalog presenting the relationship between bad smells and refactoring discussed

in the literature and a contrast with Fowler’s catalog;

• a catalog showing which bad smells tend to be introduced and removed by the

automatic refactoring strategy;

• evidence to confirm or deny, or complement the findings discussed in the litera-

ture providing a contrast between the literature and Fowler’s catalog with our

empirical study, composing a more refined catalog;

• individual analyses using four perspectives to understand what the effects of

automatic refactoring operation cause on bad smells of each one;

• identification of some tools that refactor through the detection of bad smells

proposed by Fowler;

6. Conclusion 64

• a catalog showing a joint analysis with the data obtained in our empirical study

and SLR presenting which bad smells tend to be introduced and removed by the

refactoring strategy;

• relationships found between bad smells and refactorings not mentioned in the

literature.

Besides that, the findings mentioned may assist developers in different ways, for

instance:

• developers who want to apply refactoring strategies, automatically or manually,

are better informed now of which bad smells may be introduced or removed by

the refactoring operation;

• assist developers to take care of and perform the most efficient and robust refac-

toring tools so as not to introduce new bad smells in the source code.

6.2 Future Work

As future work related to SLR, we suggest investigate bad smells and refactoring strate-

gies that Fowler did not propose, and the investigation of the new Fowler’s catalog [33]

in comparison with the SLR findings. We also suggest extend the SLR RQ2, focusing

on identifying all refactoring tools present in the literature, that apply refactoring after

detecting bad smells.

Related to the empirical study, first, in the construct of the data, we suggest

extending this research to more systems and refactoring tools, different bad smells,

and refactoring. Second, one may conduct this research method manually refactoring

to evaluate the automated and manual refactoring operations’ differences. Moreover

finally, the development of a tool that considers the catalog created for an effective

refactoring operation.

Bibliography

[1] Abid, C., Alizadeh, V., Kessentini, M., Ferreira, T. d. N., and Dig, D. (2020). 30

years of software refactoring research: A systematic literature review. arXiv preprint

arXiv:2007.02194.

[2] Al Dallal, J. (2015). Identifying refactoring opportunities in object-oriented code:

A systematic literature review. Information and Software Technology, 58:231–249.

[3] Alshayeb, M. (2011). The impact of refactoring to patterns on software quality

attributes. Arabian Journal for Science and Engineering, pages 1241–1251.

[4] Azeem, M. I., Palomba, F., Shi, L., and Wang, Q. (2019). Machine learning tech-

niques for code smell detection: A systematic literature review and meta-analysis.

IST, 108:115–138.

[5] Bafandeh Mayvan, B., Rasoolzadegan, A., and Javan Jafari, A. (2020). Bad smell

detection using quality metrics and refactoring opportunities. Journal of Software:

Evolution and Process, page e2255.

[6] Basit, W., Lodhi, F., and Bhatti, U. (2010). Extending refactoring guidelines to

perform client and test code adaptation. In Int. Conf. on Agile Soft. Development,

pages 1–13.

[7] Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., and Palomba, F. (2015). An

experimental investigation on the innate relationship between quality and refacto-

ring. Journal of Systems and Software, pages 1–14.

[8] Bavota, G., De Lucia, A., Marcus, A., and Oliveto, R. (2014). Recommending

refactoring operations in large software systems. In RSSE, pages 387–419.

[9] Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D., and De Lucia, A. (2013).

Methodbook: Recommending move method refactorings via relational topic models.

TSE, 40(7):671–694.

65

Bibliography 66

[10] Beecham, S., Baddoo, N., Hall, T., Robinson, H., and Sharp, H. (2008). Motivation

in software engineering: A systematic literature review. IST, 50(9-10):860–878.

[11] Bibiano, A. C., Fernandes, E., Oliveira, D., Garcia, A., Kalinowski, M., Fonseca,

B., Oliveira, R., Oliveira, A., and Cedrim, D. (2019). A quantitative study on char-

acteristics and effect of batch refactoring on code smells. In 2019 ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement (ESEM),

pages 1–11.

[12] bin Ali, N. and Usman, M. (2019). A critical appraisal tool for systematic literature

reviews in software engineering. IST, 112:48–50.

[13] Boshnakoska, D. and Mišev, A. (2010). Correlation between object-oriented met-

rics and refactoring. In Int. Conf. on ICT Innovations, pages 226–235.

[14] Bulychev, P. and Minea, M. (2008). Duplicate code detection using anti-

unification. In Proceedings of the Spring/Summer Young Researchers’ Colloquium

on Software Engineering.

[15] Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa, L., de Mello, R., Fonseca,

B., Ribeiro, M., and Chávez, A. (2017). Understanding the impact of refactoring

on smells: A longitudinal study of 23 software projects. In Proceedings of the 11th

Joint Meeting on Foundations of Software Engineering, pages 465–475.

[16] Cedrim, D., Sousa, L., Garcia, A., and Gheyi, R. (2016). Does refactoring improve

software structural quality? a longitudinal study of 25 projects. In Proceedings of

the 30th Brazilian Symposium on Software Engineering, pages 73–82.

[17] Chaparro, O., Bavota, G., Marcus, A., and Di Penta, M. (2014). On the impact

of refactoring operations on code quality metrics. In IEEE International Conference

on Software Maintenance and Evolution, pages 456–460.

[18] Chatzigeorgiou, A. and Manakos, A. (2014). Investigating the evolution of code

smells in object-oriented systems. Innovations in Syst. and Soft. Engineering,

10(1):3–18.

[19] Counsell, S., Hassoun, Y., Loizou, G., and Najjar, R. (2006). Common refactor-

ings, a dependency graph and some code smells: an empirical study of java oss. In

Proc. of the ISESE, pages 288–296.

Bibliography 67

[20] Cruz, D., Figueiredo, E., and Santana, A. (2020). Detecting bad smells with

machine learning algorithms: an empirical study. In Proc. of Int. Conf. on Technical

Debt (TechDebt).

[21] da Silva Carvalho, L. P., Novais, R. L., do Nascimento Salvador, L., and de Men-

donça Neto, M. G. (2017). An approach for semantically-enriched recommendation

of refactorings based on the incidence of code smells. In ICEIS, pages 313–335.

[22] de Paulo Sobrinho, E. V., De Lucia, A., and de Almeida Maia, M. (2018). A

systematic literature review on bad smells — 5 w’s: which, when, what, who, where.

IEEE Transactions on Software Engineering. ISSN 2326-3881.

[23] Du Bois, B. and Mens, T. (2003). Describing the impact of refactoring on internal

program quality. In International Workshop on Evolution of Large-scale Industrial

Software Applications, pages 37–48.

[24] Eposhi, A., Oizumi, W., Garcia, A., Sousa, L., Oliveira, R., and Oliveira, A.

(2019). Removal of design problems through refactorings: are we looking at the

right symptoms? In IEEE/ACM 27th International Conference on Program Com-

prehension (ICPC), pages 148–153.

[25] Erich Gamma, Richard Helm, R. J. and Vlissides, J. (1994). Design patterns:

Elements of reusable object-oriented software. Addison Wesley Longman Publishing.

[26] Fenske, W., Schulze, S., Meyer, D., and Saake, G. (2015). When code smells

twice as much: Metric-based detection of variability-aware code smells. In IEEE

15th International Working Conference on Source Code Analysis and Manipulation

(SCAM), pages 171–180.

[27] Fernandes, E., Chávez, A., Garcia, A., Ferreira, I., Cedrim, D., Sousa, L., and

Oizumi, W. (2020). Refactoring effect on internal quality attributes: What haven’t

they told you yet? Information and Software Technology.

[28] Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figueiredo, E. (2016). A

review-based comparative study of bad smell detection tools. In Proc. of the 20th

EASE, pages 1–12.

[29] Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A. (2012). Identifica-

tion and application of extract class refactorings in object-oriented systems. Journal

of Systems and Software, pages 2241–2260.

Bibliography 68

[30] Fontana, F. A., Ferme, V., Zanoni, M., and Roveda, R. (2015a). Towards a

prioritization of code debt: A code smell intensity index. In IEEE 7th International

Workshop on Managing Technical Debt (MTD), pages 16–24.

[31] Fontana, F. A. and Spinelli, S. (2011). Impact of refactoring on quality code

evaluation. In Proceedings of the 4th Workshop on Refactoring Tools, pages 37–40.

[32] Fontana, F. A., Zanoni, M., and Zanoni, F. (2015b). A duplicated code refactoring

advisor. In Int. Conf. on Agile Soft. Development, pages 3–14.

[33] Fowler, M. (2018). Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional. 2nd Edition.

[34] Fowler, M., Beck, K., Brant, J., and Opdyke, W. (1999). Refactoring: Improving

the Design of Existing Code. Addison-Wesley.

[35] Ghannem, A., El Boussaidi, G., and Kessentini, M. (2014). Model refactoring

using examples: a search-based approach. JSEP, pages 692–713.

[36] Gligoric, M., Behrang, F., Li, Y., Overbey, J., Hafiz, M., and Marinov, D. (2013).

Systematic testing of refactoring engines on real software projects. In ECOOP.

[37] Gupta, V., Kapur, P. K., and Kumar, D. (2016). Modelling and measuring code

smells in enterprise applications using tism and two-way assessment. Int. Journal of

Syst. Assurance Eng. and Management, 7(3):332–340.

[38] Haas, R. and Hummel, B. (2017). Learning to rank extract method refactoring

suggestions for long methods. In Int. Conf. on Soft. Quality, pages 45–56.

[39] Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2011). A systematic

literature review on fault prediction performance in software engineering. TSE,

38(6):1276–1304.

[40] Hecht, G., Benomar, O., Rouvoy, R., Moha, N., and Duchien, L. (2015). Track-

ing the software quality of android applications along their evolution (t). In 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 236–247.

[41] Higo, Y., Kamiya, T., Kusumoto, S., and Inoue, K. (2004). Refactoring support

based on code clone analysis. In Int. Conf. on Product Focused Soft. Proc. Improve-

ment, pages 220–233.

Bibliography 69

[42] Jiau, H. C., Mar, L. W., and Chen, J. C. (2013). Obey: Optimal batched refacto-

ring plan execution for class responsibility redistribution. TSE, pages 1245–1263.

[43] Kádár, I., Hegedűs, P., Ferenc, R., and Gyimóthy, T. (2016). Assessment of the

code refactoring dataset regarding the maintainability of methods. In International

Conference on Computational Science and Its Applications, pages 610–624.

[44] Kaur, S. and Singh, P. (2019). How does object-oriented code refactoring influ-

ence software quality? research landscape and challenges. Journal of Systems and

Software, 157:110394.

[45] Kim, M., Zimmermann, T., and Nagappan, N. (2014). An empirical study of

refactoring challenges and benefits at microsoft. TSE, 40(7):633–649. ISSN 2326-

3881.

[46] Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic

literature reviews in software engineering. In Technical Report, Ver. 2.3 (EBSE).

[47] Lacerda, G., Petrillo, F., Pimenta, M., and Guéhéneuc, Y. G. (2020). Code smells

and refactoring: a tertiary systematic review of challenges and observations. Journal

of Systems and Software, page 110610.

[48] Liu, H., Wu, Y., Liu, W., Liu, Q., and Li, C. (2016). Domino effect: Move more

methods once a method is moved. In 23rd SANER, volume 1, pages 1–12.

[49] Liu, W., Hu, Z.-g., Liu, H.-t., and Yang, L. (2014). Automated pattern-directed

refactoring for complex conditional statements. Journal of Central South University,

21(5):1935–1945.

[50] Liu, W. and Liu, H. (2016). Major motivations for extract method refactorings:

analysis based on interviews and change histories. Front. of Com. Science, 10(4):644–

656.

[51] Lozano, A. and Wermelinger, M. (2010). Tracking clones’ imprint. In Proceedings

of the 4th International Workshop on Software Clones, pages 65–72.

[52] Mahmoud, A. and Niu, N. (2014). Supporting requirements to code traceability

through refactoring. RE, 19(3):309–329.

[53] Misbhauddin, M. and Alshayeb, M. (2015). Uml model refactoring: a systematic

literature review. ESE, 20(1):206–251.

Bibliography 70

[54] Mkaouer, M. W., Kessentini, M., Bechikh, S., Cinnéide, M. Ó., and Deb, K.

(2016). On the use of many quality attributes for software refactoring: a many-

objective search-based software engineering approach. Empirical Software Engineer-

ing, 21(6):2503–2545.

[55] Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur, A.-F. (2009). Decor:

A method for the specification and detection of code and design smells. IEEE

Transactions on Software Engineering, pages 20–36.

[56] Oizumi, W., Sousa, L., Oliveira, A., Garcia, A., Agbachi, A. B., Oliveira, R.,

and Lucena, C. (2018). On the identification of design problems in stinky code:

experiences and tool support. Journal of the Brazilian Computer Society, page 13.

[57] Oizumi, W. N., Garcia, A. F., Colanzi, T. E., Ferreira, M., and Staa, A. V. (2015).

On the relationship of code-anomaly agglomerations and architectural problems.

Journal of Software Engineering Research and Development, 3(1):1–22.

[58] Oliveira, J., Viggiato, M., Santos, M. F., Figueiredo, E., and Marques-Neto, H.

(2018). An empirical study on the impact of android code smells on resource usage.

In SEKE, pages 314–313.

[59] Ouni, A., Kessentini, M., Sahraoui, H., and Boukadoum, M. (2013). Maintainabil-

ity defects detection and correction: a multi-objective approach. ASE, 20(1):47–79.

[60] Ouni, A., Kessentini, M., Ó Cinnéide, M., Sahraoui, H., Deb, K., and Inoue, K.

(2017). More: A multi-objective refactoring recommendation approach to introduc-

ing design patterns and fixing code smells. JSEP, pages 1843–1863.

[61] Paiva, T., Damasceno, A., Figueiredo, E., and Sant’Anna, C. (2017). On the

evaluation of code smells and detection tools. JSERD, 5(1):7.

[62] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., and De Lucia,

A. (2018). On the diffuseness and the impact on maintainability of code smells: A

large scale empirical investigation. In Proc. of the 40th ICSE, pages 482–482.

[63] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., and De Lucia,

A. (2014). Mining version histories for detecting code smells. TSE, 41(5):462–489.

[64] Peldszus, S., Kulcsár, G., Lochau, M., and Schulze, S. (2016). Continuous detec-

tion of design flaws in evolving object-oriented programs using incremental multi-

pattern matching. In 31st IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), pages 578–589.

Bibliography 71

[65] Pietrzak, B. and Walter, B. (2006). Leveraging code smell detection with inter-

smell relations. In Int. Conf. on Extreme Programming and Agile Proc. in Soft.

Engineering, pages 75–84.

[66] Rahman, M. M., Riyadh, R. R., Khaled, S. M., Satter, A., and Rahman, M. R.

(2018). Mmruc3: A recommendation approach of move method refactoring using

coupling, cohesion, and contextual similarity to enhance software design. SPE,

48(9):1560–1587.

[67] Sales, V., Terra, R., Miranda, L. F., and Valente, M. T. (2013). Recommending

move method refactorings using dependency sets. In 20th WCRE, pages 232–241.

[68] Santana, A., Cruz, D., and Figueiredo, E. (2021). An exploratory study on the

identification and evaluation of bad smell agglomerations. In Proc. of the 36th Sym-

posium On Applied Computing (ACM SAC).

[69] Sehgal, R., Mehrotra, D., and Bala, M. (2017). Analysis of code smell to quantify

the refactoring. Int. Journal of Syst. Assurance Eng. and Management, 8(2):1750–

1761.

[70] Sharma, T., Fragkoulis, M., and Spinellis, D. (2016). Does your configuration code

smell? In IEEE/ACM 13th Working Conference on Mining Software Repositories

(MSR), pages 189–200.

[71] Sharma, T., Singh, P., and Spinellis, D. (2020). An empirical investigation on the

relationship between design and architecture smells. EMSE.

[72] Shomrat, M. and Feldman, Y. A. (2013). Detecting refactored clones. In Castagna,

G., editor, ECOOP, pages 502–526.

[73] Silva, D., Terra, R., and Valente, M. T. (2014). Recommending automated extract

method refactorings. In ICPC, pages 146–156.

[74] Silva, D. and Valente, M. T. (2017). Refdiff: Detecting refactorings in version

histories. In MSR, pages 269–279.

[75] Singh, S. and Kaur, S. (2018a). A systematic literature review: Refactoring for

disclosing code smells in object oriented software. Ain Shams Engineering Journal,

pages 2129–2151.

[76] Singh, S. and Kaur, S. (2018b). A systematic literature review: Refactoring for

disclosing code smells in object oriented software. Ain Shams Engineering Journal.

Bibliography 72

[77] Sousa, B. L., Bigonha, M. A., and Ferreira, K. A. (2018). A systematic literature

mapping on the relationship between design patterns and bad smells. In Proc. of the

33rd Annual ACM SAC, pages 1528–1535.

[78] Tahir, A., Yamashita, A., Licorish, S., Dietrich, J., and Counsell, S. (2018). Can

you tell me if it smells?: A study on how developers discuss code smells and anti-

patterns in stack overflow. In Proc. of the 22nd EASE, pages 68–78.

[79] Tavares, C. S., Ferreira, F., and Figueiredo, E. (2018). A systematic mapping of

literature on software refactoring tools. In Proc. of the XIV SBSI, page 11.

[80] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., and

Noble, J. (2010). Qualitas corpus: A curated collection of java code for empirical

studies. In Asia Pacific Software Engineering Conference (APSEC2010), pages 336–

345.

[81] Tsantalis, N. and Chatzigeorgiou, A. (2009). Identification of move method refac-

toring opportunities. TSE, 35(3):347–367.

[82] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., and

Poshyvanyk, D. (2015). When and why your code starts to smell bad. In Proceedings

of the 37th International Conference on Software Engineering, pages 403–414.

[83] Vale, G., Figueiredo, E., Abílio, R., and Costa, H. (2014). Bad smells in software

product lines: A systematic review. In Eighth SBCARS, pages 84–94.

[84] Vidal, S. A., Marcos, C., and Díaz-Pace, J. A. (2016). An approach to prioritize

code smells for refactoring. Automated Software Engineering, 23(3):501–532.

[85] Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies

and a replication in software engineering. In Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering, page 38.

[86] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén,

A. (2012). Experimentation in software engineering. Springer Science & Business

Media.

[87] Xia, X., Wan, Z., Kochhar, P. S., and Lo, D. (2019). How practitioners perceive

coding proficiency. In Proc. of the 41st ICSE, pages 924–935.

[88] Zhang, M., Hall, T., and Baddoo, N. (2011). Code bad smells: a review of current

knowledge. Journal of Soft. Maint. and Evol.: Research and Practice, 23(3):179–202.

Bibliography 73

[89] Zhang, M., Hall, T., Baddoo, N., and Wernick, P. (2008). Do bad smells indicate

"trouble" in code? In Proc. of Workshop on Defects in Large Software Systems,

pages 43–44.

Appendix A

Complementary Data of the SLR

In this appendix, we present complementary data that were documented in our Syste-

matic Literature Review (SLR). Table A.1 presents the events where the papers found

in our SLR were published. The first column shows the name of the publication event

and the second column shows the number of papers that were found.

Table A.1: Published Events

Event Name Papers Returned
Frontiers of Computer Science 01
IEEE Transactions on Software Engineering 03
Innovations Syst Softw Eng 01
International Conference on Agile Software Development (XP) 02
International Conference on Enterprise Information Systems (ICEIS) 01
International Conference on Product Focused Software Process Improvement (PROFES) 01
International Conference on Software Analysis, Evolution, and Reengineering 01
International Conference on Software Quality (SWQD) 01
International Journal of System Assurance Engineering and Management 01
International Symposium on Empirical Software Engineering 01
Joint Meeting on Foundations of Software Engineering 01
Journal of Software: Practice and Experience 01
Journal of Systems and Software 01
Recommendation Systems in Software Engineering 01
Requirements Eng 01
Simpósio Brasileiro de Engenharia de Software (SBES) 01
Working Conference on Reverse Engineering (WCRE) 01

Table A.2 presents the name of the tools mentioned in the papers found in our

SLR. The first column shows the name of the presented tool. The second and third

columns show the used refactoring and bad smell detection tools, respectively. Finally,

in the last column, we present the reference of the original paper.

74

A. Complementary Data of the SLR 75

Table A.2: Tools

Tool Refactoring Tool Used Bad Smell Tool Used Reference
Refactoring Miner Own Metric Developed [15]
JDeodorant JDeodorant and DECOR [69]
Ref-Finder Own Metric Developed [7]
JDeodorant JDeodorant [18]
ARIES and JDeodorant JDeodorant [8]
Ref-Detector Metrics to Detect Smell [16]

CCShaper Integrated CCFinder [41]
DCRA Integrated NiCad [32]
Extract Method Detector Integrated Integrated [50]
HIST Integrated [63]
JMove Integrated Integrated [67]
Liu’s Approach Integrated Integrated [48]
Methodbook Integrated Integrated [9]
MMRUC3 Integrated Integrated [66]
RESYS OSORE OCEAN [21]
Tsantalis’s Methodology Integrated Integrated [81]

	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Proposed Work
	1.3 Publications
	1.4 Dissertation Outline

	2 Background and Related Work
	2.1 Bad smell
	2.2 Refactoring
	2.3 Refactoring and Bad Smell Detection Tools
	2.4 Bad Smell and Refactoring
	2.5 Refactoring Impacts
	2.6 Final Remarks

	3 Systematic Literature Review on the Relationship Between Bad Smell and Refactoring
	3.1 Planning Stage
	3.2 Execution Stage
	3.3 Analysis Stage
	3.4 SLR Results
	3.4.1 Relationships between Bad Smells and Refactoring
	3.4.2 Tools for Refactoring

	3.5 Threats to Validity
	3.6 Final Remarks

	4 Empirical Study Design
	4.1 Goal and Research Questions
	4.2 Research Phases
	4.3 Impacts Assessment
	4.4 Final Remarks

	5 Empirical Study Analyses and Results
	5.1 Primary Result
	5.2 Impacts of Refactorings
	5.3 Comparative Results
	5.3.1 Extract Class Refactoring
	5.3.2 Extract Method Refactoring
	5.3.3 Move Method Refactoring
	5.3.4 Replace Refactoring

	5.4 Results Summarization
	5.5 Analyzes
	5.6 Discussions
	5.7 Threats to Validity
	5.8 Final Remarks

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	Bibliography
	A Complementary Data of the SLR

