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Resumo

Verificação de conformidade arquitetural é uma atividade chave para controle da
qualidade de sistemas de software, tendo como objetivo central revelar diferenças entre
a arquitetura concreta e a arquitetura planejada de um sistema. Entretanto, especificar
a arquitetura de um software é uma tarefa difícil, já que ela deve ser realizada por um
especialista. Nesta tese de doutorado, propõe-se uma nova abordagem para verificação
de conformidade arquitetural baseada na combinação de técnicas de análise estática
e histórica de código fonte. Propõem-se quatro heurísticas para detectar ausências
(dependências esperadas, mas inexistentes) e divergências (dependências proibidas, mas
presentes) no código fonte de sistemas orientados por objetos. A abordagem proposta
também inclui um processo iterativo para verificação de conformidade arquitetural,
o qual foi utilizado para avaliar a arquitetura de dois sistemas de informação de
grande porte, tendo sido capaz de identificar 539 violações, com precisão de 62,7%
e 53,8%. Além disso, foram avaliados dois sistemas de código aberto, nos quais foram
identificadas 345 violações, com precisão de 53,3% e 59,2%. De forma complementar,
apresenta-se um estudo exploratório sobre a aplicação de uma técnica de mineração
de dados, chamada mineração de itens frequentes, para detectar padrões arquiteturais
a partir de informações estáticas e históricas extraídas do código fonte. Em seguida,
esses padrões foram usados para detectar ausências e divergências no código de um
sistema. Neste segundo estudo, foram detectadas 137 violações arquiteturais, com
precisão global de 41,2%.

Palavras-chave: Arquitetura de Software, Erosão Arquitetural, Conformidade
Arquitetural, Análise Estática, Mineração de Repositórios de Software.
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Abstract

Software architecture conformance is a key software quality control activity that aims
to reveal the progressive gap normally observed between concrete and planned software
architectures. However, formally specifying software architectures is not a trivial task,
as it must be done by an expert on the system under analysis. In this thesis, we
present an approach for architecture conformance based on a combination of static
and historical source code analysis. The proposed approach relies on four heuristics
for detecting both absences (something expected was not found) and divergences
(something prohibited was found) in source code based architectures. We also present
an architecture conformance process based on the proposed approach. We followed this
process to evaluate the architecture of two industrial-strength information systems,
when 539 architectural violations were detected, with an overall precision of 62.7%
and 53.8%. We also evaluated our approach in two open-source systems, when
345 architectural violations were detected, achieving an overall precision of 53.3%
and 59.2%. Additionally, this thesis presents an exploratory study on the application
of a data mining technique called frequent itemset mining, which was used to detect
architectural patterns using static and historical information extracted from source
code. Furthermore, the detected architectural patterns are used to identify absences
and divergences in the code. We evaluated the proposed approach in an industrial-
strength information system, founding 137 architectural violations, with an overall
precision of 41.2%.

Keywords: Software Architecture, Architectural Erosion, Architectural Conformance,
Static Analysis, Mining Software Repositories.
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Chapter 1

Introduction

In this initial chapter, we state the problem and present this thesis motivation
(Section 1.1). Next, we present an overview of our approach to tackle the proposed
problem (Section 1.3). Finally, we present the outline of the thesis (Section 1.4) and
the publications derived from our research (Section 1.5).

1.1 Problem

The definition of a well-designed software architectural model plays an important
role in modern software quality control tasks because important internal quality
properties, such as maintainability and evolvability, directly depend on it. There
are many definitions of software architecture. Typically, software architecture
is defined as including the central components of a software system and their
interconnections [Clements, 2003]. Bass et al. define software architecture as
“the structure or structures of the system, which comprise software elements,
the externally visible properties of these elements, and the relationship among
them” [Bass et al., 2003]. Therefore, the architecture of a system prescribes the
structure of its components, their relationships, constraints, principles, and guidelines
that control its design and evolution over time [Garlan, 2000, Garlan and Shaw, 1996,
Fowler, 2002]. An architectural model is a high-level software representation that
supports documenting and communicating key design decisions and principles adopted
by a software development team.

However, even well-designed software architectures can degenerate during the
system evolution due to the introduction of implementation anomalies that correspond
to mismatches between the concrete architecture, as implemented in source code,
and the planned/intended architecture prescribed by the software architects. In
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2 Chapter 1. Introduction

the more extreme cases, the introduction of architectural anomalies can trigger
a major software reengineering effort or even the discontinuation of a software
system [Hochstein and Lindvall, 2005].

Architectural conformance checking is a fundamental activity for controlling the
quality of software systems, which aims to reveal deviations between the actual and
planned software architectures [Passos et al., 2010]. More precisely, the goal is to detect
the implementation decisions followed by the source code that are not in conformance
with the restrictions prescribed by the planned architecture. The periodical application
of architectural conformance checking aims to prevent the accumulation of incorrect
or inadequate implementation decisions and thus to avoid the phenomena known as
architectural drift or erosion [Perry and Wolf, 1992].

Architectural deviations pose a serious threat to the long term survival of
software systems [Hochstein and Lindvall, 2005, Garcia et al., 2009]. The reason is
that the accumulation of architectural violations in the source code may demand
extra effort even when dealing with simple code changes. For instance, Knodel
et al. applied an architectural conformance checking technique in 15 products from
a software product line, called Testo, targeting climate and flue gas measurement
devices [Knodel et al., 2008]. As a result, they identified more than 6,000 architectural
anomalies in these products. Additionally, Terra and Valente detected, by using
architectural conformance checking techniques, 2,241 architectural anomalies in a
human resource management system, called SGP [Terra and Valente, 2009]. They
report that to fix these anomalies more than 100 hours were necessary. Furthermore,
Sarkar et al. report an experience on remodularizing an application whose size increased
from 2.5 to 25 MLOC. According to the authors, the system’s architecture eroded
to a single monolithic block. They report that the refactoring and reconstruction
of the system, to restore its original architecture, required nearly two years—
approximately 520 person-days for design and 2,100 person-days for programming and
testing activities.

Currently, there are two major techniques for architectural conformance
checking: reflexion models and domain-specific languages [Ducasse and Pollet, 2009,
Passos et al., 2010]. Reflexion models compare a high-level model, manually created
by an architect, with the implemented (or concrete) model, automatically extracted
from the source code [Murphy et al., 1995, Knodel et al., 2006]. Basically, reflexion
models can detect two types of architectural anomalies: absences and divergences. An
absence occurs when a dependency defined by the high-level model is not present in
the implemented one, i.e., it does not exist in the source code. A divergence occurs
when there is a dependency on the source code that is not prescribed by the high-level
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model. Finally, domain-specific languages allow architects to express in a simple syntax
the constraints defined by the planned architectural model [Terra and Valente, 2009,
Eichberg et al., 2008, Mens et al., 2006].

However, the application of current techniques for architectural conformance
checking requires a considerable effort [Knodel et al., 2008, Terra and Valente, 2009].
On one hand, reflexion models usually require successive refinements of the high-level
model in order to adequately express the full spectrum of absences and divergences
that may be present in complex software systems. On the other hand, domain-specific
languages require a detailed definition of constraints between the classes of a system.
In all cases, the existing techniques for identifying architectural problems heavily
depend on the availability of coherent architectural documents [Eichberg et al., 2008].
However, in most cases, the planned architecture is not formally documented or up-to-
date.

1.2 Thesis Statement

Our thesis statement is as follows:

Architectural conformance checking is a fundamental activity for controlling
the quality of software systems. However, the state-of-the-art architectural
conformance checking techniques usually require a considerable effort to
prescribe the architectural documents, as a list of constraints or as a high-
level model. Therefore, the practice of software architecture conformance
may benefit from a technique that combines static and historical analysis
and that does not require the definition of constraints or model refinements.

Therefore, the main goal of this thesis is to propose adn evaluate an approach that
combines static and historical source code analysis techniques to provide an alternative
technique for architecture conformance checking.

To attend this goal we plan to:

• Propose a technique for architecture conformance based on information gathered
from mining software repository.

• Evaluate the precision of this technique in a real setting, using both open-source
and closed systems.

• Conduct an exploratory study for evaluating the use of data mining techniques
for detecting architectural violations.



4 Chapter 1. Introduction

1.3 An Overview of the Proposed Approach

As stated in the previous section, the application of the current techniques for
architecture conformance checking is a nontrivial task and may require a considerable
effort [Knodel et al., 2008, Passos et al., 2010]. To tackle these issues, this thesis
proposes an approach that combines static and historical source code analysis
techniques to provide an alternative technique for architecture conformance. Figure
1.1 illustrates the proposed approach for detecting architectural erosion symptoms.
As can be observed, the approach relies on two types of input on the target system:
(a) history of versions; and (b) high-level component specification. Basically, this
component model includes information on the names of the components and a mapping
from modules to component names, using regular expressions. Using these inputs, we
propose heuristics to identify suspicious dependencies, or lack of, in source code by
relying on frequency hypotheses and past corrections made on the code.

Evidences of 
Architectural 

Violations  

History of 
Versions 

High-level 
Component 
Specification 

Heuristics 

Figure 1.1. Proposed approach to architectural conformance checking

The proposed approach includes four heuristics to discover suspicious
dependencies in the source code, including dependencies that may denote divergences
(existing unwanted dependencies) or absences (missing expected dependencies). The
common assumption behind the proposed heuristics is that dependencies denoting
architectural violations—at least in systems that are not facing a massive erosion
process—are rare events in the space-time domain, i.e., they appear in a small number of
classes (according to particular thresholds) and they are frequently removed during the
evolution of the systems (according to other thresholds). We also propose an iterative
architecture conformance process, based on the defined heuristics. As proposed by
this process, architects should experiment and adjust the thresholds required by the
defined heuristics, starting with rigid thresholds. Usually, as the thresholds are made
less rigid, more false warnings are generated. Therefore, the architect can finish the
conformance activity when enough violations are detected or when the heuristics start
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to produce too many false positives. We also propose a strategy to rank the generated
warnings, which is used to show firstly the warnings that are more likely to denote real
violations. Finally, we implemented a prototype tool, called ArchLint, that supports
the four heuristics for detecting architectural violations.

The proposed approach is (to the best of our knowledge) the first architecture
conformance technique that relies on a combination of static and historical source code
analysis. It does not require successive refinements on high-level architectural models
neither the specification of an extensive list of architectural constraints, as required
by domain-specific languages. However, the proposed heuristics can generate false
positive warnings, as common in most bugs finding tools based on static analysis, such
as FindBugs [Hovemeyer and Pugh, 2004] and PMD [Copeland, 2005].

We report the results of applying the proposed conformance checking process
in four real-world systems. First, we applied this process in two industrial-strength
information systems. The warnings generated by the proposed heuristics were
evaluated by experts in these systems’ architecture, who classified them as true or false
positives. We were able to detect 389 and 150 architectural violations, with an overall
precision of 62.7% and 53.8%, respectively. We also present and discuss examples of
architectural violations detected by our approach and the architectural constraints
associated with such violations, according to the systems’ architects. Finally, we
relied on the proposed conformance process to evaluate the architecture of two well-
known open-source system, Lucene1 and ArgoUML2. In these cases, using as oracle
a reflexion model independently proposed in another research [Bittencourt, 2012], we
found 264 architectural violations in Lucene and 81 violations in ArgoUML, with an
overall precision of 59.2% and 53.3% respectively.

1.4 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 covers background work related to our research, including work
on software architecture, architectural erosion, architectural conformance
checking techniques, automatic anomaly detection in source code, and data
mining techniques.

• Chapter 3 presents the proposed architectural conformance checking technique,
including the description of the proposed heuristics to detect absences and

1http://lucene.apache.org
2http://argouml.tigris.org
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divergences, their formal definition, a strategy to rank violations, the design of
the ArchLint tool, and a heuristic-based architecture conformance process.

• Chapter 4 evaluates our approach by presenting and discussing results on its
usage in four real-world systems. In this chapter, we also summarize our main
findings and the lessons learned after designing and evaluating the heuristics-
based approach.

• Chapter 5 reports an exploratory study on mining architectural patterns using
data mining techniques. Essentially, our goal with this final study is to investigate
whether architectural patterns can be inferred by mining software repositories.

• Chapter 6 presents the final considerations of this thesis, including contributions,
limitations, and future work.

1.5 Publications

This thesis generated the following publications and contains material from them:

• [Maffort et al., 2014]: Maffort, Cristiano; Valente, Marco Tulio; Terra, Ricardo;
Bigonha, Mariza; Anquetil, Nicolas; Hora, Andre. Mining Architectural
Violations from Version History. In Empirical Software Engineering Journal
(EMSE), p. 1–41, 2014. Invited for a special issue with best papers from WCRE
2013.

• [Maffort et al., 2013a]: Maffort, Cristiano; Valente, Marco Tulio; Anquetil,
Nicolas; Hora, Andre; Bigonha, Mariza. Heuristics for Discovering Architectural
Violations. In 20th Working Conference on Reverse Engineering (WCRE), p.
222–231, 2013.

• [Maffort et al., 2013b]: Maffort, Cristiano; Valente, Marco Tulio; Bigonha,
Mariza; Anquetil, Nicolas; Hora, Andre. Mining Architectural Patterns Using
Association Rules. In 25th International Conference on Software Engineering
and Knowledge Engineering (SEKE), pages 375-380, 2013.

• [Maffort et al., 2013c]: Maffort, Cristiano; Valente, Marco Tulio; Bigonha,
Mariza; Silva, Leonardo Humberto; Aparecido, Gladston. ArchLint: Uma
Ferramenta para Detecção de Violações Arquiteturais usando Histórico de
Versões. In IV Congresso Brasileiro de Software: Teoria e Prática (Sessão de
Ferramentas), pages 1–6, 2013.
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• [Maffort et al., 2012]: Maffort, Cristiano; Valente, Marco Tulio; Bigonha, Mariza.
Detecção de Violações Arquiteturais usando Histórico de Versões. In XI Simpósio
Brasileiro de Qualidade de Software (SBQS), pages 1–15, 2012.

Additionally, the software infrastructure proposed to extract structural
dependencies from software repositories is used in the following papers:

• [Rocha et al., 2013]: Rocha, Henrique; Couto, Cesar; Maffort, Cristiano; Garcia,
Rogel; Simões, Clarisse; Passos, Leonardo; Valente, Marco Tulio. Mining the
Impact of Evolution Categories on Object-Oriented Metrics. In Software Quality
Journal, vol. 21, issue 4, pages 529–549, 2013.

• [Couto et al., 2013]: Couto, Cesar; Maffort, Cristiano; Garcia, Rogel; Valente,
Marco Tulio. COMETS: A Dataset for Empirical Research on Software Evolution
using Source Code Metrics and Time Series Analysis. In ACM SIGSOFT
Software Engineering Notes, pages 1–3, 2013.





Chapter 2

Background

This chapter is organized as follows. In Sections 2.1 and 2.2 we introduce fundamental
concepts on software architecture and software architectural erosion. Section 2.3
presents methodologies and techniques for architectural conformance. Section 2.4
describes some techniques for automatic detection of source code anomalies. Finally,
in Section 2.5, we present data mining techniques that can be used to detect
architectural violations.

2.1 Software Architecture

The most common definition for software architecture follows a structural
perspective, which considers that an architecture is composed by elements and
their interconnections [Clements, 2003]. For example, Bass et al. define software
architecture as the structure of a system, which comprises software components,
externally visible properties of those components, and the relationships between
them [Bass et al., 2003]. Moreover, the architecture of a software often includes the
relationships, constraints, principles, and guidelines that should guide its design and
evolution over time [Garlan, 2000, Garlan and Shaw, 1996, Fowler, 2002]. Components
are usually defined as architectural entities which encapsulate a subset of the system’s
functionalities [Gurgel et al., 2014].

Software architecture decisions typically have a long-term impact on individual
aspects of the construction and evolution of software systems [Pressman, 2010].
Therefore, software architectures must be documented, not only for purposes of
analyzing the system, but also as an artifact for communication with stakeholders,
facilitating the understanding of a system [Bittencourt, 2010]

9
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2.2 Architectural Erosion

It is unquestionable that the architecture specification of a system is a crucial
development activity, as described in Section 2.1. It is an activity that comes before
implementation activities, when software architects define the modular decomposition
of the system and the dependency relationships and constraints between modules and
components, as well as relations with external systems, such as libraries frameworks.

However, during the evolution of a software product implementation anomalies
are frequently introduced in the source code, i.e., decisions that are not compatible
with the specified architectural model, making the current codebase inconsistent
with the existing documentation [Kazman and Carrière, 1999, Knodel et al., 2006,
Knodel and Popescu, 2007, Murphy et al., 1995, Murphy et al., 2001a,
Schmerl et al., 2006]. In this thesis, these anomalies are called architectural
violations [Passos et al., 2010, Perry and Wolf, 1992].

In practice, the introduction of architectural violations is common, mainly
due to the developers’ lack of knowledge, deadline pressures, technical difficulties,
conflicting requirements, etc. [Knodel and Popescu, 2007]. As a result, these
violations make maintenance a more difficult and time-consuming task, since
the implemented product is not adherent to the planned and documented
architecture [Sarkar et al., 2009a]. Additionally, the progressive introduction of
architectural violations in the code can make even simple software evolution tasks
more difficult [Macia et al., 2012]. Nonetheless, architectural violations usually
remain in the source code, leading to the phenomena known as architectural
deviations or architectural erosion [Perry and Wolf, 1992]. Basically, erosion is an
architectural deviation and occurs when the rules governing the dependencies between
architecture components are violated [Perry and Wolf, 1992]. In the more critical cases,
architectural problems can lead to a full reengineering or even the discontinuation of a
software products [Hochstein and Lindvall, 2005].

2.3 Architectural Conformance Checking

To avoid architectural erosion, many architectural conformance approaches were
proposed [Bass et al., 2003, Gorton and Zhu, 2005]. Basically, this activity consists
in checking whether a particular version of the system adheres to the planned
architecture [van Gurp and Bosch, 2002]. In other words, architectural conformance
checking can be viewed as a measure of the degree of adherence between
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the concrete architecture, as implemented in source code, and the planned
architecture [Knodel and Popescu, 2007].

Architectural conformance approaches rely on static or dynamic
analysis techniques [Bell, 1999, Hamou-Lhadj and Lethbridge, 2004,
Jerding and Rugaber, 1997, Schmerl et al., 2006]. Static analysis techniques are
non-invasive, and depend only on the source code. For this reason, they do not impact
the normal programming activities or cause any impact during a system execution.
On the other hand, techniques based on dynamic analysis are performed during the
execution of the system. Therefore, they can deal with systems whose behavior may
change at runtime, such as systems that are implemented using techniques such as
dependency injection, reflexion, and meta-programming [Brito et al., 2013]. In this
thesis, we focus on techniques based on static analysis, because they are the most
established ones.

2.3.1 Static Architecture Conformance

In this section we discuss some well-know architectural conformance approaches based
on static analysis.

Dependency Structure Matrix (DSM)

Dependency structure matrices were proposed by Baldwin and Clark to
demonstrate and assess the importance of the modular organization of software
projects [Baldwin and Clark, 1999, Sullivan et al., 2001]. Essentially, DSMs are
adjacency matrices that represent dependencies between the modules of a system.
The elements in these matrices indicate the existence of static dependencies between
the element of the column (source dependency) and the element of the row (target
dependency). For example, in Figure 2.1, the X in the cell (1,2) denotes that class
B depends on class A. In other words, class B has explicit references (method calls,
parameters, exceptions, etc) to syntactic elements defined by class A.

Figure 2.1. DSM example (class B depends on class A)
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There are many tools that generate DSMs, such as the Lattix Dependency
Manager (LDM) tool [Sangal et al., 2005].1 This tool is also able to perform
architectural conformance checking. It provides a graphical interface that can be
used to reveal architectural patterns and detect dependencies that may indicate
architectural violations. Initially, the architectural conformance activity requires the
DSM extraction using static analysis techniques. In a second step, a declarative
language is used to specify the conformance rules that must be followed by the
source code of the system under evaluation. Basically, the domain specific language
supported by the LDM tool is very simple. The rules for conformance checking have
two forms: A can-use B and A cannot-use B, which are used to indicate that a
particular class A may or may not depend on a given class B.

Source Code Query Language

Oege Moor et al. proposed a source code query language called .QL, which
has a syntax similar to the SQL language [de Moor, 2007]. By using this language,
it is possible to perform many activities to support software development, such as
architectural conformance checking, searching for errors, software metrics calculation,
identification of refactoring opportunities, etc. To illustrate, we will use a .QL query
to check architectural conformance of a system implemented following the MVC
architectural pattern2. In systems implemented accordingly to this pattern, the Model
layer cannot have any dependency with the Controller layer. To verify this constraint,
the following query can be defined in .QL:

1: FROM RefType r1, RefType r2

2: WHERE r1.fromSource()

3: AND depends(r1, r2)

4: AND isModelLayer(r1)

5: AND isControllerLayer(r2)

6: SELECT "Warning: " + r1.getQualifiedName() +

" depends on " + r2.getQualifiedName()

Basically, this query selects all classes of the layer Model that have dependencies
with classes of the Controller layer. As can be observed, the class r1 must be
implemented in the source code (line 2). Specifically, RefType is a .QL built-in type

1http://www.lattix.com
2A similar example is shown in [Passos et al., 2010]
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that provides information about a particular type of a Java program. The predicates
isModelLayer (line 4) and isControllerLayer (line 5) check whether a reference belongs
to the Model and Controller layers, respectively.

Reflexion Models

The Reflexion Models (RM) technique was proposed by Murphy et
al. [Murphy et al., 1995, Murphy et al., 2001a]. According to this technique, software
architects should first define a high-level model representing the planned or desired
architecture. They should also define the dependencies between the components
prescribed in this high-level model. Moreover, architects must define a mapping
between the concrete architecture (source code model) and the proposed high-level
model (desired architecture).

Knodel et al. describe a tool called Software Architecture Visualization and
Evaluation (SAVE) [Knodel et al., 2006] for architectural conformance checking based
on reflexion models. Using as input the high-level model and a mapping of this model
to the source code of the system under analysis, the SAVE tool produces the reflexion
model for revealing architectural violations in the source code.

A Reflexion Model classifies the dependencies between the classes of a system as
follows:

• Convergence: when a dependency prescribed in the architectural model exists in
the source code.

• Divergence: when a dependency exists in the source code, but it is not prescribed
by the architectural model.

• Absence: when a dependency does not exist in the source code, but it is prescribed
by the architectural model.

A RM-based tool, such as SAVE, highlights the divergence and absence
dependencies in the high-level model initially provided by the architects.

Dependency Constraint Languages

These solutions include domain-specific languages to detect dependencies that
are allowed and not allowed in the code, which are inferred from declarative structural
constraints between modules. As an example, we can mention DCL (Dependency
Constraint Language) [Terra and Valente, 2009, Terra and Valente, 2008].
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For using such languages, a software architect must first define the dependency
constraints between the classes of the system under analysis. For example, using DCL,
architects may define acceptable or unacceptable dependencies, according to the desired
system architecture. The DCL specification presented next contains four dependency
constraints(lines 5-8) for a hypothetical system that adopts the MVC architectural
pattern.

1: module Model: com.myapp.*.model.**

2: module View: com.myapp.*.view.**

3: module Controller: com.myapp.*.control.**

4: module JPA: javax.persistence.**

5: Model can-depend-only Model, JPA, $java$

6: only View can-depend Controller

7: View cannot-depend JPA

8: Controller cannot-depend JPA

Initially, this specification defines the modules of each layer in the MVC pattern
(lines 1-3). Next, it defines that the JPA module is composed by classes of the
package javax.persistence, including its subpackages (line 4). Finally, a sequence
of dependency constraints are defined (lines 5-8). More specifically, the constraint on
line 5 defines that classes in the Model layer can only depend on classes in this layer,
on JPA classes, and on the Java API. Line 6 establishes that only the View layer can
depend on classes in the Controller layer. Finally, the View and Controller layers
cannot depend on JPA classes (lines 7-8).

The proposed approach also provides a plug-in for the Eclipse IDE called
dclcheck. This plug-in checks whether the source code is in accordance with the
constraints defined in DCL.

Gurgel et al. [Gurgel et al., 2014] proposed a conformance technique that,
similarly to the DCL language, provides mechanisms to explicitly define the planned
architecture of a system, describing their components and dependency constraints.
Their approach assumes that similar degradation evidences occur in software projects.
For this reason, the approach includes support for the hierarchical and compositional
reuse of rules, providing specification mechanisms to specialize previously defined rules.
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Constraint Programming Languages

Constraint programming languages, usually based on first-order logic, allow
software architects to express architectural constraints on the static structure of
object-oriented systems. The restrictions are specified by a sequence of statements
and logical declarations. However, this definition might be a complex and error-
prone activity, especially for architects and maintainers with experience only in
imperative languages. As examples of logic-based constraint languages, we highlight
SCL (Structural Constraint Language) [Hou and Hoover, 2006], FCL (Framework
Constraint Language) [Hou et al., 2004], and LogEn [Eichberg et al., 2008]. To
support a less complex and more comprehensive notation for expressing architectural
constraints, LogEn authors have proposed a graphical notation, called VisEn, from
which LogEn constraints can be automatically generated.

Architectural Description Languages (ADLs)

ADLs enable architectural conformance checking by constructing and expressing
the architectural behavior and the structure of a software system in a declarative and
abstract language [Allen and Garlan, 1997, Garlan et al., 1997, Magee et al., 1995].
From an ADL specification, code generation tools are proposed to transform
architectural descriptions to code in a general-purpose language.

2.3.2 Critical Assessment

As reported in this section, architectural conformance checking approaches based on
static analysis—such as dependency structural matrices (DSM), source code query
languages, and reflexion models—adopt non-invasive strategies, but also require a
detailed architectural specification (to prescribe modules, components, dependency
constraints, etc.). However, these specifications have shortcomings, making difficult
to prescribe some constraints or architectural representation. Furthermore, they often
require the definition of many rules or similar programming artifacts that should be
maintained and evolved, which are also subjected to errors and omissions.

2.4 Detecting Source Code Anomalies

Programs frequently follow informal or implicit programming
conventions [Li and Zhou, 2005, Gruska et al., 2010, Chang et al., 2007,
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Wasylkowski et al., 2007]. For example, some method calls usually occur in a
given order, such as an unlock call, which normally follows a lock call. Other
programming rules may also prescribe more detailed dependencies involving more
functions, as well as other elements such as variables and data types.

On the other hand, developers often unconsciously violate these programming
rules during their daily programming activities. As a result, they can, for example,
add bugs when they do not follow such rules. Finally, manually providing a
specification for each of such rules is not exactly a simple task [Mileva et al., 2011,
Wasylkowski and Zeller, 2009].

The techniques for checking programming patterns, discussed in this section,
do not assume any prior knowledge on the systems under evaluation, such as
naming conventions or pre-defined programming standards, as required by the static
architecture conformance checking approaches described in Section 2.3. Essentially,
the approaches discussed in the present section are based on the observation that large
systems adopt patterns in their implementation and that deviations from these patterns
can therefore be considered as anomalies [Engler et al., 2001a].

In the remainder of this section, we present techniques for detecting programming
patterns in an automate way. Initially, we present techniques for inferring such patterns
from structural information extracted from source code (Section 2.4.1). Next, we
present techniques based on usage and non-usage patterns extracted from different
versions of a system (Section2.4.2). Finally, we present techniques based on static
information extracted from source code (Section 2.4.3).

2.4.1 Structural Analysis Techniques

PR-Miner is a tool that extracts programming rules from systems implemented in C,
without requiring any previous knowledge on the software under evaluation or any form
of instrumentation (e.g., insertion of annotations) [Li and Zhou, 2005]. This tool uses
a data mining technique called frequent itemset mining to detect patterns from the
extracted rules. More details on frequent itemset mining are presented in Section 2.5.
Finally, PR-Miner searches for programming decisions in the source code that are not
adherent to the programming patterns previously identified. Such divergent patterns
are presented as evidences of bugs. The PR-Miner approach is based on the assumption
that correct programming rules are frequently followed and violations rarely occur. To
reinforce this assumption, the tool selects only programming rules that are similar to
the detected patterns in at least 90% of the cases.

Wasylkowski and colleagues [Wasylkowski et al., 2007] proposed an approach
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for detecting programming anomalies based on sequences of interdependent method
calls, such as calls to method Stack.push(), which usually occur before calls to
method Stack.elements(). This sequence is represented as an object usage model—
which models typical object usage as possible sequences of method calls. The
extracted patterns are compared with their instances in the source code to identify
implementation decisions that violate the proposed patterns, which are classified as
evidence of defects.

The proposed approach includes a tool called JADET that detects patterns in
the form of method calls sequences. The tool also searches for sequences that are
not in conformance with these patterns. The analysis of similarity among patterns
performed on temporal properties extracted from the source code, using formal concept
analysis algorithms.

Wasylkowski et al. proposed an approach for mining object usage models,
extracted by the JADET tool, which checks whether certain preconditions are satisfied
before method invocations [Wasylkowski and Zeller, 2009]. Specifically, the authors
introduced the concept of operational preconditions, which establish how to satisfy the
preconditions of a function or method. In the proposed approach, these preconditions
are extracted from the source code using a tool called Tikanga. The ultimate goal
is to discover the operational preconditions from the context that precedes particular
function or method calls. The higher the number of calls of a particular method, the
higher the precision of inferring its operational preconditions and also the precision in
selecting method calls whose preconditions are not adequately satisfied.

The existing techniques for detecting violations using structural analysis extracts
information only from the source code. In all cases, the precision of the results
depends on the occurrence of patterns with structural similarity in the application
under analysis. Therefore, if the expected implementation pattern rarely occurs in
the system under analysis, it will be wrongly taken as a violation and not as a
programming anomaly.

To overcome the weaknesses of the aforementioned techniques, Gruska et al.
proposed an approach, also based on the JADET tool, which retrieves temporal
properties on the methods of the application under analysis [Gruska et al., 2010]. The
detection is also based on formal concept analysis, as implemented by the Colibri-
Java [Götzmann, 2007] tool. However, the patterns are extracted from various systems
whose implementation is admittedly correct and that are supposed to present high-
levels of internal software quality. Moreover, the extracted temporal properties are
not confronted with the patterns of the application itself. Instead, they are compared
with patterns extracted from other systems, whose structural quality and correctness
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is also recognized.

2.4.2 Historical Analysis Techniques

During the evolution of a software, changes frequently occur. For example,
programming anomalies are introduced, defects are corrected, source code is refactored,
etc. In other words, in high-quality and well-organized systems, some of these anomalies
are detected and corrected as a result of software maintenance or inspection activities.

Architectural conformance techniques based on historical analysis searches for
source code change patterns. Next, these techniques detect in a specific version of the
system under evaluation (usually the current version), dependencies that are not in
conformance with these evolution patterns.

Zimmermann et al. proposed one of the first approaches for detecting code
anomalies using version history [Zimmermann et al., 2004, Zimmermann et al., 2005].
The proposed approach includes a tool, called ROSE, which relies on association rules
extracted from version control history systems to suggest and predict missing changes
in the artifacts of the system under analysis. Moreover, ROSE also identifies anomalies
that occur outside the system’s source code, like the need to update the documentation
after changes in the source code. The overall precision achieved by ROSE was 40% in
an evaluation with eight open-source systems. Considering only the first three warnings
indicated in the list, ROSE achieved a precision of 90%.

Another event that often occurs during the evolution of software systems is the
need to perform modifications in the source code as a result of updates in APIs.
In this case, it is necessary to verify whether the code was updated consistently.
To tackle this problem, Mileva et al. proposed a methodology, supported by a tool
called LAMARCK, that extracts temporal properties regarding two different versions
of a system and analyzes the changes between these versions to infer evolution
patterns [Mileva et al., 2011]. Such patterns can be shared with developers to prevent
the use of incorrect programming strategies. Furthermore, they can help to identify
implementation decisions that are out of date. To derive the evolutionary patterns and
to reveal the programming violations, LAMARCK relies on formal concept analysis
techniques, as supported by the Java-Colibri tool.

Silva et al. proposed a technique to assess package modularity using co-change
clusters [Silva et al., 2014], based on the assumption that programming decisions
that are likely to change together should be implemented in the same module. In
their work, the authors argue that the traditional package hierarchy suffers from the
dominant decomposition problem and their approach can introduce improvements in
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understanding whether a system is really well-modularized. Santos et al. describe a
remodularization technique that relies on information retrieval and semantic clustering
analysis over a vocabulary extracted from identifiers and comments presented in the
classes of a system under evaluation [Santos et al., 2014]. This approach can also be
used to suggest a more suitable modular organization for the evaluated system.

The precision results achieved by the discussed historical analysis approaches
depend essentially on identifying usage and non-usage patterns that are then contrasted
with the remainder of the application. In other words, precision depends on the number
and the correctness of frequent items in the source code. Moreover, it also depends on
the number of revisions in the repository.

2.4.3 Static Analysis Techniques

Techniques for detecting defects using static analysis are based on idioms representing
programming defects, such as: division by zero, array indexing beyond its limits,
method calls using null references, etc. [Araujo et al., 2011]. Several tools have been
proposed to support static code analysis, which generally aim to extend and enhance
the warning messages generated by compilers [Couto et al., 2012].

Lint [Johnson, 1977, Darwin, 1988] was one of the first tools to support static
analysis for identifying bugs and programming bad smells [Hovemeyer and Pugh, 2004,
Fowler, 1999]. The tool searches for common errors present in source code, as
well as it aims to reinforce some common rules of the C language— such as type
checking, operations and/or, and portability restrictions. As a result, some of the
checks performed by Lint were later integrated into compilers, such as checking
the use of uninitialized variables. LCLint [Evans et al., 1994, Evans, 1996] and
JLint [Artho and Biere, 2001] are examples of static source code checking tools that
inherited the philosophy originally proposed by Lint.

Among the existing static verification tools for Java,
FindBugs [Hovemeyer and Pugh, 2004] and PMD [Copeland, 2005] are among
the most popular. FindBugs is an open-source tool that implements a set of bug
detectors able to point out more than 360 patterns of bugs. These patterns are
classified into categories such as correctness, performance, threads synchronization,
malicious code, bad practice, etc. Moreover, FindBugs classifies the bug patterns as
having high, medium, or low priority.

PMD is an open source tool that supports an extensive set of rules for detecting
potential bugs and to check coding styles. PMD also offers a set of metrics to
detect violations in recommended programming practices, such as excessive number
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of attributes or long methods. For the detection of bugs, PMD computes its rules over
the AST (Abstract Syntax Tree) generated from the source code of the system under
analysis, unlike FindBugs, which works at the bytecode level.

In a study performed by Araujo et al., the highest precision achieved by FindBugs
was 52.5% [Araujo et al., 2011]. To achieve such result, the authors configured
FindBugs to report only bug evidences with high priority from the correctness category.
In the same study, the authors highlight that PMD produces a massive number of
bug evidences, which must be manually inspected. More specifically, the best result
obtained by the PMD tool was 10% of precision.

2.4.4 Critical Assessment

Among the approaches for automatic detection of source code anomalies described
in this section, the ones based on structural analysis rely on formalisms to extract
dependencies that are strongly linked to procedural languages. These approaches
consider only function calls, independently from the modular and/or architectural
context where they occur. Similarly, approaches based on historical analysis do not
consider violations that occur at the architectural level, since they also consider only
concepts of procedural languages. Furthermore, they often evaluate a limited historical
context, since the analysis is typically performed with only two versions. Approaches
based on static analysis consider only the language idioms, such as the use of types and
typical objects of the language. Typically, such techniques do not consider modular or
architectural aspects of the system under analysis.

2.5 Data Mining Techniques

Data mining includes a set of techniques for the analysis and extraction of
information potentially useful, implicit, and previously unknown [Tan et al., 2002,
Frawley et al., 1992, Fayyad et al., 1996]. Basically, data mining techniques perform a
search for patterns in a dataset defined according to the chosen data mining algorithm.
In the context of this thesis, two data mining techniques deserve special attention due to
their potential application to architectural violation detection. Section 2.5.1 describes
the frequent itemset mining technique and Section 2.5.2 describes the technique based
on formal concepts analysis.
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2.5.1 Frequent Itemset Mining

Frequent patterns are those that appear repeatedly in a dataset. For example, a
pair of items, like “bread” and “butter”, which usually appear together in database
transactions, are considered a frequent pattern. As an example in the software
engineering context, calling an open() method and then calling a close() method, may
also represent a frequent pattern if it occurs at various points in a program. As another
example, considering the software architecture context, classes that depend on Entity

annotation, with an expressive confidence, also depend on annotation Id.
The following concepts are fundamental on frequent itemset mining:

• Items: are the objects under study to which we want to discover the sets of
co-occurring values or frequent patterns. For instance, the objects in a market
basket can be considered items.

• Itemset: is a set of items. For instance, a given collection of objects in a market
basket can be considered an itemset.

• Transaction: is a well-defined itemset, represented as a tuple 〈t,X〉, where t is
a unique transaction identifier.

• Database: is a collection of transactions. Figure 2.2 shows these forms of
database representations.

A B C D E
1 1 1 0 0 1
2 1 1 0 1 1
3 1 0 1 0 0
4 1 1 0 0 1
5 0 1 0 1 0
6 1 1 1 1 1

(a) Binary

itemset
1 ABE
2 ABDE
3 AC
4 ABE
5 BD
6 ABCDE
(b) Transaction

A B C D E
1 1 3 2 1
2 2 6 5 2
3 4 6 4
4 5 6
6 6

(c) Vertical

Figure 2.2. Database representations

Support is a relevant measure in frequent itemset mining techniques, defined
as the number of transactions that contain a given itemset, i.e., it is a measure of
popularity of the pattern in the database. Objectively, a pattern is frequent if it has a
support greater than a given threshold. Therefore, given a database of transactions and
a minimum support, a frequent itemset mining algorithm must enumerate all itemsets
that are frequent [Zaki and Meira Jr., 2011].
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As an example, assuming minimum-support = 3. The frequent sub-itemsets of
the transactions presented in Table 2.2 are A: 5, B: 5, D: 3, E: 4, AB: 4, AE: 4, and
ABE: 3. The other itemsets are not frequent because their support is lower than 3.

Once frequent itemsets are mined, it is possible to extract association rules from
these sets and to make assumptions on how often two sets of items occur simultaneously
or conditionally [Agrawal et al., 1993]. Furthermore, association rules can be used
to discover relationships between objects. For example, given a sales database in a
supermarket, it is possible to generate rules of the following type: if consumers purchase
a product A, there is a good chance that they will also purchase product B. In this
case, product A is called the antecedent term and product B is called the consequent
term of the association rule.

An association rule is formally represented as X ⇒ Y , where X and Y are itemsets
and X ∩ Y = ∅. Each association rule has a support and a confidence measure. The
support is the number of times in which both X and Y simultaneously occur as subsets
in the same transaction. The confidence represents the probability of a transaction
covered by an antecedent term X be also covered by a consequent term Y . In practice,
the confidence of a rule is calculated as its support divided by the support of the
antecedent term.

Additionally, other measures are used when extracting association rules, such as:

• Lift: is a measure of the surprise or the strength of a rule. It is computed by
dividing the confidence of a rule by the relative support of its consequent term.

• Leverage: is a measure of the difference between the observed relative support
of the consequent term and the expected joint probability of the multiplication
between the relative support of the antecedent term and the consequent term.

• Jaccard: is a coefficient that measures the similarity between the antecedent
term and the consequent term.

Finally, many algorithms can be used to compute itemsets and association rules,
such as:

• Apriori: an algorithm that improves a brute-force approach for frequent itemset
mining [Agrawal and Srikant, 1994].

• Eclat: an algorithm that indexes the database to improve the computation of
frequency [Zaki et al., 1997].
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• FP-Growth: an algorithm that uses pattern fragment growth to mine the
complete set of frequent patterns [Han et al., 2000].

2.5.2 Formal Concept Analysis

Concept analysis is a branch of applied mathematics, particularly of
the lattice theory [Birkhoff, 1940, Ganter and Wille, 1999, Wille, 2009,
Davey and Priestley, 2002]. It is a technique for analyzing binary relations between
arbitrary objects and their attributes. It produces as output a concepts lattice, which
provides an understanding of the underlying structure of the dependencies between
objects.

The formal context, whose definition is fundamental to the study of formal concept
analysis, is defined by a triple (O,A,R), where O is a set of objects, A is a set of
attributes, and R is a binary relation, called incidence, so that R ⊆ O × A. As an
example, in information retrieval system, documents can be considered objects and
their attributes are considered terms.

A suitable way for representing formal contexts is by means of a cross table, where
the rows are objects and the columns are attributes. The incidence is shown in this
table using a symbol to indicate whether there is any relationship between the object
and the attribute. Therefore, formal contexts are used for representing sets whose
objects may or may not have certain attributes. Figure 2.3 illustrates an example of a
representation of a formal context using a cross table. As we can observe, the objects
are animals that are famous in certain regions of the world and the attributes denote
whether these animals are cartoons or real animals, as well as whether they are dogs,
cats, mammals, or turtles.

Figure 2.3. Formal context of “famous animals” [Priss, 2006]

A formal context determines formal concepts. The set of objects (O) of a formal
concept is called extension (E) and the set of attributes (A) is called intention (I) such
that E ⊆ O, I ⊆ A. A hierarchically ordered set of all formal concepts of a formal
context is called lattice concepts.
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A suitable way to represent the lattices is by means of a graph whose vertices
denote the formal concepts and whose edges denote their relationships. An edge creates
a relationship of super-concept and sub-concept between connected formal concepts.
The highest vertex of the diagram represents the formal concept whose extension
contains all objects, while the lower vertex contains all attributes in its intention.

Figure 2.4. Concept lattice of Figure 2.3 [Priss, 2006]

Figure 2.4 shows a diagram of a concept lattice whose concepts correspond to
the formal context of Figure 2.3. In this diagram, each vertex represents the formal
concepts. The objects are arranged on the bottom of the diagram and the attributes
are placed on top. Both objects and attributes are identified by their respective labels.

In summary, formal concept analysis provides a framework to understand and
mine patterns between objects and attributes. From the identified patterns, this
technique detect structural anomalies of the objects in relation to the attributes and
vice versa. For this purpose, techniques based on formal concept analysis can group
blocks of similar relationships, i.e., those that share common attributes.

2.6 Final Remarks

In software development, it is common that development teams adopt strategies that
are not consonant with best practices, as defined by the architectural model of the
system. As a result, several approaches have been proposed to detect source code
anomalies, including architectural violations.
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Table 2.1 summarize the techniques discussed before in this chapter. As can
be observed, the current techniques for architectural conformance checking require as
input an architectural representation, which is not trivial to be produced and that
is also subject to errors and omissions. On the other side, the existing solutions for
automatically detecting programming anomalies usually do not consider architectural
violations. Finally, the approaches based on historical analysis restrict considerably
the evaluated historical context, limiting the analysis on two versions of the system in
most cases.

We concluded this chapter by discussing some data mining techniques that
can contribute to an automatic analysis of architectural patterns. Both frequent
itemsed mining and formal concept analysis can be used to detect complex patterns
of dependencies, composed by multiple classes, independently on any prior knowledge
of software architecture or on the architectural scenarios where violations frequently
occur. In other words, these techniques can detect any pattern of co-occurrence among
items in a dataset. Particularly, frequent itemset mining techniques produce association
rules that can be used: (i) as architectural patterns, allowing to detect dependencies
that violates these patterns; and (ii) as documentation artifacts, supporting and guiding
the development team on expliciting the dependencies in the system. Formal concept
analysis can be a promising technique for mining architectural violations by highlighting
dependency relationships between classes of a system, including use and disuse of
relations.
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Chapter 3

Heuristics for Detecting
Architectural Violations

This chapter is organized as follows. We start by providing an overview of the proposed
approach for detecting architectural violations (Section 3.1). Next, we motivate and
describe the heuristics to detect absences (Section 3.2) and divergences (Section 3.3).
A complete formal specification of the heuristics is presented in Section 3.4. We
also propose a strategy to rank the warnings produced by the heuristics according
to their relevance (Section 3.5). Next, we present a prototype tool, called ArchLint,
that supports the proposed heuristics (Section 3.6). We also present an architecture
conformance process based on the proposed approach (Section 3.7). Finally, we
conclude the chapter with a general discussion (Section 3.8).

3.1 Overview

Figure 3.1 illustrates the input and output of the proposed heuristics for detecting
architectural violations. Basically, the heuristics rely on two types of input information
on the target system: (a) history of versions; and (b) high-level component
specification. We consider that the classes of a system are statically organized in
modules (or packages, in Java terms), and that modules are logically grouped in coarse-
grained structures, called components. The component model includes information on
the names of the components and a mapping from modules to components, using
regular expressions (complete examples are provided in Sections 4.1.1 and 4.2.1).
Given the component model, the proposed heuristics automatically identify suspicious
dependencies (or lack of) in source code by relying on frequency hypotheses and past
corrections made on these dependencies. In practice, the heuristics consider all static

29
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dependencies established between classes, including dependencies due to method calls,
variable declarations, inheritance, exceptions, etc.

Evidences of 
Architectural 

Violations  

History of 
Versions 

High-level 
Component 
Specification 

Heuristics 

Figure 3.1. Input and output of the proposed heuristics

We do not make efforts in automatically inferring the high-level components
because it is usually straightforward for architects to provide this representation. When
architects are not available (e.g., in the case of open-source systems), a high-level
decomposition in major subsystems is often included in developers’ documentation
or can be retrieved by inspecting the package structure. In fact, as described in
Section 4.3.1, we applied our approach to an open-source system named Lucene, in
which we reused high-level models independently defined by other researchers using
information available in the systems’ documentation.

3.2 Heuristic for Detecting Absences

An absence is a violation due to a dependency defined by the planned architecture,
but that does not exist in the source code [Murphy et al., 1995, Passos et al., 2010].
For example, suppose an architectural rule that requires classes located in a View

component to extend a class called ViewFrame. In this case, an absence is counted for
each class in View that does not follow this rule.

To detect absences, we initially search for dependencies denoting minorities at
the level of components, regarding a given dependency. We assume that absences
are an exceptional property in classes and therefore minorities have more chances to
represent architectural violations. Moreover, we rely on the history of versions to
mine for dependencies dep introduced in classes originally created without dep. The
underlying assumption in this case is that absences are usually detected and fixed. The
goal is to reinforce the evidences collected in the previous step by checking whether



3.2. Heuristic for Detecting Absences 31

classes originally created with the architectural violation under analysis (i.e., absence
of dep) were later fixed to introduce dep.

Figure 3.2 illustrates the proposed heuristic. As can be observed, class C2 has
an absence regarding TargetClass because: (a) C2 is the unique class in component cp
that does not depend on TargetClass ; and (b) a typical evolution pattern among the
classes in cp is to introduce a dependency with TargetClass , when it does not exist, as
observed in classes C1, C4, and C5.

Figure 3.2. Example of absence (C2 does not depend on TargetClass). The
label Ins denotes a dependency inserted later in the class

Additionally, our approach considers specific types of dependencies. For example,
the planned architecture might prescribe that a given BaseClass must depend on
a TargetClass by means of inheritance, i.e., BaseClass must be a subclass of
TargetClass . Table 3.1 reports the types of dependency supported by this heuristic.

Definition: The proposed heuristic for detecting absences relies on two definitions:

• Dependency Scattering Rate—denoted by DepScaRate(c, t, cp)—is the ratio
between (i) the number of classes in component cp that establish a dependency
of type t with a target class c and (ii) the total number of classes in component
cp.

• Dependency Insertion Rate—denoted by DepInsRate(c, t, cp)—is the ratio
between (i) the number of classes in component cp originally created without
a dependency of type t with a target class c, but that having this dependency in
the last version of the system under analysis, and (ii) the total number of classes
in component cp originally created without the establishment of a dependency of
type t with class c.
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Table 3.1. Dependency types, assuming that C1 depends on C2

Dependency type Description

AttributeAnnotation C2 is used as an annotation over an
attribute in C1

ClassAnnotation C2 is used as an annotation over C1

LocalVariableAnnotation C2 is used as an annotation over a local
variable in C1

MethodAnnotation C2 is used as an annotation over a method
of C1

ClassAttribute C2 is used as an attribute in C1

CaughtException C2 is an exception caught in a method of C1

DeclaredException C2 is an exception declared in a method of
C1

Inheritance C1 is used as a subclass of C2

LocalVariable C2 is used as a local variable in a method of
C1

ParameterizedType C2 is used as a generic type in C1

ReturnMethod C2 is the type returned by a method of C1

ThrownException C2 is an exception thrown in a method of C1

Therefore, the candidates for absences in component cp are defined as follows:

Absences(cp) = { (x, c, t) | comp(x) = cp ∧ ¬depends(x, c, t,H) ∧

DepScaRate(c, t, cp) > Asca ∧

DepInsRate(c, t, cp) > Ains }

According to this definition, an absence is a tuple (x, c, t) where x is a class
located in component cp that, in the current version of the system in the control version
repository (denoted by the symbol H), does not establish a dependency of type t with
the target class c, when most classes in component cp have this dependency. Moreover,
several classes in component cp were initially created without this dependency, but have
evolved to establish it. Parameters Asca and Ains define the thresholds for dependency
scattering and insertion, respectively.

3.3 Heuristics for Detecting Divergences

A divergence is a violation due to a dependency that is not allowed by the
planned architecture, but that exists in the source code [Murphy et al., 1995,
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Passos et al., 2010]. Our approach includes three heuristics for detecting divergences,
as described in the following.

3.3.1 Heuristic #1

This heuristic targets a common pattern of divergences: the use of frameworks
and APIs by unauthorized components [Terra and Valente, 2009, Sarkar et al., 2009b].
For example, enterprise software architectures commonly define that object-relational
mapping frameworks must only be accessed by components in the persistence
layer [Fowler, 2002]. Therefore, this constraint authorizes the use of an external
framework, but only by well-defined components.

The heuristic initially prescribes that the searching for divergences must be
restricted to dependencies present in a small number of classes of a given component
(according to a given threshold, as described next). However, although this is a
necessary condition for divergences, it is not enough to characterize these violations.
For this reason, the heuristic includes two extra conditions: (i) the dependency
must have been removed several times from the high-level component under analysis
(i.e., along the component’s evolution, the system was refactored to fix the violation;
but it was introduced again, possibly by another developer in another package or class
that is part of the component); and, (ii) the heuristic also searches for components
where the dependency under analysis is extensively found (i.e., components that behave
as “heavy-users” of the target module). The assumption is that it is common to have
modules that—according to the intended architecture—are only accessed by classes in
well-delimited components.

Figure 3.3 illustrates the proposed heuristic. In this figure, class C2 presents a
divergence regarding TargetModule because: (a) C2 is the only class in component cp1
that depends on TargetModule; (b) many classes in cp1 (such as C1, C4, and C5)
have in the past established and then removed a dependency with TargetModule;
and (c) most dependencies with TargetModule come from by another component cp2
(i.e., cp2 is a “heavy-user” of TargetModule).

Definition: This heuristic relies on two definitions:

• Dependency Deletion Rate of a component cp regarding a target module m—
denoted by DepDelRate(m, cp)—is the ratio between (i) the number of classes in
component cp that established a dependency in the past with classes in modulem,
but no longer have this dependency, and (ii) the total number of classes in
component cp that have established a dependency with any class in module m.
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Figure 3.3. Example of divergence (C2 depends on TargetModule). The label
Del denotes a dependency removed in a previous version of the class

As described before, a module is a set of classes (e.g., a package, in the case of
Java systems).

• HeavyUser(m) is a function that retrieves the component whose classes mostly
depend on classes located in module m.

The candidates for divergences in a component cp1 are defined as follows:1

Div1(cp) = { (x, c) | comp(x) = cp ∧ mod(c) = m ∧ depends(x, c,_, H) ∧

DepScaRate(m, cp) 6 Dsca ∧

DepDelRate(m, cp) > Ddel ∧

HeavyUser(m) 6= cp }

According to this definition, a divergence is a pair (x, c), where x is a class located
in component cp that depends on a target class c located in a module m, when most
classes in component cp do not have this dependency (as defined by the scattering rate
lower than a minimal threshold Dsca). Moreover, the definition requires that several
classes in the component under evaluation have removed the dependencies with m in
the past, as defined by a threshold Ddel. Finally, there is another component with a
heavy-user behavior with respect to module m.

1In a depends predicate, the pattern _ (underscore) matches any value.
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3.3.2 Heuristic #2

Similarly to the previous case, this second heuristic restricts the analysis to
dependencies defined by few classes of a component that were removed in the past
(in other classes from the component). However, this heuristic has two important
differences in contrast to the first one: (a) it is based on dependencies to a specific target
class (instead of an entire module), which also includes the type of the dependency;
and (b) it does not require the existence of a heavy-user for the dependency under
analysis.

Figure 3.4 illustrates the proposed heuristic. In this figure, class C2 has a
divergence regarding TargetClass because: (a) C2 is the only class in component cp

that depends on TargetClass ; and (b) a common evolution pattern among the classes
in cp is to remove dependencies with TargetClass , as observed in the history of classes
C1, C4, and C5.

Figure 3.4. Example of divergence (C2 depends on TargetClass). The label Del
denotes a dependency removed in a previous version of the class

This heuristic aims to detect two possible sources of divergences: (a) the use of
frameworks that are not authorized by the planned architecture (e.g., a system that
occasionally relies on SQL statements instead of using the object-relational mapping
framework prescribed by the architecture) [Terra and Valente, 2009]; and (b) the use
of incorrect abstractions provided by an authorized framework (e.g., a system that
occasionally relies on inheritance instead of annotations when accessing a framework
that provides both forms of reuse, although the architecture authorizes only the latter).

Definition: This heuristic relies on the Dependency Deletion Rate, as defined by the
previous heuristic. However, it counts deletions regarding a target class c and a
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dependency type t—and not an entire modulem. Thereupon, the heuristic is formalized
as follows:

Div2(cp) = { (x, c, t) | comp(x) = cp ∧ depends(x, c, t,H) ∧

DepScaRate(c, t, cp) 6 Dsca ∧

DepDelRate(c, t, cp) > Ddel }

According to this definition, a divergence is a tuple (x, c, t), where x is a class
located in component cp that has a dependency of type t with a target class c, when
most classes in component cp do not have this dependency (as defined by the threshold
Dsca). Moreover, the definition requires that several classes in the component under
evaluation might have removed the dependencies (c, t) in the past, as defined by a
threshold Ddel.

3.3.3 Heuristic #3

This heuristic is based on the assumption that a common consequence of divergences
is the creation of asymmetrical cycles between components. More specifically, as
illustrated in Figure 3.5, this heuristic aims to identify pairs of components cp1 and
cp2 where most references are from cp2 to cp1, but there are also a few references
in the reverse direction. The underlying assumption is that the components were
originally designed to communicate unidirectionally and the dependencies in the
“wrong” direction are likely to represent architectural violations (and might not be
exceptions authorized by the architecture, e.g., for performance issues). This heuristic
is particularly useful to detect back-call violations, a typical violation in layered
architectures that occurs when a lower layer relies on services implemented by upper
layers [Sarkar et al., 2009a].

Definition: To evaluate the third heuristic for divergences, we assume that rf (cp1, cp2)

denotes the number of references from classes in component cp1 to classes in
component cp2. We also define the Dependency Direction Weight between components
cp1 and cp2 as follows:

DepDirWeight(cp1, cp2) =
rf (cp1, cp2)

rf (cp1, cp2)+rf (cp2, cp1)
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Figure 3.5. Divergences due to asymmetrical cycles

Using this definition, the heuristic is formalized as follows:

Div3(cp1) = { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ cp1 6= cp2 ∧

depends(x, c,_, H) ∧

Ddir 6 DepDirWeight(cp1, cp2) < 0.5 }

Basically, divergences are pairs of classes (x, c) where x is a class in component cp1
(i.e., the component under analysis) that has a dependency with a class c in
component cp2 and the dependencies from cp1 to cp2 satisfy the following conditions:
(a) they are not exceptions, since they occur in a number that is greater than
the minimal threshold Ddir; and (b) they are not dominant, since there are more
dependencies in the reverse direction, as specified by the Dependency Direction Weight
lower than 0.5.

3.4 Formal Definition

In this section, we describe the heuristics proposed by ArchLint.

3.4.1 Notation

The definition of the heuristics relies on the following notation:

• C = {c1, c2, ..., cn} is the set of all classes in the system under analysis.

• CP = {cp1, cp2, ..., cpn} is the set of components in the high-level component
model.
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• depends(c1, c2, t, v) indicates that class c1 has a dependency of type t with
class c2 in a given version v.

• comp(c) is the component cp of a class c.

• mod(c) is the module m of a class c.

• first(c) is the version in which class c was originally inserted in the repository.

• H is the identifier of the last version of the system in the repository.

In a depends predicate, the pattern _ (underscore) matches any value. For
example, depends(c1, c2,_,_) indicates that class c1 depends on class c2, despite the
dependency type and the version.

3.4.2 Detecting Absences

DepCompClass(c, t, cp) is the set of classes in a component cp that—in the current
version of the system—have a dependency of type t with a class c, as follows:

DepCompClass(c, t, cp) = { x ∈ C | depends(x, c, t,H) ∧ comp(x) = cp }

ClassComp(cp) is the set of classes in the component cp, as follows:

ClassComp(cp) = { x ∈ C | comp(x) = cp }

DepScaRate(c, t, cp) is the ratio between (i) the number of classes in component cp

that have a dependency of type t with a target class c and (ii) the total number of
classes in component cp, as follows:

DepScaRate(c, t, cp) =
|DepCompClass(c, t, cp)|
|ClassComp(cp)|

CreatedWithoutDep(c, t, cp) is the set of classes of a component cp that were
committed in the repository for the first time without a dependency of type t with
a target class c, as defined next:

CreatedWithoutDep(c, t, cp) = { x ∈ C | comp(x) = cp ∧ ¬depends(x, c, t, first(x)) }
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DepAdd(c, t, cp) is the set of classes in component cp initially created without a
dependency of type t with a target class c but that later were maintained to include
this dependency, as follows:

DepAdd(c, t, cp) = { x ∈ CreatedWithoutDep(c, t, cp) | depends(x, c, t,H) }

DepInsRate(c, t, cp) is the ratio between (i) the number of classes in the component cp
originally created without a dependency of type t with a target class c, but that have
this dependency in the last version of the system under analysis, and (ii) the total
number of classes in component cp originally created without a dependency of type t

with class c, as follows:

DepInsRate(c, t, cp) =
|DepAdd(c, t, cp)|

|CreatedWithoutDep(c, t, cp)|

Finally, the candidates for absences in a component cp are defined as follows:

Absences(cp) = { (x, c, t) | comp(x) = cp ∧ ¬depends(x, c, t,H) ∧

DepScaRate(c, t, cp) > Asca ∧

DepInsRate(c, t, cp) > Ains }

3.4.3 Detecting Divergences

3.4.3.1 Heuristic #1

DepSysMod(m) is the set of classes in the current version of the system that have a
dependency with classes of a module m, as follows:

DepSysMod(m) = { x ∈ C | depends(x, c,_, H) ∧ mod(c) = m }

DepCompMod(m, cp) is the set of classes in component cp that have a dependency
with a module m, as defined next:

DepCompMod(m, cp) = { x ∈ DepSysMod(m) | comp(x) = cp }

DepScaRate(m, cp) is the ratio between (i) the number of classes in component cp that
have a dependency with a module m and (ii) the total number of classes in the current
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version of the system that have a dependency with classes of m, as follows:

DepScaRate(m, cp) =
|DepCompMod(m, cp)|
|DepSysMod(m)|

DepAddAny(m, cp) is the set of classes in component cp that have established—in any
version of the system—a dependency with a class in module m, as defined next:

DepAddAny(m, cp) = { x ∈ C | comp(x) = cp ∧ depends(x, c,_,_) ∧ mod(c) = m }

DepDel(m, cp) is the set of classes returned by DepAddAny(m, cp) that in the current
version of the system no longer have a dependency with classes in module m, as defined
next:

DepDel(m, cp) = { x ∈ DepAddAny(m, cp) | ¬depends(x, c,_, H) ∧ mod(c) = m }

DepDelRate(m, cp) is the ratio between (i) the number of classes in component cp that
no longer have a dependency with classes in module m and (ii) the total number of
classes in component cp that have established a dependency with any class in modulem,
as defined next:

DepDelRate(m, cp) =
|DepDel(m, cp)|
|DepAddAny(m, cp)|

HeavyUser(m) is a function that returns the component whose classes mostly depend
on classes located in module m, i.e., the component cp that provides the following
maximal value:

max
∀cp ∈ CP

(
|DepCompMod(m, cp)|
|DepSysMod(m)|

)

However, this maximal value must be greater than 0.5. Otherwise, the
function HeavyUser returns null.

Finally, the candidates for divergences in a given component cp are defined as follows:

Div1(cp) = { (x, c) | comp(x) = cp ∧ mod(c) = m ∧ depends(x, c,_, H) ∧

DepScaRate(m, cp) 6 Dsca ∧

DepDelRate(m, cp) > Ddel ∧

HeavyUser(m) 6= cp }
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3.4.3.2 Heuristic #2

DepAddAny(c, t, cp) is the set of classes in component cp that have established—in
any version of the system—a dependency of type t with a class c, as defined next:

DepAddAny(c, t, cp) = { x ∈ C | comp(x) = cp ∧ depends(x, c, t,_) }

DepDel(c, t, cp) is the set of classes returned by DepAddAny(c, t, cp) that no longer
have a dependency of type t with a class c (i.e., the dependencies were removed), as
defined next:

DepDel(c, t, cp) = { x ∈ DepAddAny(c, t, cp) | comp(x) = cp ∧ ¬depends(x, c, t,H) }

Additionally, DepDelRate(c, t, cp) is the ratio between (i) the number of classes in
component cp that no longer have a dependency of type t with a class c, and (ii) the
total number of classes in component cp that have established a dependency of type t

with a class c, as defined next:

DepDelRate(c, t, cp) =
|DepDel(c, t, cp)|
|DepAddAny(c, t, cp)|

Finally, the candidates for divergences in a given component cp are defined as follows:

Div2(cp) = { (x, c, t) | comp(x) = cp ∧ depends(x, c, t,H) ∧

DepScaRate(c, t, cp) 6 Dsca ∧

DepDelRate(c, t, cp) > Ddel }

3.4.3.3 Heuristic #3

This heuristic assumes that rf (cp1, cp2) denotes the number of references from classes
in component cp1 to classes in component cp2, as defined next:

rf (cp1, cp2) = | { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ depends(x, c,_, H) } |

DepDirWeight(cp1, cp2) is defined as follows:

DepDirWeight(cp1, cp2) =
rf (cp1, cp2)

rf (cp1, cp2)+rf (cp2, cp1)
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Finally, the candidates for divergences in a given component cp are defined as follows:

Div3(cp1) = { (x, c) | comp(x) = cp1 ∧ comp(c) = cp2 ∧ cp1 6= cp2 ∧

depends(x, c,_, H) ∧

Ddir 6 DepDirWeight(cp1, cp2) < 0.5 }

3.5 Ranking Strategy

The proposed heuristics generate warnings for architectural absences and divergences.
However, by their nature, they are subjected to false positives. For this reason, it is
important to report the warnings sorted by their potential to denote true violations. As
usual in the case of heuristic-based results, the first presented warnings should ideally
denote real violations to increase the confidence of the architects in the heuristics.

To rank the warnings generated by our approach, the natural strategy is to rely
on the scattering and change (insertion or deletion) rates of the dependencies that
characterize an absence or divergence. For example, in the cases of absences, we
should first present the dependencies that are observed frequently in a component
(i.e., have a very high Dependency Scattering Rate) and that are also introduced
frequently (i.e., have a very high Dependency Insertion Rate). More specifically, the
rank score of a given warning denoting an absence (x, c, t)— where x is a class that is
missing a dependency of type t with a target class c—is defined as:

ScoreAbsence(x, c, t) =
DepScaRate(c, t, cp) + DepInsRate(c, t, cp)

2

where cp = comp(x). Basically, this formula represents the arithmetic mean of the
scattering rate and the insertion rate of the dependency that characterizes the absence.
Therefore, the warnings denoting absences must be presented according to their ranking
scores, the ones with the highest score values first.

Additionally, the ranking scores of the warnings detected by heuristics #1 and
#2 for divergences are defined as follows, respectively:

ScoreDiv1(x,m) =
(1− DepScaRate(m, cp)) + DepDelRate(m, cp)

2
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ScoreDiv2(x, c, t) =
(1− DepScaRate(c, t, cp)) + DepDelRate(c, t, cp)

2

where cp = comp(x). In the first score, the pair (x,m) is used to express that a class x
is incorrectly establishing a dependency with a class in module m. Analogously, in the
second score, the tuple (x, c, t) is used to express that a class x is incorrectly establishing
a dependency of type t with a target class c. In both cases, we assume that high-ranked
divergences should have a low scattering rate and a high deletion rate.

Finally, divergences detected by heuristic #3 are ranked according to the
Dependency Direction Weight between the components in a cycle, as follows:

ScoreDiv3(cp1, cp2) = DepDirWeight(cp1, cp2)

where the divergences in this case denote a dependency between classes in
components cp1 and cp2 and they represent the “wrong” direction of the interaction
between these components. For example, consider two cycles, where the first cycle
has 18% of the dependencies and the second one has 15% of the dependencies in this
situation. In this case, the dependencies responsible for the “wrong” part of the second
cycle should be ranked before the dependencies in the first cycle.

3.6 Tool Support

We implemented a prototype tool, called ArchLint, that supports the
four heuristics for detecting architectural violations. As presented in
Figure 3.6, ArchLint’s implementation follows a pipeline architectural
pattern [Garlan and Shaw, 1996, Garlan, 2000] with three main components:

• The Code Extractor module is responsible for extracting the source code of
all versions of the system under evaluation. Currently, our prototype provides
access to svn repositories.

• The Dependency Extractor module is responsible for creating a model describing
the dependencies available in each version considered in the evaluation.
Essentially, this model is a directed graph, whose nodes are classes and the
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edges are dependencies. To extract the dependencies from source code, we rely
on VerveineJ,2 a Java parser that exports dependency relations in the format
for modeling static information assumed by the Moose platform for software
analysis [Nierstrasz et al., 2005, Ducasse et al., 2011]. Nevertheless, we modified
VerveineJ to store this information in a relational database to facilitate queries
over the collected data.

• The Architectural Violations Detectormodule implements the heuristics described
in Chapter 3. Basically, the heuristics are performed as SQL queries.
Additionally, this module ranks the architectural violations evidences—as
described in Section 3.5—and reports them to the architect of the system under
analysis.
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raise Component  
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Figure 3.6. ArchLint architecture

3.7 A Heuristic-Based Architecture Conformance

Process

In this section, we describe a process for architecture conformance, based on the
proposed heuristics, as implemented by the ArchLint tool. Basically, this process
addresses two central challenges regarding the practical use of our heuristics:

2https://gforge.inria.fr/projects/verveinej.
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• The heuristics rely on thresholds to classify a dependency as a rare event
in the space (scattering thresholds) and in time (insertion and deletion
thresholds). Therefore, the thresholds must be defined before using a tool such
as ArchLint. Moreover, based on our initial experiments with the proposed
heuristics [Maffort et al., 2013a], we figured out that it is not possible to rely
on universal thresholds, which could be reused for any system. This is the case
especially of the insertion and deletion thresholds, since they depend on how
often the architectural violations are detected and fixed, which certainly vary
from system to system.

• By their own nature, the proposed heuristics may lead to false positive warnings.
For this reason, it is important to avoid the generation of a massive number of
warnings, possibly with many false positives. Moreover, when presenting the
architectural warnings to developers or architects, it is important to present the
true warnings before the false ones, following the ranking strategies defined in
Section 3.5.

To tackle the aforementioned challenges, we advocate that an architecture
conformance process based on the proposed heuristics should follow an iterative
approach. More specifically, we argue that a tool such as ArchLint must be executed
several times, starting with rigid thresholds. After each execution, the new warnings,
i.e., the warnings not raised by the previous iterations, should be evaluated by the
architect, in order to check whether they really denote true architectural violations.
As a practical consequence of this evaluation step, the architect can for example request
a refactoring in the system to fix the detected violations. The architect may also decide
to perform another iteration of the conformance process, with more flexible thresholds.
This process should stop when a relevant number of violations is detected, e.g., a
number of violations that is possible and worth to fix by the maintenance team in
a given time frame. Moreover, it is also possible that he/she decides to finish the
conformance process when most of the warnings raised after an iteration are false
positives—and hence it is not worth anymore to experiment with new thresholds.

Figure 3.7 defines the key steps of the proposed iterative conformance process.
Basically, the process consists of a main loop where a given heuristic is applied (Step 2)
and the old warnings, i,e., the warnings already detected in a previous iteration, are
discarded (Step 3). After that, if very few warnings remain as the result of the iteration
(Step 4), a new iteration is automatically started with more flexible thresholds (Step 5).
The rationale is that it is better to trigger a new execution immediately than to
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evaluate few warnings that will be raised anyway by the next iteration. However,
in case of enough warnings, they are first ranked—as described in Section 3.5—and
then presented to the architect for analysis and classification as true or false warnings
(Steps 6 and 7). After that, if the architect evaluates that it is worthwhile to continue
searching for new warnings, considering the current workload of the maintenance team
and the precision achieved by the current iteration, the thresholds are adjusted (Step 5)
and a new iteration is started.

remove old 
warnings 

thresholds = 
INITIAL_THRESHOLDS 

remaining results < 
MIN_RESULTS 

ADJUST(thresholds) 
yes 

no 

apply heuristic 

rank the results 

analyse the results 

more results 
wanted? 

end 

no 

yes 

no 

1 

2 

3 

4 
5 

6 

7 

8 

9 

Figure 3.7. Architecture conformance using the proposed heuristics
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It is worth noting that the proposed conformance process is not a fully automatic
procedure, as expected in the case of architecture conformance. Particularly, the final
word on when the process should stop depends on the architect’s judgment, based
on his evaluation on whether it is relevant to fix the already detected violations and
whether smaller precision rates can be tolerated. Moreover, the process depends on a
constant that defines the minimal number of warnings that are worthwhile to evaluate
in a given iteration.

Finally, the process depends on the initial threshold values used by each heuristic
and on a procedure to adjust such thresholds before a new iteration, in order to
make them less rigid. Figure 3.8 presents the proposed initial threshold values and
the thresholds adjustment procedure, for each heuristic. Basically, the initial values
represent very rigid thresholds. For example, for absences, we are recommending
to start with a scattering rate of 95% and an insertion rate of 95%. Regarding the
adjustment procedure, initially the insertion threshold is decremented in intervals of
5%, starting at 95% and finishing at 35%. When this lower bound is reached, the
scattering rate is decremented by 5% and the insertion rate is reset to 95%.

3.8 Final Remarks

Architectural deviations are a serious threat to the long term survival of software
systems [Hochstein and Lindvall, 2005, Garcia et al., 2009]. The reason is that the
accumulation of architectural violations in the source code can demand a lot of effort
even when dealing with simple code changes [Macia et al., 2012]. On the other hand,
the application of current techniques for architectural conformance checking requires
a considerable effort [Knodel et al., 2008, Terra and Valente, 2009]. For instance:
(i) reflexion models may require successive refinements of the high-level model in order
to adequately express the full spectrum of absences and divergences that may be present
in a large system; and (ii) domain-specific languages require a detailed definition of
constraints among the classes of a system.

To address this shortcoming, we describe an approach that combines static
and historical source code analysis techniques to provide an alternative technique for
architecture conformance. The proposed approach includes four heuristics to discover
suspicious dependencies in the source code, i.e., dependencies that may denote absences
(missing expected dependencies) or divergences (existing unwanted dependencies).
Furthermore, the proposed approach includes a technique to report the warnings sorted
by their potential to denote true violations. To automate the violations detection
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// INITIAL_THRESHOLDS:
1 Asca = 0.95;
2 Ains = 0.95;

// ADJUST():
3 if Ains > 0.35 then
4 Ains = Ains - 0.05;
5 else
6 Asca = Asca - 0.05;
7 Ains = 0.95;
8 end
(a) Heuristic for Absences thresholds

// INITIAL_THRESHOLDS:
1 Dsca = 0.05;
2 Ddel = 0.95;

// ADJUST():
3 if Ddel > 0.35 then
4 Ddel = Ddel - 0.05;
5 else
6 Dsca = Dsca + 0.05;
7 Ddel = 0.95;
8 end
(b) Heuristics #1 and #2 thresholds
(for divergences)

// INITIAL_THRESHOLDS:
1 Ddir = 0.45;

// ADJUST():
2 if Ddir > 0.0 then
3 Ddir = Ddir - 0.05;
4 end
(c) Heuristic #3 threshold (for
divergences)

Figure 3.8. Initial thresholds values and thresholds adjustment procedures for
each heuristic

triggering, we implemented a prototype tool, called ArchLint, that supports the four
heuristics for detecting architectural violations and the ranking strategy.

In the next chapter, we conduct an evaluation of our approach by reporting and
discussing results on its usage in four real-world systems. We also summarize our
main findings and the lessons learned after designing and evaluating the heuristics-
based approach.



Chapter 4

Evaluation

This chapter is organized as follows. Section 4.1 and Section 4.2 describe two studies
on using our approach to evaluate the architecture of two proprietary information
systems. Section 4.3 and Section 4.4 present a study that evaluates the architecture of
two open-source systems. Next, Section 4.5 discusses the main findings of our work.
Finally, Section 4.7 concludes the chapter with a general discussion.

4.1 First Study: SGA System

To start evaluating our approach, we conducted a first study using a real-world
information system. Our central goal is to perform a first experiment with the
conformance process described in Section 3.7. Specially, in this section we report
the number of iterations required by this process, the precision achieved after each
iteration, and the effectiveness of the strategy proposed to rank the warnings raised by
a given heuristic.

4.1.1 Study Setup

In this first study we followed the architecture conformance process defined in
Section 3.7 to detect violations in the architecture of an EJB-based information
system used by a major Brazilian university, which for confidentiality reasons we will
just call SGA. The SGA system automates many administrative activities, including
functionalities for human resource management, finance and accounting management,
and material management, among others. In the study, we considered 7,692 revisions
(all available revisions), stored in a svn repository, from March, 2009 to June,
2013. After parsing these revisions, ArchLint—our prototype tool—generated a

49
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dependency model with more than 147 million relations, requiring 68 GB of storage
in a relational database. All extracted versions were considered for computing the
functions DepInsRate and DepDelRate, described in Sections 3.2 and 3.3. The last
revision considered in the study has 1,864 classes and interfaces, organized in 100
packages, comprising around 273 KLOC.

The SGA system follows a Model-View-Controller (MVC) architecture. The
Model layer has three main modules: domain, persistence, and service. The domain

module handles business objects, such as Students, Professors, etc. The persistence

module provides database transactional methods, such as insert, update, delete, etc.,
that are used to persist business objects in a relational database. The service module
handles the state of the domain objects according to the workflow and business rules
required by the information system.

The V iew layer is implemented in JavaServer Pages and uses JavaServer Faces
components. Basically, this layer provides a way to interact with the system, receiving
and displaying results of the requests made by the users.

The Controller layer provides a bridge between user interface and business-
related components, transferring and adapting the user inputs.

We initially asked SGA’s senior architect to define the system’s high-level
component model. After a brief explanation on the purpose and characteristics of
this model, the architect suggested the following components:

• ManagedBean: bridge between user interface and business-related components.

• IService: facade for the service layer.

• ServiceLayer: core business process automated by the system.

• IPersistence: facade for the persistence layer.

• PersistenceLayer: implementation of persistence.

• BusinessEntity: domain types (e.g., Professor, Student, etc.).

Table 4.1 shows the number of packages and classes in the high-level components
defined by the SGA’s architect. As can be observed, the proposed components are
coarse-grained structures, ranging from components with 15 packages and 286 classes
(ManagedBean) to components with 17 packages and 330 classes (BusinessEntity).
The table also shows the regular expressions proposed by the architect to define the
packages in each component. We can observe that most expressions are simple, usually
selecting packages with common names or prefixes.
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Table 4.1. High-level components in the SGA system

Component Packages Classes Regular Expression
ManagedBean 15 286 br.sga*.managedbeans*
IService 17 312 br.sga*.ejb.facade*
ServiceLayer 17 312 br.sga*.ejb.local*
IPersistence 17 313 br.sga*.dao* <excludes> br.sga*.dao.jpa*
PersistenceLayer 17 311 br.sga*.dao.jpa*
BusinessEntity 17 330 br.sga*.domain*

Using as input the regular expressions specifying the high-level SGA components,
we executed ArchLint multiple times, as prescribed by the conformance process
described in Section 3.7. Particularly, for each heuristic, we considered the initial
thresholds and the thresholds adjustment procedure suggested in Figure 3.8. Moreover,
SGA’s architect was only requested to evaluate the warnings generated by iterations
that produce at least 10 new warnings (MIN_RESULTS constant). When this happened,
we asked the architect to carefully examine the new warnings and to classify them as
true or false positives. Since the architect has a complete domain of SGA’s architecture
and implementation, he is the right expert to play an oracle role in our study. We
did not measure recall because it would require finding the whole set of missing or
undesirable dependencies, which in practice requires a detailed and complete inspection
in the source code, which is certainly a hard task considering the size of the SGA system.

To evaluate the strategy used to rank the warnings generated by a given iteration,
we relied on a discounting cumulative function, often used to evaluate web search
engines and other information retrieval systems [Baeza-Yates and Ribeiro-Neto, 2011].
This function progressively reduces the value of a document—a warning, in our case—
as its position in the rank increases. Basically, the value of a warning is divided by the
log of its rank position, as follows:

DCG = rel1 +

p∑
i=2

rel i
log2(i)

where p is the number of warnings generated by the heuristic and rel is the relevance
of a warning. In our particular case, this relevance is a binary value: true positive
warnings have relevance value equal to 1; false positive warnings have a relevance value
of zero.

More specifically, we report the effectiveness of the ranking strategy using a
normalized discounted cumulative gain (nDCG) function, as follows:
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nDCG =
DCG

IDCG

where IDCG is the best possible value for the DCG function, i.e., the value generated
by a perfect ranking strategy, considering a given list of warnings. Therefore, nDCG

values range from 0.0 to 1.0, where 1.0 is the value produced by a perfect ranking
algorithm.

4.1.2 Results

In this section, we present the results achieved after following the proposed conformance
process to detect absences (Section 4.1.2.1) and divergences (Sections 4.1.2.2, 4.1.2.3,
and 4.1.2.4) in the architecture of the SGA system.

4.1.2.1 Results for Absences

Table 4.2 presents the results achieved by each iteration of the conformance process,
when it was used to provide warnings for absences. For each iteration, the table
presents the following data: (a) the thresholds required by the heuristic for detecting
absences; (b) the number of warnings produced in the iteration, including the number
of new warnings and the number of warnings evaluated by the architect, if any; (c)
the precision achieved by the current iteration and the overall precision until this
execution, i.e., considering the warnings evaluated in the current iteration and also
in previous iterations. Precision is defined as usual, by dividing the number of true
warnings by the total number of warnings. For the sake of clarity, we do not show
data on thresholds that did not produce warnings or that produced exactly the same
warnings as previous iterations. For example, the first execution was performed with
Asca = 0.95 and Ains = 0.95. These thresholds did not generate warnings and
therefore are not presented in Table 4.2. The same happened with the next two
tested thresholds, i.e., (0.95; 0.90) and (0.95; 0.85). The first selection to generate
warnings was (0.95; 0.80), which generated three (new) warnings. However, since we
configured the process to just require the architect’s evaluation when a minimal of ten
new warnings are generated by an iteration, these initial warnings were not presented
to the architect. In the second iteration, 26 warnings were produced in total. From
these warnings, 23 warnings are new and three warnings correspond exactly to the
warnings generated by the first iteration. Therefore, the 26 warnings were showed and
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discussed with the architect, for classification as true or false positives. In this case, a
precision of 100% was achieved.

Table 4.2. Detecting absences in the SGA system

Iteration Asca;Ains
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.95; 0.80 3 3 — — — —
2 0.95; 0.55 26 23 26 100.0% 100.0% 1.00
3 0.95; 0.40 42 16 16 87.5% 95.2% 0.94
4 0.95; 0.35 46 4 — — — —
5 0.90; 0.55 52 26 30 83.3% 90.3% 0.99
6 0.90; 0.50 73 21 21 95.2% 91.4% 0.98
7 0.85; 0.50 108 35 35 74.3% 86.7% 0.90

As can be observed in Table 4.2, we decided to stop the process after seven
iterations, including iterations #1 and #4 that did not generate enough warnings for
evaluation. In the remaining five iterations, the architect evaluated 128 warnings, with
an overall precision of 86.7%. In Table 4.2, we can also observe a downward tendency in
the precision after each iteration. For example, in iteration #2 we achieved a precision
of 100% and in the last iteration the precision was 74.3%. Finally, by evaluating the
nDCG results, we can conclude that the criteria used to rank the warnings generated
by a given iteration was quite effective. As in the case of the precision, the nDCG
values in Table 4.2 present a tendency to decrease after each iteration. However, in
the last iteration the ranking strategy achieved 90% of the effectiveness of a perfect
ranking algorithm.

We finished with seven iterations because the architect considered that the true
warnings detected by such iterations should be first addressed by the maintenance
team before continuing with the conformance process.

Example #1: As an example of a true warning (detected in iteration #1), we can
mention the following one:1

Component: IService

Class: br.sga.doc.ejb.facade.DictionaryService

Missing Dependency: javax.ejb.Remote ClassAnnotation

DepScaRate;DepInsRate: 0.990; 0.800

1To improve the thesis’s comprehension, we translated the class names from Portuguese to English.
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In the SGA system, the architect explained that interfaces in the IService

must receive a Remote annotation, which is an EJB annotation used to mark a remote
business interface for a session bean. In fact, 99% of the interfaces in IService

have this annotation (DepScaRate). Moreover, 80% of the interfaces originally
created without this annotation where later maintained to include the annotation
(DepInsRate). The lack of this annotation does not impact the behavior of the system
in its current version because the classes implementing the interfaces missing the
annotation are used only by local clients. However, according to their specification,
they should also support remote accesses.

Example #2: As an example of a false warning, we can mention the following one
(detected in iteration #7):

Component: BusinessEntity

Class: br.sga.core.domain.FederatedUnit

Missing Dependency: br.sga.core.domain.AuditInfo Inheritance

DepScaRate;DepInsRate: 0.885; 0.524

The SGA system has an internal audit service, used to log changes in classes
storing highly sensitive data, such as personal info. The classes subjected to this
service must inherit from a special class, called AuditInfo. Particularly, in the
BusinessEntity component, 88.5% of the classes use this service (DepScaRate).
Moreover, more than a half of the classes in BusinessEntity were changed after their
initial creation to inherit from AuditInfo (DepInsRate) because the audit service was
introduced later in the system. For this reason, the heuristic incorrectly inferred that
all classes in BusinessEntity must inherit from AuditInfo. However, there are classes
that by their own nature do not need this service, such as FederatedUnit, which is a
class that stores information about the Brazilian States (i.e., data that rarely changes
and therefore does not need an audit service, according to SGA’s architect).

4.1.2.2 Results for Divergences - Heuristic #1

Table 4.3 shows the results achieved after each iteration of the conformance process,
when configured to provide warnings using the first heuristic for divergences. As can
be observed, we performed five iterations, but only in the last two the evaluation of
the architect was required. We asked the architect to evaluate 92 warnings, with a
precision of 100%. We finish the process because the architect considered this number
of true divergences worth to be handled, before continuing to search for new warnings.
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Table 4.3. Detecting divergences in the SGA system using Heuristic #1

Iteration Dsca;Ddel
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.05; 0.85 1 1 — — — —
2 0.05; 0.75 4 3 — — — —
3 0.05; 0.50 5 1 — — — —
4 0.10; 0.60 10 6 11 100% 100% 1.00
5 0.10; 0.30 92 81 81 100% 100% 1.00

Example #3: As an example of a true warning (detected in iteration #2), we can
mention the following one:

Component: PersistenceLayer

Class: br.sga.core.dao.jpa.PRSystDAO

Unauthorized dependency: br.sga.ejb.facade.PersonFacade

DepScaRate;DepDelRate: 0.012; 0.750

In this case, a DAO class in the PersistenceLayer has a dependency with a
class in the SGA’s facade, which is not allowed by the architecture. In fact, less
than 1.5% of the DAOs establish a dependency with the IService class (DepScaRate).
Moreover, in the past, 75% of the classes that established a dependency like that in a
given version were later refactored to remove the dependency (DepDelRate). Finally,
the br.sga.ejb.facade package has a well-defined heavy-user in the system, which
is the ManagedBean component. In fact, 73.4% of the dependencies to this package
are established by classes located in ManagedBean. Therefore, these evidences when
combined are responsible for this true divergence. In fact, the architect commented
that this divergence represents a back-call, because a lower layer (PersistenceLayer)
is using a service from an upper module (br.sga.ejb.facade).

4.1.2.3 Results for Divergences - Heuristic #2

Table 4.4 shows the results achieved by the second heuristic for divergences. In six out
of nine iterations, the evaluation of the architect was required. In total, we asked
the architect to evaluate 325 warnings, with an overall precision of 34.2%, which
corresponds to the lowest precision in the conformance process. We finish the process
because the architect considered this precision too low, specially the precision of the last
iteration, which was 20.3%. In summary, after nine iterations, the architect considered
the process not productive anymore, demanding the evaluation of many false positives
per true warning discovered.
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Table 4.4. Detecting divergences in the SGA system using Heuristic #2

Iteration Dsca;Ddel
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.05; 0.85 5 5 — — — —
2 0.05; 0.80 12 7 — — — —
3 0.05; 0.70 25 13 25 60.0% 60.0% 0.75
4 0.05; 0.65 27 2 — — — —
5 0.05; 0.60 58 31 33 27.3% 41.4% 0.71
6 0.05; 0.55 88 30 30 60.0% 47.7% 0.76
7 0.05; 0.50 136 48 48 29.2% 41.2% 0.44
8 0.05; 0.45 172 36 36 66.7% 46.5% 0.92
9 0.05; 0.40 325 153 153 20.3% 34.2% 0.51

Despite the lower precision, by analyzing the nDCG values in Table 4.4, it is
possible to observe that the strategy to rank the warnings generated by the iterations
was partially effective. In the last five iterations, for example, we achieved an average
precision of 40.7% with the nDCG values ranging from 0.44 to 0.92, with an average
value of 0.68. In other words, the lower precision was compensated by a tendency to
present the true warnings in the top ranked results.

Example #4: As an example of a false warning (detected in iteration #1), we can
mention the following one:

Component: ManagedBean

Class: br.sga.web.managedbeans.MBEducLevel

Unauthorized dependency: br.sga.ejb.facade.EducLevelFacade

AttributeClass

DepScaRate;DepDelRate: 0.003; 0.888

This particular false warning is due to two facts. First, among the 286 classes
in ManagedBean, only a single class references a particular class in the SGA’s facade,
called br.sga.ejb.facade.EducLevelFacade (DepScaRate = 0.003). Second, in the
past, a common refactoring in SGA was to remove the dependencies to this class coming
from ManagedBean. In fact, 88.8% of the classes that once had this dependency were
later refactored to remove it (DepDelRate). Despite these two evidences, the warning
in this case is false, according to the architect. He explained that EducLevelFacade
is a specific class in the system, responsible for very specific scholar degrees. However,
in the past this class was also responsible for regular scholar degrees and at a certain
point in the system’s evolution a design change was made towards creating a new class
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to represent such degrees. Despite that, EducLevelFacade remained in the system,
but it is used only for very specific degrees. In summary, the refactoring in the system
responsible for the high Dependency Deletion Rate was motivated by a design decision
not related to removing architectural violations.

4.1.2.4 Results for Divergences - Heuristic #3

Table 4.5 shows the results achieved by the third heuristic for divergences. In this case,
as defined in Figure 3.8, we started searching for cycles where 45% of the dependencies
are in one direction and 55% are in the reverse one, i.e., Ddir = 0.45. We found no
pair of components attending this precondition. The same happened when we reduced
Ddir until 0.20. However, when we defined Ddir = 0.15, 75 warnings were generated
for the first time and they were all ranked as true positives. Finally, in the next three
iterations, no new warning has been produced.

Table 4.5. Detecting divergences in the SGA system using Heuristic #3

Iteration Ddir
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.15 75 75 75 100% 100% 1.00
2 0.10 75 0 — — — —
3 0.05 75 0 — — — —
4 0.00 75 0 — — — —

Example #5: By analyzing the results with SGA’s architect, we discovered that
all 75 warnings are between the components PersistenceLayer and ServiceLayer.
Specifically, there are 320 dependencies from ServiceLayer to PersistenceLayer

and 75 (unauthorized) dependencies in the reverse direction, which represents a
DepDirWeight equal to 0.189 (75 / (320 + 75)). For this reason, the warnings were
only produced when we tested a minimal threshold of 15% to classify dependencies
in the “wrong direction” as divergences. Moreover, exactly the same warnings were
generated again when this threshold was reduced until zero.

4.1.2.5 Overall Results for Divergences

Table 4.6 presents the precision achieved by our approach for divergences, considering
the warnings evaluated for the three heuristics. As can be observed, both heuristic #
1 and heuristic #3 achieved 100% of precision, and heuristic #2 achieved a precision
of 34.2%. Considering the results of all heuristics, we generated 278 true divergences
and 214 false warnings in nine iterations, with an overall precision of 56.5%.
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Table 4.6. Precision considering the warnings evaluated for three heuristics for
divergences

Heuristic #1 Heuristic #2 Heuristic #3 Total
Iterations 2 6 1 9
Warnings 92 325 75 492
True Positives 92 111 75 278
False Positives 0 214 0 214
Precision 100% 34.2% 100% 56.5%

4.1.3 Comparison with Reflexion Models

This section compares our results with reflexion models (RM) [Murphy et al., 2001b,
Murphy et al., 1995], which is a well-known and lightweight approach for architecture
conformance. To make this comparison, we calculated a reflexion model for the
SGA system, reusing the high-level model used as input by our approach. As
illustrated in Figure 4.1, we had to enrich our initial model in two directions.
First, we defined six extra components, to denote external components used by the
SGA implementation, including frameworks for presentation (JavaServer Faces), for
communication (Servlets), and for persistence (Java Persistence API and SQL). Second,
we included 25 relations (edges) between the defined components. On the other hand,
when using our approach, external frameworks and relations between components are
automatically inferred by the considered heuristics.

Using the enriched high-level model, we calculated a reflexion model, i.e., a model
that highlights divergences (dependencies that are not expected by the architect) and
absences (dependencies that are expected but not found).

Figure 4.2(a) compares the results for divergences achieved by RM and by our
approach. As mentioned in Section 4.1.2, the proposed heuristics detected 254 true
and unique warnings in the SGA system. On the other hand, RM was able to detect
75 divergences. For example, RM missed 57 divergences between ManagedBean and
JavaIO, two divergences between IService and EJB, and 26 divergences between
BusinessEntity and JPA. In fact, ManagedBean establishes a dependency with JavaIO,
but with the wrong class in this component. Specifically, an architectural rule states
that ManagedBean can only establish dependencies with a single class in JavaIO,
called IOException. Despite this, there are 57 dependencies with other JavaIO

classes, such as BufferedReader and File. To detect these divergences, the high-
level model used by the RM technique must be further refined, by creating two nested
components in JavaIO, one component with only the IOException class and another
one with File, FileReader, BufferedReader, FileOutputStream, and OutputStream.
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Figure 4.1. Enriched high-level model for the SGA system

After this modification, we must update the dependency from ManagedBean to
reach just the IOException subcomponent. In fact, this frequent need to refine
reflexion models motivated the extension of the original proposal with hierarchical
modules [Koschke and Simon, 2003].
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Figure 4.2. Absences and divergences detected by RM and the proposed
heuristics

Figure 4.2(b) compares the results for absences achieved by RM and by our
approach. As reported in Section 4.1.2, the proposed heuristics detected 111 true
absences in the SGA system. On the other hand, RM missed all of them. To
explain the reason for this massive failure in detecting absences, we will consider
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the components PersistenceLayer and JPA. As illustrated in Figure 4.1, the high-
level model prescribes that must exist a dependency from PersistenceLayer to JPA.
However, PersistenceLayer is a coarse-grained component—with 311 classes. For
this reason, a single class that relies on JPA is sufficient to hide all eventual absences
in the remaining classes of the component. Of course, it is possible to refine the high-
level model by creating a nested component in PersistenceLayer with exactly the
classes that must depend on JPA and to establish an edge between each of such classes
and JPA. However, the proliferation of nested components increases complexity and
contrasts with the lightweight profile normally associated with RM-based techniques.

Finally, it is important to state that RM is a precise technique, assuming the
relations defined by the architect reflect the idealized architecture. Therefore, the
technique does not generate false warnings. On the other hand, for the 278 true
divergence warnings raised by the proposed heuristics, there were also 214 false
warnings (precision equals 56.5%).

4.1.4 Historical Analysis

In this section, we evaluate how the proposed heuristics perform in different stages of
the evolution of the SGA system. More specifically, we performed again the heuristics
that depend on historical information, i.e., heuristic for absence and heuristics #1
and #2 for divergences, but considering a limited number of versions. In each execution,
we discarded the versions of the first, second, third, and fourth years, respectively.
Moreover, we reused the same thresholds from the first iteration of the process followed
by the SGA architect when validating the results using the complete dataset. For
example, when computing the heuristic for absence, we considered Asca = 0.95 and
Ains = 0.55, which are exactly the first thresholds evaluated by the architect in the
original study (see Table 4.2). We then checked whether each violation detected using
the complete dataset is also detected when the first n initial years are discarded (1 ≤
n ≤ 4).

Table 4.7 reports the true warnings detected in each time frame. Considering
the complete dataset, the heuristic for absences detected 26 violations, and the
heuristics #1 and #2 for divergences detected 11 and 15 violations, respectively. When
we discard the first-year versions, there is a major reduction in the number of absences
(from 26 violations to three violations) and in the number of divergences detected by
heuristic #2 (from 15 violations to two violations). On the other hand, the number of
violations detected by heuristic #1 remains exactly the same when considering the full
dataset (11 violations).
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Table 4.7. Historical analysis results

Full dataset Dataset discarding
1st yr 2nd yr 3rd yr 4th yr

Absences 26 3 3 3 0
Divergence - Heuristic #1 11 11 7 7 0
Divergence - Heuristic #2 15 2 2 2 0

To explain these results, we first characterize the refactorings that have an impact
in the proposed heuristics. The heuristic for absences monitors a refactoring that
inserts a missing dependency in the target class, which we will refer to Insert Missing
Dependency refactoring. In the case of divergences, the heuristics monitor a refactoring
that removes an undesirable dependency from a target class, which we will refer to
Remove Undesirable Dependency refactoring. Figure 4.3 reports the distribution of
these refactorings in our dataset, in four years. We can observe that both refactorings
happened most of the times in the first year of SGA’s evolution. For example, 53% of
the Insert Missing Dependency refactorings were performed in the first year. Regarding
the Remove Undesirable Dependency, we have that 56% (for the ones associated to
heuristic #1) and 46% (for the ones associated to heuristic #2) happened in the first
year. Therefore, when we removed the commits collected in the first year, we also
removed most of the refactorings responsible for triggering the warnings of architectural
violations, as considered by the three heuristics that depend on historical data. In the
case of the heuristic for absence and the heuristic #2 for divergences, the refactorings
performed in the remaining years were not sufficient to attend the respective thresholds
(Dsca = 0.05 and Ddel = 0.70), which are very rigid. On the other hand, in the case
of the heuristic #1 for divergences, they were still sufficient to trigger the same 11
violations when using the full dataset. The central reason in this case is the fact that
the computation of this heuristic uses flexible thresholds (Dsca = 0.10 and Ddel = 0.60).
Finally, in all cases, after removing four years of revisions, we were not able to detect
violations anymore.

Clearly, it is not possible to generalize the results of this subsection to other
systems. However, in the specific case of the SGA system, they show that most
refactorings the proposed heuristics depend on happened in the first year of the system’s
evolution. Therefore, we can extrapolate that at this year the development team was
not completely aware of SGA’s planned architecture. For that reason, many violations
were introduced but also fixed, as the architecture quickly became clearer to the initial
team of developers. Finally, the results reported in this historical analysis reinforce the
importance of the thresholds when computing the heuristics. For example, heuristic #1
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for divergences was not deeply impacted by removing the commits of the first year due
to its evaluation with flexible thresholds.

1st year 2nd year 3rd year 4th year

Insert Missing Dependency
Remove Undesirable Dependency (Heuristic #1)
Remove Undesirable Dependency (Heuristic #2)

0.
0
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Figure 4.3. Distribution of the refactoring operations by year

4.2 Second Study: M2M System

In this section, we report the application of our approach in a real-world proprietary
system, which we are just calling M2M, for confidentiality reasons.

4.2.1 Study Setup

M2M is an ERP management system designed for use by Brazilian government
institutions. The system manages the administrative process of acquisition and
distribution of products and services. The system also documents the entire process
workflow and includes other features such as integration with governmental systems,
reports, etc. Moreover, M2M integrates Brazilian government systems, which allows
automatic loading of information of these systems, and assists in resource management,
settlement expenses, and control electronic auctions.

In this study, we considered 61,785 revisions available in the system’s control
version repository (all available revisions), from November, 2010 to October, 2013.
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The last revision considered in the study has 4,999 classes and interfaces, organized in
485 packages, comprising 610 KLOC. After parsing all revisions, the dependency model
generated by our approach has 271.5 million relations, whose relational database has
107 GB.

Similarly to SGA, we asked M2M’s architect to define the system’s high-level
component model. Table 4.8 presents the components suggested by the architect and
in the high-level components the regular expressions proposed by the architect that
define the classes in each component, besides the respective number of classes. We
can observe that the regular expressions in M2M maps classes to components, and
not packages to components as occur in the SGA system. The main reason is that
classes associated to different components may be located in the same package. As
an example, classes from components PersistenceLayer and IPersistenceLayer are
located in the same package, called br.m2m.arq.dao.contract. Furthermore, the size
of the proposed components ranges from nine classes (component Security) to 1,143
classes (component BusinessEntity).

Table 4.8. High-level components in the M2M system

Component #Classes Regular Expression
PersistenceLayer 173 br.m2m.*Impl
IPersistenceLayer 398 br.m2m.*.dao.*DAO <excludes> br.m2m.*Impl
BusinessEntity 1,143 br.m2m.*DTO <or> br.m2m.*.domain.*
ExceptionHandler 12 br.m2m.*Exception
Timer 58 br.m2m.*.timers.* <or> br.m2m.*.Timer*
Security 9 br.m2m.*.security.*
Action 1,056 br.m2m.*Action
Form 243 br.m2m.*Form
WEBController 1,048 br.m2m.*MBean <or> br.m2m.*.jsf.*

<or> br.m2m.*Servlet <or> br.m2m.*.struts.*
Report 17 br.m2m.*.Rep* <or> br.m2m.*.Graphic*
IService 16 br.m2m*.interfaces.*
ServiceLayer 656 br.m2m.*.Processor* <or> br.m2m.*.business.*
Util 170 br.m2m.*Utils <or> br.m2m.*.util.*

In practice, the regular expressions in Table 4.8 were used as input to the
heuristics. Each heuristic was executed several times and the architect was only
requested to evaluate the warnings raised by the iterations that have produced at
least 10 new warnings. In this case, the architect carefully examined the warnings and
classified them as true or false positives.
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4.2.2 Results for the M2M system

Table 4.9 summarizes the precision achieved by the proposed heuristics in M2M. In
short, we achieved an overall precision ranging from 18.5% (heuristic #2 to detect
divergences) to 82.1% (the heuristic to detect absences). Nevertheless, heuristic #1 did
not indicate any divergence in M2M. Considering the mean precision of the iterations,
we achieved results ranging from 41.7% to 81.5%.2 Moreover, to discover the violations
we executed seven iterations, raising 279 warnings with an overall precision of 53.8%.
Section 4.2.3 presents a detailed description of the warnings detected by each heuristic.

Table 4.9. Precision considering the warnings raised in M2M system

Iterations Warnings Precision
Mean Overall

Absences 2 112 81.5% 82.1%
Divergence - Heuristic #1 0 0 — —
Divergence - Heuristic #2 3 119 41.7% 18.5%
Divergence - Heuristic #3 2 48 63.9% 75.0%
All Heuristics 7 279 62.4% 53.8%

During the evaluation, the architect commented that the detected violations are,
in fact, due to some relevant architectural constraints in M2M, as follows:

• All classes in PersistenceLayer must depend on class org.hibernate.Query

(35 absences detected).

• Only classes in IPersistenceLayer must depend on class
org.hibernate.Session (three divergences detected by heuristic #2).

• Classes in ServiceLayer cannot depend on class
java.net.UnknownHostException as a CaughtException (four divergences
detected by heuristic #2).

• Classes in BusinessEntity cannot depend on classes located in
PersistenceLayer (four divergences detected by heuristic #3).

• Only classes in WEBController can depend on classes located in WEBController

(18 divergences detected by heuristic #3).

• Classes in PersistenceLayer cannot depend on classes located in ServiceLayer

(three divergences detected by heuristic #3).
2Mean precision is the average precision of the iterations evaluated by the architect, whereas

Overall precision is the total number of true warnings by the total number of warnings.
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Therefore, we argue that the proposed heuristics are able to detect violations
of well-known architectural patterns and rules without their explicit formalization, as
required by other prescriptive architecture conformance approaches.

4.2.3 M2M Conformance Process

In this section, we show the results achieved after each iteration when detecting
architectural violations in the M2M system.

Results for Absences

Table 4.10 presents the results achieved by each iteration when detecting
absences. As can be observed, two iterations are performed, achieving a precision
ranging from 77.8% to 82.1%. In total, 112 warnings are detected with an overall
precision of 82.1%. In Table 4.10 we can also observe that the criteria used to rank
the warnings was quite effective, producing nDCG results higher than 0.97.

Table 4.10. Detecting absences in the M2M system

Iteration Ddir
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.70; 0.55 45 45 45 77.8% 77.8% 0.97
2 0.60; 0.55 112 67 67 85.1% 82.1% 0.98

In the M2M system we performed only two iterations to detecting absences
because the architect established a limit of around 100 warnings to evaluate. He
considered that such true warnings should be first addressed by the development team,
before continue looking for new warnings.

Results for Divergences - Heuristic #1

As reported before, the Heuristic #1 for detecting divergences did not report
warnings in the M2M system.

Results for Divergences - Heuristic #2

Table 4.11 shows the results achieved by the second heuristic for divergences.
In this case, we performed nine iterations, with three iterations including evaluation
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by the architect. As can be observed, we achieved a precision ranging from 18.5% to
90.0%. In summary, we detected 119 warnings with an overall precision of 18.5%.

Table 4.11. Detecting divergences in the M2M system using Heuristic #2

Iteration Asca;Ains
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.05;0.90 1 1 0 — — —
2 0.05;0.85 3 2 0 — — —
3 0.05;0.80 8 5 0 — — —
4 0.05;0.75 10 2 10 90.0% 90.0% 0.96
5 0.05;0.70 14 4 0 — — —
6 0.05;0.65 18 4 0 — — —
7 0.05;0.60 42 24 32 31.3% 45.2% 0.52
8 0.05;0.55 51 9 0 — — —
9 0.05;0.50 119 68 77 3.9% 18.5% 0.50

In Table 4.11, there is an expressive decrease in the precision after each iteration.
For example, in iteration #4 we achieved a precision of 90% and in the iteration #9
(the last iteration) the precision was 18.5%. Similarly, the nDCG values also present
a decrease tendency after each iteration. The smallest result, achieved in the last
iteration, is 50% of the effectiveness of a perfect ranking algorithm.

Results for Divergences - Heuristic #3

Table 4.12 shows the results achieved by the third heuristic for divergences.
In this case, five iterations are performed, with two evaluation steps. As can be
observed, in the first evaluation by the architect (iteration #3) we found 12 warnings,
using Ddir = 0.10, which resulted in a precision of 41.7%. Finally, in the next
evaluation (iteration #5), when we defined Ddir = 0.00, we found 36 warnings with a
precision of 86.6%. In total, we detected 48 warnings with an overall precision of 75.0%.

As can be observed in Table 4.12, despite the precision lower than 50% in the
iteration #3, the nDCG result shows that the proposed ranking strategy was quite
effective.
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Table 4.12. Detecting divergences in the M2M system using Heuristic #3

Iteration Ddir
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.25 3 3 — — — —
2 0.20 5 2 — — — —
3 0.10 12 7 12 41.7% 41.7% 1.0
4 0.05 17 5 — — — —
5 0.00 48 31 36 86.1% 75.0% 0.94

4.3 Third Study: Lucene System

In this section, we report the application of the proposed heuristics in an open-source
system named Lucene.

4.3.1 Study Setup

In this system, our evaluation is fully based on a Reflexion Model (RM) independently
proposed by Bittencourt et al. [Bittencourt, 2012]. We reused the component
specifications from the high-level model (HLM) defined as the input for the proposed
heuristics. Table 4.13 lists the components defined by the Lucene’s HLM.

Table 4.13. High-level components in Lucene

Component Regular Expression
QueryParser org.apache.lucene.queryparser.*
Search org.apache.lucene.search.*
Index org.apache.lucene.index.*
Store org.apache.lucene.store.*
Analysis org.apache.lucene.analysis.* <or> org.apache.lucene.collation.*
Util org.apache.lucene.util.* <or> org.apache.lucene.message.*
Document org.apache.lucene.document.*

Because the HLM was carefully designed for architecture conformance purposes,
we considered the computed reflexion models as a reliable oracle for evaluating the
precision of the heuristics. More specifically, we classify a warning as a true positive
when it is also reported in the reflexion model. In other words, in this third study, we
replaced the architect with a reflexion model. Moreover, we decided by ourselves when
to stop the iterative process followed for each heuristic. Basically, we targeted around
100 warnings per heuristic, stopping when this value was reached.

In the case of absences, the reflexion model did not indicate absences in Lucene
because, in RM, a single class in a component satisfying the prescribed architectural
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rule is sufficient to hide all absences in this component. For instance, the HLM
prescribes that there must exist a dependency from Search to Index. However, Search
is a component with 351 classes and therefore a single class from Search that relies on
Index is sufficient to hide eventual absences in the remaining classes of the component.
Certainly, it is possible to refine the HLM by creating a nested component in Search

with exactly the classes that must depend on Index and establishing an edge between
each of such classes and Index. However, the proliferation of nested components
increases the complexity and contrasts to the lightweight profile normally associated
with RM-based techniques. For this reason, we decided to do not evaluate our approach
for absence detection in Lucene.

To evaluate the heuristics, we checkout 1,959 revisions, from March, 2010 to July,
2012. The last revision considered in the study has 336 KLOC.

4.3.2 Results for the Lucene system

Table 4.14 reports the precision achieved by the heuristics for divergences. The overall
precision was 59.2%. In 16 iterations, our approach raised 446 warnings with a mean
precision at each iteration ranging from 7.0% to 98.5%. Section 4.3.3 presents a detailed
description of the warnings detected by each heuristic.

Table 4.14. Precision considering the warnings raised in Lucene system

Iterations Warnings Precision
Mean Overall

Divergence - Heuristic #1 6 168 49.3% 55.4%
Divergence - Heuristic #2 4 114 7.0% 7.9%
Divergence - Heuristic #3 6 164 98.5% 98.8%
All Heuristics 16 446 51.6% 59.2%

An analysis of the missing divergences—i.e., divergences we missed but that
were detected by the reflexion model—revealed that we missed many divergences
with a high scattering and a low deletion rate. For example, the high-level model
does not define a dependency between components Search and Store. However, 81
dependencies like that are presented in 32% of the classes in Store, which exceeds
by a large margin the thresholds we tested. Moreover, only 6% of such dependencies
were removed along Lucene’s evolution. Stated otherwise, in Lucene, it is common
to observe divergences that are not spatially and historically confined in their source
components. Therefore, we argue that Lucene’s architecture might have evolved during
the time frame considered in our study. As a result, many dependencies that were not
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authorized by the initial high-level model might have turned themselves into a frequent
and enduring property of the system.

For computing recall, we consider as false negatives the violations reported by
the reflexion model but that are not detected by our approach. In this way, reflexion
model detected 312 violations and our approach detected 264 violations. Therefore,
the result for recall is 84.62% (264/312).

4.3.3 Lucene Conformance Process

In this section, we show the results for divergences achieved after each iteration
searching for detecting architectural violations in the Lucene system. The heuristic
for absences did not report warnings in Lucene, as mentioned before.

Results for Divergences - Heuristic #1

Table 4.15 shows the results after each iteration of the conformance process,
when configured to provide warnings using the first heuristic for divergences. As
can be observed, we performed 12 iterations, comparing the warnings raised by our
approach with the violations detected using reflexion models. We achieved a precision
in each iteration ranging from 0.0% to 100.0%. As overall result, we analyzed 168
warnings with a precision of 55.4%.

Table 4.15. Detecting divergences in Lucene using Heuristic #1

Iteration Dsca;Ddel
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.05;0.70 2 2 — — — —
2 0.05;0.65 6 4 — — — —
3 0.05;0.60 10 4 10 60.0% 60.0% 0.67
4 0.05;0.55 17 7 — — — —
5 0.05;0.50 19 2 — — — —
6 0.05;0.40 25 6 15 60.0% 60.0% 1.00
7 0.05;0.30 37 12 12 66.7% 62.2% 0.93
8 0.05;0.25 40 3 — — — —
9 0.05;0.20 70 30 33 9.1% 37.1% 1.00
10 0.10;0.50 50 31 31 0.0% 25.7% 0.00
11 0.10;0.25 74 3 — — — —
12 0.10;0.20 168 64 67 100.0% 55.4% 1.00
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Results for Divergences - Heuristic #2

Table 4.16 shows the results achieved by the second heuristic for divergences.
In this case, we performed nine iterations, with four evaluation steps. In summary,
we achieved a precision in each iteration ranging from 3.1% to 12.5%. In total, we
analyzed 114 warnings with an overall precision of 7.9%.

Table 4.16. Detecting divergences in Lucene using Heuristic #2

Iteration Dsca;Ddel
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.05;0.90 1 1 0 — — —
2 0.05;0.80 3 2 0 — — —
3 0.05;0.75 4 1 0 — — —
4 0.05;0.70 7 3 0 — — —
5 0.05;0.65 24 17 24 12.5% 12.5% 0.27
6 0.05;0.50 56 32 32 3.1% 7.1% 0.26
7 0.05;0.40 59 3 0 — — —
8 0.05;0.35 97 38 41 12.2% 9.3% 0.41
9 0.10;0.75 21 17 17 0.0% 7.9% 0.00

Results for Divergences - Heuristic #3

Table 4.17 shows the results achieved by the third heuristic for divergences. In this
case, we performed seven iterations, with six evaluation steps. As result, we achieved
a precision in each iteration ranging from 90.9% to 100.0%. In total, we analyzed 164
warnings with an overall precision of 98.8%.

Table 4.17. Detecting divergences in Lucene using Heuristic #3

Iteration Ddir
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.30 12 12 12 100.0% 100.0% 1.00
2 0.25 16 4 — — —
3 0.20 34 18 22 90.9% 94.1% 1.00
4 0.15 98 64 64 100.0% 98.0% 1.00
5 0.10 128 30 30 100.0% 98.4% 1.00
6 0.05 142 14 14 100.0% 98.6% 1.00
7 0.00 164 22 22 100.0% 98.8% 1.00
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4.4 Fourth Study: ArgoUML System

Similarly to Section 4.3, in this section we report the application of the proposed
heuristics in an open-source system named ArgoUML.

4.4.1 Study Setup

In this system, similarly to the Lucene system, our evaluation is also fully
based on a Reflexion Model (RM) independently proposed by Bittencourt et
al. [Bittencourt, 2012]. Table 4.18 lists the components defined by the ArgoUML’s
HLM.

Table 4.18. High-level components in ArgoUML

Component Regular Expression
Application org.argouml.application.*
Diagrams org.argouml.uml.diagram.*
Notation org.argouml.notation.*
Explorer org.argouml.ui.explorer.*
CodeGeneration org.argouml.language.*
ReverseEngineering org.argouml.uml.reveng.*
Persistence org.argouml.persistence.*
Profile org.argouml.profile.*
Help org.argouml.help.*
ModuleLoader org.argouml.moduleloader

<or> org.argouml.application.modules
<or> org.argouml.application.api

GUI org.argouml.ui.*
Model org.argouml.model.*
Internationalization org.argouml.i18n.*
TaskManagement org.argouml.taskmgmt.*
Configuration org.argouml.configuration.*
SwingExtensions org.argouml.swingext.*
OCL org.argouml.ocl.*
Critics org.argouml.cognitive.*
JavaCodeGeneration org.argouml.language.java.*

As reported in Section 4.3, the HLM was carefully designed for architecture
conformance purposes, for this reason we considered the computed reflexion models as
a reliable oracle for evaluating the precision of the heuristics. More specifically, in this
fourth study, we replaced the architect with a reflexion model. Moreover, we decided
to stop the iterative process followed for each heuristic when we targeted around 100
warnings per heuristic.
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In the case of absences, the reflexion model also did not indicate absences in
ArgoUML for the same reasons appointed to the Lucene system, i.e., in RM a single
class in a component satisfying the prescribed architectural rule is sufficient to hide all
absences in this component.

To evaluate the heuristics, we checkout 1,959 revisions, from March, 2010 to July,
2012. The last revision considered in the study has 336 KLOC.

4.4.2 Results for the ArgoUML system

Table 4.19 reports the precision achieved by the heuristics for divergences. The overall
precision was 53.3%. In 10 iterations, our approach raised 152 warnings with a mean
precision in the iterations used for each heuristic ranging from 14.8% to 100.0%.
Section 4.4.3 presents a detailed description of the warnings detected by each heuristic.

Table 4.19. Precision considering the warnings raised in ArgoUML system

Iterations Warnings Precision
Mean Overall

Divergence - Heuristic #1 6 105 60.0% 58.1%
Divergence - Heuristic #2 2 31 14.8% 12.9%
Divergence - Heuristic #3 2 16 100.0% 100.0%
All Heuristics 10 152 58.3% 53.3%

Similarly to Lucene system, some divergences were missed by our approach but
they were detected by the reflexion model. We observed that many divergences with
a high scattering and a low deletion rate were missed . For example, in ArgoUML, it
is common to observe divergences that are not spatially and historically confined in
their source components. Therefore, we argue that ArgoUML’s architecture might have
evolved during the time frame considered in our study. As result, many dependencies
that were not authorized by the initial high-level model might have turned themselves
into a frequent and enduring property of the system.

In ArgoUML, recall is computed in the same way as in Lucene, i.e., we consider
as false negatives the violations reported by the reflexion model that are detected by
our approach. In this way, reflexion model detected 148 violations and our approach
detected 81 violations. Therefore, the result for recall is 54.7% (81/148).

4.4.3 ArgoUML Conformance Process

In this section, we show the results achieved after each iteration when searching for
architectural violations in the ArgoUML system. As stated previously, the heuristic
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for absences did not report warnings in ArgoUML system.

Results for Divergences - Heuristic #1

Table 4.20 shows the results achieved after each iteration of the conformance
process using the Heuristic #1 for divergences. As can be observed, we performed 24
iterations achieving a precision ranging from 19.0% to 100.0%. As overall result, we
analyzed 105 warnings with a precision of 58.1%.

Table 4.20. Detecting divergences in ArgoUML using Heuristic #1

Iteration Dsca;Ddel
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.05;0.90 2 2 — — — —
2 0.05;0.80 5 3 — — — —
3 0.05;0.70 9 4 — — — —
4 0.05;0.60 11 2 11 63.6% 63.6% 0.93
5 0.05;0.50 24 13 13 46.2% 54.2% 0.62
6 0.05;0.30 26 2 — — — —
7 0.05;0.25 29 3 — — — —
8 0.05;0.00 54 25 30 60.0% 57.4% 0.70
9 0.10;0.85 6 4 — — — —
14 0.10;0.80 11 2 — — — —
17 0.10;0.75 14 3 — — — —
18 0.10;0.65 23 5 14 71.4% 60.3% 0.61
19 0.10;0.60 27 2 — — — —
20 0.10;0.50 42 2 — — — —
21 0.10;0.40 59 17 21 19.0% 50.6% 1.00
22 0.10;0.30 63 2 — — — —
23 0.10;0.25 69 3 — — — —
24 0.10;0.20 80 11 16 100.0% 58.1% 1.00

Results for Divergences - Heuristic #2

Table 4.21 presents the results for the second heuristic for divergences. In this
case, we performed seven iterations, with two evaluation steps. As result, we achieved
a precision ranging from 9.5% to 20.0%. In short, we inspect 31 warnings with an
overall precision of 12.9%.
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Table 4.21. Detecting divergences in ArgoUML using Heuristic #2

Iteration Dsca;Ddel
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.05;0.95 2 2 — — — —
2 0.05;0.90 7 5 — — — —
3 0.05;0.85 8 1 — — — —
4 0.05;0.80 10 2 10 20.0% 20.0% 0.47
5 0.05;0.75 13 3 — — — —
6 0.05;0.70 18 5 — — — —
7 0.05;0.65 31 13 21 9.5% 12.9% 0.82

Results for Divergences - Heuristic #3

Table 4.22 reports the results for the third heuristic for divergences. As can be
observed, we performed seven iterations, with two evaluation steps. In total, we found
16 warnings, and they are all ranked as true positives, i.e., with an overall precision of
100.0%.

Table 4.22. Detecting divergences in ArgoUML using Heuristic #3

Iteration Ddir
Warnings Precision nDCGIter. New Eval. Iter. Overall

1 0.30 2 2 — — — —
2 0.25 7 5 — — — —
3 0.20 15 8 15 100.0% 100.0% 1.00
4 0.15 15 0 — — — —
5 0.10 15 0 — — — —
6 0.05 16 1 — — — —
7 0.00 16 0 1 100.0% 100.0% 1.00

4.5 Discussion

In this section, we discuss the main lessons learned in the studies reported in this
chapter:

Are our results good enough?

We detected a relevant number of architectural violations with the proposed
heuristics: 389 violations in the SGA system; 150 violations in the M2M system; and
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264 violations in Lucene. Furthermore, we achieved the following overall precision
rates: 53.8% (M2M), 59.2% (Lucene), and 62.7% (SGA). These precision values
are compatible to the ones normally achieved by static analysis tools, such as
FindBugs [Hovemeyer and Pugh, 2004]. For example, in a previous study, we found
that precision rates greater than 50% are only possible by restricting the analysis to
a small subset of the warnings raised by FindBugs [Araujo et al., 2011]. Clearly, such
tools have different purposes than ArchLint, but our intention here is to show that
developers accept false warnings when using software analysis tools.

According to the architects of the SGA and M2M systems, most warnings
generated by our approach are in fact due to violations in meaningful architectural
constraints. For example, the SGA’s architect commented that a relevant architecture
rule in his system prescribes that “all IService classes must have a Remote annotation”.
The heuristic for absences was able to detect three violations in this rule.

Regarding the false positives generated by the heuristics, we observed that
they can be due to a design or requirement change that implied in a bulk insertion
or deletion of dependencies from a component. For example, this happened in the
SGA system when the audit service (a new requirement) was introduced, adding new
dependencies in many classes. Finally, we also observed that we may miss many true
warnings when the system under evaluation is facing a major erosion process or when
its architecture has evolved. For example, in Lucene we missed many divergences
which are not “minorities” in their components, i.e., the dependencies responsible for
such divergences are not spatially and historically confined in their source components.

How difficult is to set up the required thresholds?

After applying the heuristic-based conformance process three systems, we
concluded that it is not possible to rely on universal thresholds, which could be
reused from system to system, especially in the case of thresholds denoting insertion
and deletion rates. For example, Figures 4.4(a) and 4.4(b) present respectively the
distribution of the scattering (DepScaRate) and the deletion rates (DepDelRate),
regarding the true warnings detected by heuristic #2 for divergences. We can observe
that usually the warnings present very low scattering rates. For example, the 3rd
quartile values for DepScaRate are 2.7% (SGA), 0.7% (M2M), and 1.7% (Lucene). On
the other hand, there are more differences in terms of the deletion rates (DepDelRate).
For example, the median values of DepDelRate are 50% (SGA), 64% (M2M), and 37%
(Lucene). Such differences reveal that the frequency that true architectural violations
are removed varies significantly among the considered systems.
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Figure 4.4. Thresholds distribution in heuristic #2 for divergences

Therefore, the proposed conformance process, by allowing developers to gradually
test and evaluate the required thresholds, demonstrated to be the right strategy to
use the proposed heuristics. First, the process did not require many iterations.
Considering all systems and both absences and divergences, we counted 14, 7, and
16 iterations requiring feedback from the developers in the SGA, M2M, and Lucene
systems, respectively. Second, we normally observed lower precision rates as soon as
new iterations were executed, as expected. For this reason, we claim that the detected
true warnings are not mere coincidences, but the result of spatial and temporal
patterns that characterize architectural violations.

How much overlapping is there in the heuristics for divergences?

In the specific case of divergences, since we have three heuristics, it is possible
for a warning to be raised by more than one heuristic. However, we observed that such
warnings followed different patterns in the three systems, especially in the case of true
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warnings. In the SGA system, as presented in Figure 4.5(a), there is some intersection
between the true warnings raised by the heuristics for divergences, although it is not
relevant. In the M2M system, we have not found true warnings raised by more than
one heuristic, as showed in Figure 4.5(b). Finally, in Lucene, we found an expressive
intersection between heuristics #1 and #3, as showed in Figure 4.5(c). Also, only
in Lucene we found warnings detected simultaneously by the three heuristics. In
summary, our results show that each single heuristic could detect real and unique
violations in at least one of the evaluated systems.
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Figure 4.5. Warnings raised by more than one heuristic for detecting divergences

What are the most common dependency types responsible for violations?

As defined in Section 3, the heuristics for absence and the second heuristic for
divergence consider a violation regarding a specific dependency type. Table 4.23 shows
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the dependency types more common considering the true violations detected by these
two heuristics in the SGA system. As we can observe, the most common dependency
types were due to missing local variable declarations (absences) or due to unauthorized
variable declarations (divergences). In the case of absences, most missing local variables
are related to the implementation of the audit service. In some cases, the classes
subjected to this service must inherit from AuditInfo (as discussed in Example #2,
Section 4.1.2.1). In other cases, the methods requiring auditing must declare a local
variable of type AuditDAO and call a save method from this class. However, the
proposed heuristic for absences detected many classes whose methods do not use the
audit service by declaring this local variable when they were supposed to. Regarding
the divergences detected by heuristic #2, many methods were using a local variable of
an incorrect type to persist data. Specifically, in many cases classes from JPA—a Java
API for persistence—should have been used, but instead the code used local variables of
types supporting direct access to SQL. In the case of absences, we also detected classes
that were not inheriting for example from br.sga.core.domain.AuditInfo and also
classes missing a javax.ejb.Local annotation. Finally, in the case of divergences, we
also detected classes incorrectly using the javax.persistence.OneToMany annotation.

Table 4.23. Most common dependency types in the SGA system

Absence Heuristic #2
LocalVariable 32.8% 42.3%
Inheritance 21.8% 0.0%
DeclaredException 17.6% 0.0%
AnnotationClass 15.1% 13.5%
CaughtException 0.0% 12.6%
AnnotationAttribute 10.0% 19.8%

4.6 Threats to Validity

In the case of SGA and M2M systems, we relied on an architect to design our initial
model and to classify our warnings. Therefore, as any human-made artifact, the model
and the classification are subjected to errors and imprecision. However, we interviewed
a senior architect, with a complete domain of SGA’s and M2M’s architecture and
implementation. Furthermore, one can argue that this architect might be influenced
to design a model favoring our approach. However, we never explained to the architect
the heuristics followed to discover architectural violations.
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In the case of Lucene and ArgoUML, our evaluation is fully based on a Reflexion
Model (RM) independently proposed by Bittencourt et al. [Bittencourt, 2012]. We
reused the component specification from the high-level models defined as the input for
the proposed heuristics. For this reason, it is possible that the Lucene’s and ArgoUML’s
high-level model does not capture some true violations. However, we argue that the
chances are reduced since the models were carefully designed and refined to establish
a benchmark for architecture conformance.

4.7 Final Remarks

In this chapter, we evaluated the architecture of two industrial-strength information
systems, for which we detected 539 architectural violations, with an overall precision of
62.7% and 53.8%. We also evaluated our approach with two open-source systems, for
which we detected 345 architectural violations, achieving an overall precision of 53.3%
and 59.2%.

In conclusion, we claim we were able to provide an alternative and iterative
technique for architecture conformance that does not require successive refinements in
architectural models (as reflexion models) neither requires the extensive specification
of architectural constraints (as domain-specific languages). On the other hand, the
proposed approach can generate false positive warnings, as common in most bug finding
tools based on static analysis.





Chapter 5

Extracting Architectural Patterns

In this chapter, we start by presenting our motivation to perform an exploratory
study on using data mining techniques to reveal architectural patterns (Section 5.1).
Next, Section 5.2 presents an overview of the proposed approach to infer patterns for
detecting absences and divergences, respectively. Section 5.3 presents an evaluation of
the proposed approach in a real system. Section 5.4 presents a comparative discussion
between the approach based on data mining technique and the approach based on
heuristics.

5.1 Motivation

The architecture of a system prescribes the organization of its components, their
relationships, constraints, and the principles that guided its design and evolution
over time. An architectural model is a high-level representation of the software that
documents and transmits the major decisions and principles that should be followed
during its development and evolution.

However, as previously reported, during the development of a software
product, anomalies regarding the proposed architectural model are normally
introduced. In practice, the introduction of architectural violations is very
common [Knodel and Popescu, 2007], and it usually makes more complex subsequent
maintenance tasks since the concrete architecture does not match the planned and
documented architecture anymore [Sarkar et al., 2009a].

In this thesis, we presented in Chapter 3 a set of heuristics for detecting
architectural violations, which are based on our previous experience in the area.
Specifically, these heuristics were designed from abstract scenarios where architectural

81
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violations frequently occur, considering the assumption that architectural violations
are frequently corrected.

However, the proposed heuristics do not cover the entire spectrum of architectural
scenarios where violations might occur. For example, as described before, the
proposed heuristics consider only direct dependencies between classes, modules, and
components. Nevertheless, scenarios based on co-dependency analysis and/or causal
relationships among dependencies are not considered by the proposed technique. Co-
dependency analysis can be used, for example, to assess multiple dependencies that
occur simultaneously. For example, in a particular system using JPA (Java Persistence
API) persistence framework, the classes in the Domain component are mapped to
tables in the database using Entity annotations. Additionally, these classes frequently
also have an annotation Id on an attribute of type Long. Therefore, the absence of
this annotation might denote an architectural anomaly.

As another example, in some systems, classes are instrumented according
to certain contracts to make them able to provide services to other classes. In
the aforementioned hypothetical system, classes in the Domain component are
annotated with Entity to make it possible for a specific class of the JPA framework,
called EntityManager, perform persistence operations in these classes. Thus,
there is a well-know reason for that specific Domain classes to receive an Entity

annotation. By contrast, classes annotated with Entity that are not accessed by
the persistence framework are unnecessarily fulfilling an contract. In the presented
example, the introduction of unnecessary code can lead to problems, such as
performance degradation, unnecessary memory allocation, a decrease in readability
and maintainability of the source code, etc.

It is well-know that data mining-based techniques should be used when you want
to discover how often two or more items from a set occur simultaneously. Furthermore,
it is possible to identify co-occurrence dependencies between these items, allowing to
infer causal relationships in these dependencies. Therefore, this chapter investigates a
data mining based approach that assumes that the inception of architectural violations
in software products is a common event and that some violations are detected and
corrected in future revisions by means of inspections and/or quality assurance activities.
Our ultimate goal is to evaluate whether a data mining based approach would be more
effective than the heuristic-based approach described in Chapter 3.
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5.2 Data Mining Based Approach

This chapter describes the methodology we followed for detecting architectural
violations in object-oriented software systems. The proposed methodology relies
on data mining techniques over historical dependencies between the classes of a
target system. This historical information is retrieved from version control system
repositories. Basically, the idea is to mine structural and historical dependencies
between the classes of the target system.

Figure 5.1 illustrates in details the approach we followed for detecting evidences
of architectural violations. Initially, a Code Extractor component retrieves all source
code versions from the version control system repository. Each revision is parsed by
the VerveineJ parser that extracts the dependencies from the source code. Next, the
extracted dependencies are stored in a relational database. The Architectural Miner
component relies on two types of input on the target system: (a) the dependencies
database and (b) a high-level component specification. In our approach, we assume
that classes are statically organized in modules (packages in the Java terminology)
and modules are logically arranged in coarse–grained structures called components.
The high-level component specification is essentially a mapping from modules to the
defined components. Next, the Architectural Miner populates a Prolog database
describing the structural and historical relations available in the source code. After
that, the Architectural Miner relies on Prolog queries to convert the Prolog database
into a consistent frequent itemset mining dataset. Next, an association rule mining
algorithm is used to detect structural and historical architectural patterns. Finally,
the Violation Detector module relies on such architectural patterns to detect evidences
of architectural violation.

The proposed methodology identifies evidences of architectural violations by
relying on low frequency hypotheses and past refactoring tasks performed on structural
dependencies. The assumption is that dependencies violating architectural patterns are
rare events in the space-time domain, i.e., they appear in a small number of classes and
are eventually corrected during the system evolution. In other words, as in Chapter 3,
this methodology is based on the idea that architectural patterns are frequently followed
and violations represent a small percentage of the cases. For example, if most classes
of a source component access a specific class C and many classes in this component
that did not access C at first were modified to access it afterwards (as observed in the
system history), then we can suppose that there is an architectural pattern prescribing
that classes from the source component must access C.

Our approach is based on a data mining technique called frequent itemset
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Figure 5.1. Data Mining proposed approach

mining [Agrawal and Srikant, 1994], which efficiently finds frequent itemsets in a
transaction dataset, where an itemset is a set of items. The frequent itemset mining
algorithm enumerates itemsets that occur frequently in a dataset. Therefore, this
technique defines the support as the number of occurrences of a subset of items (sub-
itemset). A sub-itemset is considered frequent when its support is greater than a
specified threshold called minimum support. Thus, support counts the number of times
a sub-itemset occurs in the itemsets database.

After the frequent itemsets have been mined, we can compute association
rules [Zaki and Meira Jr., 2011, Agrawal et al., 1993]. From association rules, we
make assumptions that two or more items occur simultaneously or conditionally.
Furthermore, association rules can be used to discover causal relationships among
elements. An association rule is usually expressed as A ⇒ C, where A and C are
itemsets. Each association rule has a confidence, a value that represents the probability
of a database transaction covered by an antecedent term A (pre-condition) be covered
by a consequent term C (consequence).

The investigation reported in this chapter assumes that association rules are
effective to detect violations in architectural patterns. In other words, assuming that
the confidence of the rule (pattern) is very high, as 99% for example, an itemset
containing the antecedent term A but not the consequent term C can be regarded as
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violating the pattern, i.e., it represents a strong evidence of architectural violation.

To calculate frequent itemsets and to generate association rules, we use a FP-
tree-based mining algorithm, called FPGrowth [Zaki and Meira Jr., 2011]. Instead of
generating the complete set of frequent sub-itemsets, this algorithm generates only
relevant itemset candidates. After the frequent itemsets are mined, FPGrowth also
generates association rules.

The remainder of this section is organized as follows: Section 5.2.1 presents the
methodology proposed to detect evidences of absences; Section 5.2.2 describes the
methodology proposed for divergences.

5.2.1 Mining for Absences

As presented in Section 3.2, an absence happens whenever a dependency is defined by
the planned architecture but it does not exist in the source code [Murphy et al., 1995,
Passos et al., 2010].

Similarly to the heuristic-based approach, to detect absences using data mining
techniques, we initially search for patterns of dependencies that frequently occur. Next,
we search for dependencies that violate such patterns and therefore denote minorities at
the level of components. We assume that absences occur in a small percentage of cases,
which are more likely to represent architectural violations. Additionally, we use the
history of versions to mine for evolutionary architectural patterns. More specifically,
we mine for patterns representing dependencies that are introduced in classes originally
created without such dependencies.

The proposed procedure for detecting absences relies on two steps. First, we
identify architectural patterns that frequently occur in classes grouped according to
the component model provided as input. Second, from the classes in each component,
we identify evolutionary architectural patterns. For instance, Figure 5.2 illustrates
an example of absence. In this case, the planned architecture prescribes that classes
located in module DTO must use services provided by a specific class located in JPA

module, such as the Entity class. In this case, an absence is counted for each class
in DTO that does not follow this rule. In the second step of the proposed procedure,
we check how frequently classes in the DTO module that depend on Entity (a class
of the JPA module) in the current version of the system were initially created without
this dependency.

The main idea behind the evolutionary architectural patterns is to reinforce the
violation evidences suggested by the first step. The assumption is that absences are
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Figure 5.2. Example of absence (DTO must use JPA)

frequently detected and fixed, i.e., classes created without a dependency prescribed by
the planned architecture are frequently fixed in future revisions.

To find correlations among the dependencies, it is initially necessary to compute
the frequent itemset mining dataset. For this purpose, we rely on a dataset of Prolog
facts, which describes both the dependencies and the historical information on the
classes of the system under analysis, as follows:

[component(CompId,CompName).]+
[module(ModId,CompId,ModName).]+
[class(ClassId,ModId,ClassName).]+
[dependency(DepId,BaseClassId,TargetClassId,CreatedWith,ExistCurrently,AddAny).]+

The component predicate defines the components informed by the architect
of the system under analysis. The module predicate defines the packages, in Java
terminology, of the system. The class predicate represents a class in the system. The
dependency predicate defines a dependency relation between two classes (BaseClassId

depends on TargetClassId). In this predicate, the attribute CreatedWith informs
whether the dependency was created together with the BaseClassId. The attribute
ExistCurrently informs whether the dependency exists on the last version of the
system, and the attribute AddAny informs if the dependency was detected in some
version of the system. A short example of this Prolog database is presented next:

1: component(5,’domain’).
2: component(12,’jpa’).
3: ...
4: module(10,5,’br.sga.aaa.core.domain’).
5: module(170,12,’javax.persistence’).
6: ...
7: class(531558,10,’Auditing’).
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8: class(540800,10,’Functionality’).
9: class(117,170,’Entity’).
10: ...
11: dependency(21,531558,117,false,false,true).
12: dependency(2004,540800,117,true,true,true).

As can be observed in line 11, the class br.sga.aaa.core.domain.Auditing

(id=531558) was created without a dependency with javax.persistence.Entity

(id=117). Moreover, this dependency also does not exist in the current version
of the system (attribute ExistCurrently = false). Nevertheless, this dependency
was inserted in the past (attribute AddAny = true). The dependency
presented in line 12, between br.sga.aaa.core.domain.Functionality (id=540800) and
javax.persistence.Entity (id=117) was detected in the first revision of the class
br.sga.aaa.core.domain.Functionality in the version control repository (attribute
CreatedWith = true). Moreover, this dependency was preserved over time and it was
also detected in the current version of the system (attribute ExistCurrently = true).

In the first step, each class and its dependencies in the last version under analysis
(attribute ExistCurrently = true) are expressed as a row in the itemset database, as
follows:

BaseComponent(bcomp),BaseModule(bmod),BaseClass(bclass)
[,TargetComponent(tcomp),TargetModule(tmod),TargetClass(tclass)]*

By mining the itemset database using the FPGrowth algorithm, we can find the
frequent sub-itemsets and generate the association rules representing the corresponding
architectural patterns. Basically, these patterns represent dependencies that are
frequently used together. Moreover, the FPGrowth requires the definition of a support
(Adps) and a confidence (Adpc) threshold. For instance, suppose a pattern like that:

{BaseComponent(’domain’)}=>
{TargetClass(’Entity’)}

This pattern states that all classes on the component domain (antecedent term)
should depend on the class Entity (consequent term). In other words, according to
this pattern, classes in the domain component that do not depend on Entity represent
an absence violation.

The second step is used to reduce the number of false violations. For each
component in the system, we select the dependencies and the historical information
from the Prolog facts database. In this particular case, we select the attributes
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CreatedWith and ExistCurrently. Each dependency corresponds to a row in the
itemset database as follows:

BaseComponent(bcomp),TargetClass(tclass),
CreatedWith([true|false]),
ExistCurrently([true|false])

We compute the association rules expressing this dependency evolutionary
patterns using the FPGrowth algorithm, using a given support (Adeps) and confidence
(Adepc) threshold. For instance, suppose the following pattern:

{BaseComponent(’domain’),
TargetClass(’Entity’),
CreatedWith(false)}=> {ExistCurrently(true)}

This pattern states that classes on the component domain created without
dependency with the class Entity were frequently refactored to include this dependency,
which also exists in the current version of the system.

The second step results are combined with the results obtained in the first step.
For example, suppose that in the first step the classes in the domain component that do
not depend on Entity were classified as evidences of absences. Moreover, suppose that
in the second step we concluded that classes in domain created without a dependency
with Entity frequently (i.e., with a high support and confidence) were refactored to
include this dependency during their evolution, which therefore reinforces the evidence
detected in the first step.

5.2.2 Mining for Divergences

As described in Section 3.3, a divergence is a violation due to a dependency
that is not allowed by the planned architecture, but that exists in the source
code [Murphy et al., 1995, Passos et al., 2010].

Likewise the heuristic for absences, we assume that divergences happen in a
small percentage of cases. However, a standard frequent itemset mining technique is
not suitable for detecting minorities. For this reason, we in fact mine for dependencies
that do not exist in most classes of a component. More specifically, the divergences
detection relies on two steps. First, we identify the dependencies that frequently do
not occur in the classes of a given component. In the second step, we identify how
frequently classes in this component have established and then removed a dependency
like that in the past. For instance, Figure 5.3 illustrates an example of divergence. In
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this case, the planned architecture prescribes that classes located in the BO module
must not directly depend on the JPA module. In this particular example, a divergence
is counted for each class in BO which relies on services provided by the JPA module.
In the second step of the proposed procedure, we check how frequently classes in the
component BO that had a dependency with classes on JPA module in the past have
removed this dependency, so that it does not exist anymore in the current version of
the system.

Figure 5.3. Example of divergence (BO cannot use JPA)

In the first step, we initially select all classes in the last version of the target system
(attribute ExistCurrently = true). For each BaseClass , we select the dependencies
that do not exist between BaseClass and TargetClass , where TargetClass is a class
used by the component that contains BaseClass . Then, these items represent a row in
the itemset database, as follows:

BaseComponent(bcomp),BaseModule(bmod),BaseClass(bclass)
[,TargetComponent(tcomp),TargetModule(tmod),TargetClass(tclass)]*

Using the FPGrowth algorithm, we compute the association rules, according to a
given support (Ddps) and confidence (Ddpc). For instance, the following association rule
states that classes in the domain component frequently do not depend on HttpServlet.

{BaseComponent(’domain’)}=>
{TargetClass(’HttpServlet’)}

Therefore, classes in domain that depend on HttpServlet represent an evidence
of divergence.

In the second step, we rely on a historical analysis to reduce the number of false
positives. In this case, we select dependencies from the itemset database including the
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attributes ExistCurrently and AddAny. This information generates an itemset in our
database as follows:

BaseComponent(bcomp),TargetClass(tclass),
AddAny([true|false]),
ExistCurrently([true|false])

Applying the FPGrowth, using Ddeps and Ddepc as support and confidence
respectively, we obtain association rules representing what we decide to call the
dependency evolutionary patterns. For instance, suppose a dependency evolutionary
pattern as follows:

{BaseComponent(’domain’),
TargetClass(’HttpServlet’),
AddAny(true)}=> {ExistCurrently(false)}

This pattern states that classes in the component domain that added a
dependency with the class HttpServlet (attribute AddAny = true) frequently removed
this dependency, so that it no longer exist in the current version of the system (attribute
ExistCurrently = false).

Finally, these results are combined with the results obtained in the first step.
For instance, suppose that it was previously inferred that the classes in the domain

component that depend on HttpServlet represent evidences of divergences. Moreover,
suppose that in this second step we discovered that such classes frequently were
refactored to remove the dependencies with HttpServlet. In this case, the evidence
detected in the first step is reinforced by this second finding.

5.3 Evaluation

To evaluate the data mining based approach for detecting absences and divergences, we
performed a study with the SGA system, i.e., the same system described in Section 4.1.
The last revision considered in our study has 1,852 classes and interfaces, organized in
104 packages, comprising around 127 KLOC.

5.3.1 Dataset

To detect absences and divergences, we initially retrieved 4,923 revisions of the SGA
system, which are maintained in a Subversion repository. Each revision was parsed
by VerveineJ and the extracted dependencies were stored in a relational database with
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4.5 GB. Next, an architect defined its high-level component model. Finally, the high-
level components and the dataset of historical dependencies were used as input to
generate the Prolog facts. We executed our approach as described in Sections 5.2.1
and 5.2.2. Finally, the architect of the SGA system inspected the selected violations
in order to classify them as true or false positives.

5.3.2 Thresholds for Absences

As reported in Section 5.2.1, the detection of absences relies on four thresholds:
Adps and Adpc, the support and confidence of the structural dependency architectural
patterns, and Adeps and Adepc, the support and confidence of the historical dependency
evolutionary patterns. Table 5.1 shows the values used for such thresholds:

Table 5.1. Absences thresholds

Threshold Value
Adps 0.1
Adpc 0.9
Adeps 0.1
Adepc 0.6

Basically, we consider as an architectural pattern only the rules that occurred
in at least 10% of the classes and that have a confidence of at least 90%. For the
architectural evolutionary patterns, we consider thresholds of 10% for support and
60% for confidence. In other words, we consider as evidences of architectural violation
classes that do not respect a rule followed by at least 10% of the other classes, among all
classes in the system. Furthermore, only classes whose historical rules have a confidence
higher than 60% are considered as violations.

5.3.3 Thresholds for Divergences

The detection of divergences relies on four thresholds: Ddps and Ddpc, denoting
respectively the support and confidence of the structural architectural patterns, and
Ddeps and Ddepc, denoting respectively the support and confidence of the historical
patterns. Table 5.2 shows the thresholds values used for divergences.

Similarly to the absence detection, for divergences we consider architectural
patterns with support of 10% and confidence of 90%. On the other hand, for the
historical patterns, we consider the thresholds of 10% and 25% for support and
confidence, respectively. Furthermore, we select as divergences the classes that violate
both patterns. More specifically, we select classes that depend on a class when at least
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Table 5.2. Divergences thresholds

Threshold Value
Ddps 0.1
Ddpc 0.9
Ddeps 0.1
Ddepc 0.25

90% of the classes in the same component do not follow this rule. Additionally, at
least 25% of the classes that have established this dependency were later refactored to
remove it.

5.3.4 Results

We applied our methodology in the SGA system using the thresholds defined in
Sections 5.3.2 and 5.3.3. The triggered violations were inspected by the SGA architect,
who classified them as true or false violations.

As we can observe in Table 5.3, we detected 261 evidences of absences, and 101
evidences were classified as true-positives by the SGA architect. Furthermore, we
triggered 73 divergence warnings, which 36 were classified as true-positives. Thus, the
precision was 38.7% and 49.3% for absences and divergences, respectively. As total, the
architect inspected 334 warnings, which 137 were considered true-positives, resulting
in a global precision of 41.0%.

Table 5.3. Architectural violations in the SGA system

Absence Divergence Total
Warnings (E) 261 73 334
True-positives (TP) 101 36 137
False-positives (FP) 160 37 197
Precision (TP/E) 38.7% 49.3% 41.0%

5.4 Discussion

In this chapter, we conducted an exploratory study to explore the feasibility of using
frequent itemset mining techniques to detect architectural violations. As reported
in Section 5.3, this evaluation was conducted using the same information system
considered in the evaluation of the heuristic-based techniques proposed in Chapter 3.
As reported, we achieved an overall precision of 86.7% for absences and 56.5% for
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divergences, when using the proposed heuristics. On the other hand, the frequent
itemset mining based approach achieved an overall precision of 38.7% and 49.3% for
absences and divergences, respectively.

Therefore, our heuristic-based technique achieved a higher precision than
frequent itemset mining both for absences and divergences. Next, we compare the
two techniques in more details, by discussing the pros and cons of the data mining
approach investigated in this chapter.

Pros: The data mining based methodology has the following advantages:

• It allows to detect complex patterns of dependencies, formed by multiple
classes, independently on any prior knowledge of software architecture or on the
architectural scenarios where violations frequently occur. In other words, frequent
itemset mining techniques detect co-occurrence patterns among items in a dataset
of existing transactions (according to support and confidence thresholds). For
instance, as stated previously, it is common in a system using JPA persistence
framework, that classes that use the Entity annotation also use the annotation
Id on an attribute of type Long. Therefore, the use of Entity without Id, or
vice-versa, might denote an architectural anomaly. Furthermore, the use of Id
on an attribute that is not of type Long, might also represent an anomaly.

• We can rely on association rules generated by frequent itemset mining to reveal
architectural patterns. These patterns can be used as documentation artifacts,
supporting and guiding the development team on understanding the dependencies
between classes, modules, and components of the system. For instance, consider
this association rule: {BaseComp(‘domain’), TargetClass(‘Entity’)} =>

{TargetClass(‘Id’)}. This rule prescribes that classes in the component
Domain that depend on the class Entity should also depend on class Id.

• We can consider other information in the conformance analysis, such as historical
information, information on the components of the system, information on the
structure and hierarchy of modules, class name patterns, direct dependencies, and
indirect dependencies (e.g., based on inheritance rules). For example, consider
this association rule: {BaseComp(‘domain’), ClassNamePart(‘Impl’,

PackageNamePart(‘dao.impl’)} => {TargetClass(‘Entity’),

TargetClass(‘Id’)}. This rule prescribes that classes in the component
Domain, whose name contains the substring “Impl”, and whose package name
contains the substring “dao.impl” must depend on classes Entity and Id.
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• It is feasible to consider not only usage but also non-usage patterns
regarding dependencies. For example, we can infer that classes of a
particular component rarely use the class java.sql.Statement, and
that such classes frequently depend on javax.persistence.Query.
More important, these dependencies are usually mutually exclusive,
i.e., classes that depend on java.sql.Statement do not depend on
javax.persistence.Query and vice-versa. The following association rule
illustrates this example: {TargetClass(‘javax.persistence.Query’)=true}

=> {TargetClass(‘java.sql.Statement’)=false}.

Cons: However, a data mining based methodology has the following disadvantages:

• A frequent itemset mining strategy only considers frequency hypothesis, by means
of the support and confidence thresholds described in Section 2.5. Therefore,
heuristic-based techniques take advantage over frequent itemset mining based
ones because the latter do not rely on any previous knowledge on the problem
domain. This condition may contribute to heuristics-based approaches present
greater precision than data mining based approaches.

• Our initial investigation indicated the need of further improvements in the
performance of the data mining technique. To illustrate this fact, considering the
dataset described in Section 5.3.1, that uses only direct dependencies between
classes, the heuristic-based technique required 33.2 minutes to display the
architectural violations reports. On the other hand, the frequent itemset mining
based technique required 495.8 minutes to display its results (14.9 times slower).

• Specially for low support and confidence thresholds, a data mining algorithm
may require an extremely high amount of memory and produce a large number
of association rules. As an example, using the support and confidence thresholds
presented in Section 5.3, 174,737 association rules are produced for absences and
1,752,365 for divergences.

5.5 Final Remarks

In many scenarios it is necessary to discover how often two or more items of interest
occur simultaneously or the relationships between co-occurrences of items. It is well-
know that data mining-based techniques are suitable when you want to discover how
often two or more items from a set occur simultaneously. Furthermore, it is possible
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to identify multiple dependencies among these items. Therefore, in this chapter, we
investigated a data mining based approach that can be applied to analyze structural
and historical architectural patterns among classes.

We conducted an evaluation in the architecture of the SGA’s system, when we
detected 137 architectural violations, with an overall precision of 41.0%. As can
be observed, our heuristic-based approach achieved a higher precision than the data
mining based approach, both for absences and divergences.

In Section 5.4, we discussed the pros and cons of the data mining based approach.
Despite the disadvantages, we consider that frequent itemset mining is a promising
technique and should be more deeply evaluated. Particularly, frequent itemset mining
techniques can make use of a broad source of information, which can help to generate
more complete architectural patterns.





Chapter 6

Conclusion

This chapter is organized as follows. We start by summarizing the results of this thesis
(Section 6.1). Next, we review our contributions (Section 6.2). Additionally, we also
indicate the limitations of our proposed architecture conformance process (Section 6.3).
Finally, we present further work (Section 6.4).

6.1 Summary

Architectural conformance checking is a fundamental activity for controlling the
quality of software systems. This activity aims to reveal deviations between
the actual and planned software architectures [Passos et al., 2010]. However, the
application of the current techniques for architecture conformance usually requires
a considerable effort [Knodel et al., 2008, Passos et al., 2010]. Specifically, reflexion
models may require successive refinements in the high-level model to reveal the
whole spectrum of absences and divergences in large and extensively maintained
systems [Koschke and Simon, 2003]. On the other hand, domain-specific languages
may require the extensive and detailed definition of constraints.

To address this shortcoming, this thesis proposed an architecture conformance
technique that relies on a combination of static and historical source code analysis
to produce evidences of absences and divergences. We provide an iterative technique
for architecture conformance checking that does not require successive refinements in
high-level architectural models neither requires the specification of an extensive list
of architectural constraints. We also designed and implemented an open-source tool
called ArchLint that supports our approach and hence reveals architectural erosion
symptoms in Java systems. Additionally, we conducted an evaluation of the proposed
conformance checking process in four real-world systems, which provided us a positive
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feedback on the applicability of our approach. In this evaluation, ArchLint was able
to indicate 884 true violations, with overall precision results ranging from 53.3% to
86.7%.

6.2 Contributions

We present the main contributions of our research both for practitioners and for
software engineering researchers. First, for practitioners, especially the ones who are
not experts on the system under evaluation, we envision that a heuristic-based approach
for architecture conformance can be used to rapidly raise architectural warnings,
without deeply involving experts in the process. Moreover, after evaluating many of the
warnings raised by the heuristics, practitioners can get confidence on the most relevant
architectural constraints, which can be therefore formalized using languages such as
DCL [Terra and Valente, 2009]. Moreover, especially among developers who frequently
use popular static analysis tools (e.g., FindBugs, PMD, etc.), ArchLint can be promoted
as a complementary tool that elevates to an architectural level the warnings typically
raised by such tools. Finally, for researchers the approach proposed in this thesis may
open a novel direction for the investigation on architectural conformance techniques,
based not only on static information, but also on information extracted from version
repositories, which are ubiquitously used nowadays on software projects.

Specifically, this research provides the following contributions:

• We provide a review of the state-of-the-art and state-of-the-practice with respect
to automatic anomaly detection in source code, architectural conformance
checking approaches, and data mining techniques with potential application to
architectural violation detection (Chapter 2);

• We introduces an alternative and iterative technique to architectural conformance
checking based on a combination of static and historical source code analysis
(Chapter 3). This technique includes four heuristics for detecting absences
and divergences. It also includes a ranking strategy for ordering the produced
warnings according to their probability to denote true architectural violations.

• We implemented a prototype tool called ArchLint that implements our approach
and hence provides architectural violation evidences (Section 3.6).

• We evaluated the use of the proposed iterative architectural conformance checking
process in four real-world systems (Chapter 4).
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• We provide an exploratory study on applying data mining techniques to mine
architectural patterns (Chapter 5). We also implemented a prototype tool called
ArchLintMiner that supports this data mining-based approach.

6.3 Limitations

Our work has the following limitations:

• The proposed approach may miss true warnings when the system under
evaluation is facing a major erosion process. This scenario may cause a
relevant impact on the structural and historical functions, such as DepScaRate,
DepInsRate, and DepDelRate;

• The proposed approach assumes that violations are usually detected and fixed.
This assumption recommends its use especially in mature systems. A possible
workaround in less mature systems is to rely on flexible thresholds, e.g.,
DepInsRate = 0.0 and DepDelRate = 0.0;

• The proposed heuristics do not cover the entire spectrum of scenarios where
architectural violations may occur. They are based on the best of our knowledge
and our experience in software architecture conformance. Moreover, they only
consider direct dependencies among classes, modules, and components;

• We have not evaluated our approach in scenarios where it is not possible to map
the classes of the target system to their respective components through regular
expressions;

• We have not measured recall for the SGA and the M2M systems because a
detailed inspection in the code is required to find the full set of absences and
divergences, including not only true positives, but also false negatives;

• We have not evaluated our ranking strategy using advanced ranking techniques,
such as giving weights to different elements as proposed by Engler et
al. [Engler et al., 2001b] or using correlation rankings [Kremenek et al., 2004].

6.4 Further Work

The heuristic-based approach for architecture conformance proposed in this thesis must
be complemented by the following future work:
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• By evaluating other systems to refine and to investigate new heuristics, and to
demonstrate the application of our approach in other contexts, using different
architectural patterns;

• By working on the integration of ArchLint with ArchFix [Terra et al., 2013],
which is a recommendation tool that suggests refactorings for repairing
architectural anomalies triggered by static architecture conformance checking
approaches;

• By working on the integration of ArchLint with a Domain-Specific Language,
such as DCL [Terra et al., 2013].

• By using well-know high quality systems to retrieve architectural patterns, which
are more likely to be correct. Once this patterns are available, we can compare
other system against them, which should be used to evaluate systems with a
small repository of versions.

The data mining-based approach can be complemented by the following future
work:

• By investigating other techniques for detecting common patterns of structural
dependencies, such as formal concept analysis [Ganter and Wille, 1999];

• By conducting a sensitivity analysis to discover the best combination of values
for the thresholds required by data mining algorithms;

• By evaluating its usage on systems using architectural patterns different from the
one followed by the SGA system;

• By extending the study to consider specific correlations between dependencies
as well as to consider the dependency types, such as attributes, annotations,
inheritance, etc.
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