
Several techniques for implementing Prolog in a efficient manner have
been devised since the original interpreter, many of them aimed at achiev-
ing more speed. There are two main approaches to efficient Prolog imple-
mentation: (1) compilers to bytecode and then interpreting it (emulators)
or (2) compilers to native code. Emulators have smaller loadcompilation
time and are a good solution for their simplicity when speed is not a pri-
ority. Compilers are more complex than emulators, and the difference
is much more acute if some form of code analysis is performed as part
of the compilation, which impacts development time. Generation of low
level code promises faster programs at the expense of using more resources
during the compilation phase. In our work besides using an mixed exe-
cution mode, we design an optimizing compiler that using type feedback
profiling, dynamic compilation and dynamic deoptimization for improving
the performance of logic programming languages.


