
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Departamento de Ciência da Computação

A Method for Efficient Compactation
of

LALR(1) Parsing Tables

Roberto da Silva Bigonha

Mariza Andrade da Silva Bigonha

Relatório Técnico RT 024/90

Caixa Postal, 702

30.161 - Belo Horizonte - MG

Dezembro de 1990



Abstract

A new compactation method for LALR(1) parsing tables is presented and dis-
cussed. The proposed method is based on intrinsics properties of the parsing method,
and allows LALR(1) tables needs of space to be substantially reduced without com-
promising the table accessing time.

i



Contents

1 Introduction 1

2 LALR(1) Parsing Structure 1

3 Encoding of LALR(1) Parsing Tables 2

4 The Proposed Method 5

5 Analysis of the Method 8

6 Conclusion 10

ii



1 Introduction

An SLR(1), LALR(1) and possibly LR(1) table [SPECTOR 81, PAGER 77] for a programming
language of real size like PASCAL has more than 300 rows (states) and 100 columns (terminal
and nonterminal symbols). Assuming, as an example, a grammar with 100 productions, at least
11 bits would be necessary to encode each entry of the LALR(1) table. The resulting 300x100
matrix would require at least 330.000 bits, which is about 40 Kbytes of working memory!

In practice, the required memory would be even greater because the size of each entry is not
necessarily multiple of the smallest addressable memory unit of most existing architectures.

In this paper, we present a method for encoding LALR(1) parsing table that allows an expressive
reduction on memory requirements without compromising accessing time.

2 LALR(1) Parsing Structure

LALR(1) parsers consist of a driver program, a stack and a parsing table. The stack is used to
store states of the parser. The LALR(1) parsing table is a bi-dimensional array, where the row’s
indices represent states names, usually integer numbers, and the column’s indices are terminal
and nonterminal symbols of the underlying grammar. Usually, these grammar symbols are also
represented as integer numbers to increase array indexing efficiency in real implementations.

For technical reasons, LALR(1) tables are divided in two parts, namely, ACTION and GOTO
[AHO 86]. In the ACTION part, indices of columns represent terminal symbols, and in the
GOTO part, they represent nonterminal symbols.

Each entry in the ACTION part may be one of the following actions:

1. shift s, where s is the number of a state. This action means push state s.

2. reduce p, where p is the number of a production of the form A → ω, A is a nonterminal
symbol and ω a sequence of grammar symbols. This action means reduce according the
pth production.

3. accept, which indicates successful completion of the parsing.

4. error, which indicates syntactic error and is represented by a blank entry in the table.

The entries in the GOTO part of the LALR(1) table contains either a state number or is empty.

Figure 1 shows an LALR(1) parsing table, where a, b, d, e, f are terminal symbols; A, B, C are
nonterminal symbols, and $ is a special symbol, which denotes the end of input file; sk represents
the shift k action; rp, the reduce p action , where p is the number of a production, and acc
is the accept action.

1



ACTION GOTO

a b d e f $ A B C

0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 e6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Figure 1: LALR(1) Parsing Table

Figure 2 presents the basic parsing algorithm which assumes that the LALR(1) table is stored
as the two matrices ACTION and GOTO. The procedure Lex returns, at each invocation,
the next symbol of the input as a pair (u, v), where u identifies the symbol and v denotes its
associated value.

3 Encoding of LALR(1) Parsing Tables

LALR(1) tables are generally sparse in the sense that most of their entries are empty, i.e., they
denote error actions. Thus, a compactation strategy that takes this fact into account may
produce greater space efficiency. Actually, the problem to be solved is the design of an encoding
scheme that makes possible to represent a sparse matrix A(i,j) in the smallest amount of
memory space possible without compromising accessing time.

A possible solution would be to use a hashing technique, in which the access key would be the
pair (i,j). Another solution is a ring representation as described by Knuth [KNUTH 73].

These solutions are certainly feasible. However, the use of the intrinsic properties of LALR(1)
tables leads to better results. For instance, the compactation scheme proposed by Aho and
Ullman [AHO 77, AHO 86] follows this approach.

Aho e Ullman [AHO 77, AHO 86] suggest a method that makes possible to achieve an expressive
reduction in memory requirements with respect to the direct representation of LALR(1) table
as a matrix. Their method is based on the fact that most of the entries in an LALR(1) table
represents error actions, and that LALR(1) parsers have the viable prefix property.

A syntactic analysis method is said to have the property of the viable prefix, if all syntatic
errors are detected as soon as the sequence of terminal and nonterminal symbols formed by
the elements in the parse stack and the next input token does not establish a prefix of a valid

2



var parsing : boolean;

u : token;

v : value;

ACTION : array[state, token] of action;

GOTO : array[state, nonterminal] of state;

SIN : array[0 .. max] of state;

top : 0 .. max;

s, k : state;

A : nonterminal;

p : production_number;

begin

top := 0;

SIN[top] := initial_state;

parsing := TRUE;

Lex(u,v);

s := initial_state;

while parsing loop

case ACTION[s,u] of

shift k : top := top + 1;

SIN[top] := k;

s := k;

Lex(u,v);

reduce p : A := left hand side of production p;

top := top - size of the RHS of production p;

s := GOTO[SIN[top],A];

top := top + 1;

SIN[top] := s

accept : parsing := FALSE;

error : error recovery routine

end

end

end

Figure 2: LALR(1) Parser

3



sentencial form of the language being analised [AHO 72].

Strictly speaking, SLR(1) and LALR(1) parsers do not have this property because after the
LR(1) parser has indicated a syntactic error in a given input, these two methods still can
perform some reductions in the contents of the stack before they detect the error. However, it
can be shown that, even in this case, the input symbol that caused the LR(1) parser to report
the syntactic error is never shifted. So, an error condition detectable by an LR(1) parser is not
removed if extra reductions are allowed to happen. It is guaranteed that the first shift state
(a state containing only shift actions) that follows these reductions will detect the error.

Therefore, at the expense of possibly complicating the error recovery algorithm, error entries
may be eliminated and replaced by one of the reduce actions occurring in the state. In fact,
in order to save space, the more frequent reduce action in a given row should be encoded only
once, and should be selected only when any other cannot be applied for a given input symbol.
Moreover, in those states in which there exist only shift actions, error actions can be encoded
just once, provided it is selected only when no other action is aplicable.

In this encoding scheme, the ACTION table is stored by a collection of lists, each of them
corresponding to a state in the table. A list consists of sequence of pairs of the form (column,

action), which associate terminal symbols to parsing actions. Each list is ended by a special
pair of the form (any, action). The element column denotes a (lookahead) terminal symbol,
any represents all terminal symbols that are not on the list, and action describes the associated
parsing action. The pair (any, action) specifies an action to be accomplished no matter what
the current input symbol is.

In states containing only shift actions, a pair of the form (any, error)must end the associated
list; and in states containing reduce actions, the last pair must have the form (any, reduce

p), where reduce p represents the most frequent reduce action in the current row (state).

The high degree of memory space compression achieved with this encoding scheme results from
the fact that, in general, more than 90% of an LALR(1) table entries are error actions, and
that reduce actions in a same row usually refer to a same production. Since execution of reduce
actions does not cause any problems — at least, from the point of view of syntax — when the
next input symbol is syntactically invalid, all occurrences of the most frequent reduce action in
a row can be replaced by a single pair of the form (any, reduce p), and no error actions are
needed.

Another important opportunity for space optimization, which is explored by this method, is
the elimination of repeated lists. Identical rows are encoded only once, and the resulting list is
shared by the associated states.

Although additional memory space is necessary to store pointers that associate lists to corre-
sponding states or to nonterminal symbols, and to encode row and columns numbers in each
pair, the reduction in the memory occupancy is claimed to be greater than 90% of the area of
the original matrix representation [AHO 77].

The disadvantage of this scheme, when compared to the direct method, is related to the accessing
time to the encoded table. Now, each parser transition needs to perform an indirect addressing

4



operation to obtain the address of the list associated to a state (or to the nonterminal symbol),
and the lists must be searched sequentially. However, in practice, the lists are small, and the
increase in accessing time represents only a small fraction of the total compilation time, which
is certainly a very low price in view of the economy of space attained.

4 The Proposed Method

The new method here proposed for compacting LALR(1) tables takes the Aho and Ullman’s
scheme as a starting point, and aims to decrease even more memory needs without affecting
accessing time.

The first step consists of removing the pointers that relate states to lists of pairs. In the
direct method, states are used as indices of rows of the LALR(1) matrix. Consequently, it was
convenient to encode states as consecutive integer numbers, starting from a base value, usually
zero. Using lists, on the other hand, all that is needed is that from a given state the address
of the its associated list could be determined. Since each state corresponds a unique list, and
if one guarantees that each list corresponds to a unique state, addresses of lists can be used to
identify states. This guaranty can be easily achieved if repeated lists are not eliminated from
the encoded representation of the parsing tables.

In addition to expressive economy of space that results from the elimination of the pointers,
there also exists an extra gain regarding the access time to the lists, since a level of indirect
addressing has been abolished.

In fact, a yet bigger reduction in memory demand comes from a property inherent to the
underlying parsing method. In an LALR(1) parser, every transition reaching a state has the
same label (column). This property, which can be easily derived from the definition of the
GOTO set [AHO 77, AHO 86], makes possible to remove labels from transitions, that is, from
pairs of the form (column, shift k), and to associate them to the corresponding destination
states.

To reduce even further the memory requirements, the type of the action (shift, reduce,

accept or error is also removed from the transitions, and a way to retrieve this information
from the destination state is provided in the sequel.

Thus, transitions can be completely identified by the destination states numbers, which give the
associated labels and the type of action. Taking into account that, generally, most states of an
LALR(1) parser have more than one predecessor state, the space saved is substantial.

The proposed encoding of LALR(1) matrices consists, basically, of a vector, here named LALR,
where lists containing parsing actions — in fact, addresses of states — are stored. Each list
corresponds to a parse state, and its first element always holds the state access symbol, i.e., the
grammar symbol (or columns) that labels all the transitions reaching the state. The remainded
elements in the list are addresses of successor states.

In order to make the encoding process uniform, and to provide an easy mechanism to determine

5



i := s + 1; --- skip access symbol

s := LALR[i];

while u <> LALR[s] loop

i := i + 1;

s := LALR[i]

end

Figure 3: Finding the Successor State

the type of the actions from the address of the state, entries containing error and accept

are treated as transitions to the distinguished states E and F, and reduce p are viewed as
transitions to special states. The accept action corresponds to a transition under the token
$ to the final state F, whose list contains a single element, the $ symbol. All transitions for
error actions always have the same destination state E.

In almost all cases, error action is the most frequent entry in most LALR(1) rows. Thus,
transitions to state E are encoded only once at the end of each list. In fact, with the goal of
keeping the parser algorithm simple, a transition to E will always be encoded at the end of every
list that does not contain reduce actions. In this fashion, transitions to E will be selected only
when no other is eligible. The list of pairs associated to state E has always a single element, the
access symbol, which must always contain the next input symbol u. The state E is called error

state.

A special state contains the transition label associated to a given reduce action, i.e., the looka-
head symbol, and the number of the production involved. Each production p in the grammar
corresponds to one or more special states, one for each entry of the form reduce p.

The successor state of given state s is determined by the piece of code shown in Figure 3, in
which u holds the next input symbol.

Note that, if s is equal to E at the ending of the loop statement of Figure 3, then a syntactic
error was detected, otherwise s contains the address of the successor state.

As discussed before, error actions are entirely removed from the rows containing reduce actions.
In these states, the most frequent reduce action is selected only when no others are aplicable.
The program fragment in Figure 3 assumes the presence of a flag state at the end of the list.
Consequently, states having reduce actions must also be encoded according to the same pattern
as that used in shift states. For this reason, it was created another distinguished state,
named R, that works in a similar way to E, i.e., the state R is encoded at the end of all lists
containing reduce actions, but the element that precedes R in the list must always represents
the most frequent reduce action of the state. Thus, if, at the ending of the loop statement
in Figure 3, s is equal to R, then the successor state is in fact the one that precedes R in the
searched list. The state R is called default reduction state.

The following statement

6



... $ ...

←normal states → E F R ←special states →

Figure 4: LALR Vector

if s = R then s := LALR[i-1] end

must then be added at some point after the loop of Figure 3 to guarantee that s has the correct
value.

Since R works as a flag for the list searching, position LALR[R] must always contain the next
input symbol.

Lists do not contain pairs of the form (column, reduce p) anymore. These pairs were replaced
by the addresses of special states, which themselves store the pairs. Note that each pair
(column, reduce p) needs only be stored once in the present method; its address may be used
in more than one list.

The type of the action, i.e., shift, reduce, error or accept, associated to each transition is
implicitly determined by the parsing from the address of the destination state, as shown in the
sequel.

There are five types of states in this encoding: the normal states, which are those that correspond
to rows of the original LALR(1) matrix, the error state (E), which is used as a flag to end lists
containing only shift actions, the final state (F), the default reduction state (R), which is
used as flag to end lists containing at least one reduce action, and the special states, which
represent pairs of the form (column, reduce p). These states are organized in the LALR vector
in the way indicated in Figure 4.

In the data structure of Figure 4, transitions to states, say k, whose addresses are smaller than
E represent actions of the form shift k; transitions to states whose addresses are greater than
R denote actions reduce p, where p is given by LALR[k + 1]. The final and error states have
known addresses: F and E, respectively.

Note that the LALR vector also incorporates the GOTO part of the LALR(1) table. This was
achieved by allowing nonterminal symbols to be labels of transitions. In another words, in this
method, the ACTION part of the LALR(1) table has been extended to encompass the GOTO
part, whose entries for states numbers k are replaced by actions of the form shift k. In fact,
the GOTO table was created only for efficiency purposes. As a matter of fact, the automata
from which the LALR(1) tables are constructed have transitions under terminal and nonterminal
symbols.

This new way of viewing LALR(1) matrices implies in a small change in the underlying parsing
algorithm with respect to the semantic of reduce actions. Originally, an action of the form
reduce p, where p is a production of the form A → ω, causes the removal of m (size of ω)
elements from the stack of states followed by an access to the GOTO table, given the state
currently on the top of the stack and the nonterminal A, to determine next state to be entered.

7



A := PROD[p].LE;

top := top - PROD[p].SIZE;

i := SIN[top] + 1;

s := LALR[i];

while A <> LALR[s] loop

i := i + 1;

s := LALR[i]

end;

top := top + 1;

SIN[top] := s;

Figure 5: Reduce Action

In the proposed encoding scheme, this mechanism is equivalent to pop m elements from the stack,
and to execute one transition under the nonterminal symbol A, as showed in Figure 5.

Note that it can be shown that error entries in GOTO table are never consulted, and that it
is guaranteed that a transition under the nonterminal symbol A always exists for the state that
appears in the top of the stack just after popping the stack. Consequently, the search always
ends successfully.

Finally, it should be pointed out that as a consequence of the fusion of the ACTION and
GOTO tables , the internal codes for terminal and nonterminal symbols must be disjoint.

To conclude, in this encoding scheme, there exists another table, named PROD, that gives the
internal code of left side nonterminal symbol and the size of the right hand side of each produc-
tion.

The new algorithm of the LALR(1) parser is presented in Figure 6, and Figure 7 illustrates the
encoding of the table showed in Figure 1.

5 Analysis of the Method

The space efficiency of the proposed method for compactation of LALR(1) parsing tables depends
on the following conditions:

1. The relation number of transitions/number of states should be reasonably greater than 1.
The bigger this relation is, more space efficient the method is, since it encodes the label
and the type of each transition only once.

2. The relation number of repeated rows/total number of rows should be less than (a/m.c),
where a is the space needed to store a pointer, m is the average number of entries per row,

8



var parsing : boolean;

u : 0..imax;

v : value;

LALR : array[0..imax] of 0..imax;

top : 0..imax;

SIN : array[0..max] of 0..imax;

s, i : 0..imax;

A : 0..imax;

begin

top := 0; s := initial_state; SIN[top] := s;

parsing := TRUE;

Lex(u,v); LALR[E] := u; LALR[R] := u;

while parsing loop

i := s + 1; s:= LALR[i];

while u <> LALR[s] loop

i := i + 1; s := LALR[i]

end;

if s >= R then -- REDUCE p

if s = R then s := LALR[i - 1] end

p := LALR[s + 1]; A := PROD[p].LE;

top := top - PROD[p].SIZE;

i := SIN[top] + 1; s := LALR[i];

while A <> LALR[s] loop

i := i + 1; s := LALR[i]

end;

top := top + 1; SIN[top] := s

elif s < E then -- SHIFT s --

top := top + 1; SIN[top] := s;

Lex(u,v); LALR[E] := u; LALR[R] := u;

elif s = E then error recovery -- ERROR

else parsing := FALSE -- ACCEPT

end

end

end

Figure 6: The New LALR(1) Parser

9



state 0 state 1 state 2 state 3

25 18 7 11 15 53 A 28 54 53 B 34 58 55 C 62 55

0 7 11 15

state 4 state 5 state 6

e 25 18 39 11 15 53 a 66 55 b 25 18 43 15 53

18 25 28

state 7 state 8 state 9 state 10

d 25 18 47 53 A 28 50 53 B 34 56 55 C 60 55

34 39 43 47

state 11 E F R r1 r2 r3 r4 r5 r6

f 64 55 $ b 1 b 2 b 3 b 4 b 5 b 6

50 53 54 55 56 58 60 62 64 66

Figure 7: An Example of LALR Vector

and c is the space occupied by an entry in the Aho and Ullman method. In languages
like PASCAL, typical values are: a = 2, m = 10 and c = 3. Thus, for these languages, the
space occupied by pointers to the lists in the Aho and Ullman method is compensated by
the elimination of repeated lists when the above relation is greater than 1/15.

3. error is always the most frequent entry in each row.

In the tests performed, LALR(1) tables for which conditions (1) e (3) holds, were encoded in
about 4% of its original space requirements.

6 Conclusion

The compactation method described in this paper is based on two properties of LALR(1) parsers.
The first one is the property of the viable prefix, and the second is that all transitions to a given
state always have the same label.

The efficacy of the method depends of some characteristics of the LALR(1) tables, which, in
practice, hold for languages of interest. Its main source of memory economy is the technique
of removiing labels of transitions and type of actions from the state transitions, and encoding
them together with the destination states.

10



References

[AHO 72] AHO , A. V.,and ULLMAN, J. D., The Theory of Parsing, Translation, and
Compiling, Vols. 1 e 2, Prentice-Hall, Englewood Cliffs, N.J. 1972.

[AHO 77] AHO A. V. and JOHNSON, Principles of Compiler Design, Addison-Wesley
Publishing Company Co. (1977).

[AHO 86] AHO A. V., SETHI, R. and JOHNSON , Principles of Compiler Design,
Addison-Wesley Publishing Company Co. (1986).

[KNUTH 73] KNUTH, D., The Art of Computer Programming, 2nd Edition, Addison-Wesley
Publishing Company Co. (1973).

[SPECTOR 81] SPECTOR, David, “Full LR(1) Parser Generation”, ACM Sigplan Notices,
Vol. 16, N§ 8, August 1981.

[PAGER 77] PAGER, David, “A Practical General Method for Constructing LR(k) Parsers”,
Acta Informatica 7, 249-268 (1977).

11


