
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Not Always a Full LR(1) Parser Generator

Roberto da Silva Bigonha

Relatório Técnico RT 022/91

Caixa Postal, 702

30.161 - Belo Horizonte - MG

Dezembro de 1991

Abstract

David Spector proposed an algorithm to efficiently generate compact LR(1)
tables. However, his algorithm does not always generate full LR(1) parsing
tables. This report identifies this problem and presents a proof that there are
LR(1) grammars for which the Spector’s parser generator fails to construct
their LR(1) tables.

Keywords: LR grammars. LALR(1) grammars. LR parsing

i

Contents

1 Introduction 1

2 Terminology 1

3 Spector’s Parser Generator 2

4 An Counter-Example 3

5 Generalization 5

6 Conclusions 6

ii

1 Introduction

LR(1) parsers are more powerfull than LALR(1) parsers, but the latter have been consid-
ered the method of choice because LALR(1) tables are generally smaller than full LR(1)
tables, and yet most programming languages features can be expressed by LALR(1) gram-
mars.

Spector discusses this issue [5], and based on the fact that the minimal finite pushdown
automatum produced by an full LR(1) parser generator is identical to that produced by
an LALR(1) generator for an LALR(1) language [8], proposes an efficient algorithm to
generate LR(1) tables, whose sizes are smaller than those produced by common LR(1)
algorithm found in the literature [1, 2, 3, 7]. With the new method, Spector tries to
establish the basis for full LR(1) parser to become the standard rather than the exception.

This report analyzes the proposed algorithm, proves that there are LR(1) grammars for
which the Spector’s parser generator fails to construct their LR(1) tables.

2 Terminology

It is assumed that the reader is familiar with the terminology and conventions concerning
grammars and parsers [1, 2, 3]. Thus, just little of the usual terminology and conventions
are repeated in the following.

Context-free grammars have the form G = (N,Σ, P, S ′), where N is a finite set of non-
terminal symbols, Σ is a finite set of terminal symbols, P is a finite set of productions,
which are elements of (N, V ∗), where V = N ∪ Σ, and S ′ is the start symbol.

All grammars are assumed to be reduced and to have the production S ′ → S, where S ′

does not occur in any other production.

Lowercase Greek letter, such as α, β, γ are in V ∗; the Greek letter ε denotes the empty
string; lowercase italic letters near the beginning of the alphabet, such as a, b, c, are in Σ;
uppercase italic letters near the beginning of the alphabet, such as A,B,C, are in the set
N of non-terminal symbols. The symbol ` represents the end-of-file mark.

An LR(0) item is written in the form [A→ α · β], where A→ αβ is in P. Similarly, an
LR(1) or LALR(1) item is written in the form [A→ α · β, u], where u ∈ Σ. A canonical
collection is a collection of sets of itens, each set corresponds to a parser state.

The following definitions have been adapted from [4].

1

Definition 1 Let G be a context-free grammar. The LR(k) machine for grammar G is
LRMG

k = (MG
k , ISG

k ,GOTOG
k), where k ≥ 0, MG

k is a set of LR(k) states, each state
corresponds to a set of itens in the canonical collection of LR(k) itens. ISG

k is the initial
state. GOTOG

k is the state transition mapping of type: MG
k × V →MG

k .

Definition 2 Let Ii be a state of an LRMG
1 machine . Then

CORE(Ii) =
⋃
{[A→ α · β] | [A→ α · β, u] ∈ Ii}

Definition 3 Let Q, T ıMG
0 , X ∈ V and α ∈ V ∗. Then

PRED(T, α) =

{
{T} if α = ε⋃{PRED(Q,α′) | GOTOG

1 (Q,X) = T} if α = α′X

The following theorem provides the basis to construct an algorithm to compute look-ahead
sets of LR(1) itens by directly searching the LR(0) machine associated with the canonical
collection.

Theorem 1 Let T,Q ∈MG
0 . Then

1. LR([S ′ → ·S], ISG
0) = `

2. LR([A→ α · β], T) =
⋃{LR([A→ ·αβ], Q) | Q ∈ PRED(T, α)}

3. LR([A→ ·αβ], T) =
⋃{FIRST(ψ) | [B → ϕ · Aψ] ∈ T} − {ε} ∪⋃{LR([B → ϕ · Aψ], T) | [B → ϕ · Aψ] ∈ T ∧ ψ ∗⇒ ε}

Proof: The proof of this theorem can be found in [4], and thus, is omitted here.

3 Spector’s Parser Generator

Spector proposes to compute the full LR(1) look-ahead sets in three stages [5]:

1. Create the LR(0) collection and construct the LR(0) machine, as it is usually done
in the construction of LALR(1) tables.

2. Apply an algorithm derived from Theorem 1 to compute the look-ahead sets of all
itens, thus transforming the LR(0) machine into an LALR(1) machine [4].

2

3. Resolve conflicts of inadequate states by searching the LALR(1) machine in the
following way:

(a) Each inadequate state is split into separate states, one for each transition into
it.

(b) Then the look-ahead sets of the itens of each of these separate states are com-
puted.

Spector successfully hand-applied his method to a variety of small grammars of various
types and invited the reader to complete the algorithm and prove it correct, that is, that
it generates full LR(1) parse tables for LR(1) grammars.

However, the proposed algorithm does not work correctly at all times. There are LR(1)
grammar for which the above algorithm fails to produce their unambigous LR(1) table.
In the following sections a counter-example is presented and a sub-class of these LR(1)
grammars is identified.

4 An Counter-Example

Consider the following LR(1) grammar G1 = (N,Σ, P, S ′), where N = {S ′, S, A,B,D,E},
Σ = {a, b, c, d} and the set of productions P is:

1. S ′ → S 6. D → Bc
2. S → aEc 7. D → A
3. S → bDd 8. E → A
4. A → ab 9. E → Bd
5. B → ab

The canonical LR(1) colection for grammar G1 computed via Spector’s algorithm [5] is:

3

I0 : S ′ → ·S,`
S → ·aEc,`
S → ·bDd,`

I1 : S ′ → S·,`

I2 : S → a · Ec,`
E → ·Bd, c
E → ·A, c
B → ·ab, d
A → ·ab, c

I3 : S → b ·Dd,`
D → ·Bc, d
D → ·A, d
B → ·ab, c
A → ·ab, d

I4 : B → a · b, c/d
A → a · b, c/d

I5 : B → ab·, c/d
A → ab·, c/d

I6 : S → aE · c,`

I7 : S → aEc·,`

I8 : E → B · d, c

I9 : E → Bd·, c

I10 : E → A·, c

I11 : S → bD · d,`

I12 : S → bDd·,`

I13 : D → A·, d

I14 : D → B · c, d

I15 : D → Bc·, d

State that corresponds to I5 is inadequate because it presents a reduce-reduce conflict.
Thus, according to Spector’s paper grammar G1 is incorrectly considered non-LR(1).

However, grammar G1 is LR(1), although not LALR(1). In fact, the following LR(1)
canonical collection with no conflicts was computed by algorithm proposed in [3]:

4

I0 : S ′ → ·S,`
S → ·aEc,`
S → ·bDc,`

I1 : S ′ → S,`

I2 : S → a · Ec,`
E → ·Bd, c
E → ·A, c
B → ·ab, d
A → ·ab, c

I3 : S → b ·Dd,`
D → ·Bc, d
D → ·A, d
B → ·ab, c
A → ·ab, d

I4 : B → a · b, d
A → a · b, c

I5 : B → a · b, c
A → a · b, d

I6 : B → ab·, d
A → ab·, c

I7 : B → ab·, c
A → ab·, d

I8 : S → aE · c,`

I9 : S → aEc,`

I10 : E → B · d, c

I11 : E → Bd·, c

I12 : E → A·, c

I13 : S → bD · d,`

I14 : S → bDd·,`

I15 : D → A·, d

I16 : D → B · f, d

I17 : D → Bf ·, d

Therefore, there are LR(1) grammars for which Spector’s method for computing full
LR(1) parsing table fails. In fact, there are grammars for which the proposed mechanism
of splitting inadequate states is not enough to recover all the information needed to resolve
conflicts introduced when LR(1) states with the same core were merged. In the following
section this class of grammar is characterized.

5 Generalization

Consider a grammar G = (N,Σ, P, S ′), whose LR(1) canonical collection CA has the form

CA = {. . . , Ii, Ik, Ip, Iq, · · ·}

where

5

• Ii = {[A→ α · b, d], [B → α · b, c]}

• Ik = {[A→ αb·, d], [B → αb·, c]}

• Ip = {[A→ α · b, c], [B → α · b, d]}

• Iq = {[A→ αb·, c], [B → αb·, d]}

• GOTOG
1 (Ii, b) = Ik

• GOTOG
1 (Ip, b) = Iq

Notice that CORE(Ii) = CORE(Ip) and CORE(Ik) = CORE(Iq).

Assume that CORE(Ii)∩CORE(Ij) = Φ, for all j 6= p and j 6= i , and that, for all s 6= q
and s 6= k, CORE(Ik) ∩ CORE(Is) = Φ. These assumptions imply that Ik and Iq have
each just one predecessor state, which are Ii and Iq, respectively.

The lookahead sets for states Ik and Iq are disjoint, therefore these states are not in-
adequate. Assuming that CA does not have any other inadequate states, grammar G is
LR(1).

On the other hand, if Spector’s algorithm had been used to compute LR(1) itens, the
resulting canonical collection CS would have the states Ir and It in place of Ii, Ik, Ip and
Iq, such that:

• Ir = {[A→ α · b, c/d], [B → α · b, c/d]}

• It = {[A→ αb·, c/d], [B → αb·, c/d]}

• GOTOG
1 (Ir, b) = It

State It of CS is clearly inadequate. Since Ir is the only predecessor state of It, it is not
possible to split It into separate states, and, therefore, the conflict remains unresolved,
although G had been assumed to be an LR(1) grammar.

6 Conclusions

There is a class of LR(1) grammars for which the algorithm proposed in [5] fails to produce
full LR(1) parser tables. Grammars in this class have associated LR(0) canonical collection
containing inadequate states that cannot be separated because they all have only a single
transition into them. This usually happens when two or more path containing more than

6

one state in the LR(1) machine are merged into a common path in the LR(0) machine.
With this class of grammars, it would be necessary to modify the splitting algorithm to
backwardly search the LR(0) machine for the appropriate predecessors of the inadequate
state that can be split.

References

[1] Aho , A. V.,and Ullman, J. D., The Theory of Parsing, Translation, and Compiling,
Vols. 1 e 2, Prentice-Hall, Englewood Cliffs, N.J., 1972.

[2] Aho, A. V. and Johnson, Principles of Compiler Design, Addison-Wesley Publishing
Company Co, 1977.

[3] Aho A. V., Sethi, R. and Johnson, Principles of Compiler Design, Addison-Wesley
Publishing Company Co, 1986.

[4] Kristensen, B. B. and Madsen, O. L., “Methods for Computing LALR(k) Lookahead”,
ACM Transaction on Programming Languages and Systems, Vol 3, No 1, January
1981, pp 60–82.

[5] Spector, David, “Full LR(1) Parser Generation”, ACM Sigplan Notices, Vol. 16, No

8, August 1981.

[6] Spector, David, “Efficient Full LR(1) Parser Generation”, ACM Sigplan Notices, Vol.
23, No 12, December 1988.

[7] Pager, David, “A Practical General Method for Constructing LR(k) Parsers”, Acta
Informatica 7, 249-268, 1977.

[8] Wethrell, C.S, and Shannon, A.S., Letter to the Editor, ACM SIGPLAN Notices,
Volume 14, No 3, March 1979, pp 3.

7

