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Chapter 1

The Semantics Definition Language
SCRIPT

1.1 Introduction

SCRIPT is a functional language aimed to to provide a well-suited notation for conveying
denotational semantic descriptions of programming languages in a structured fashion. To
that end, issues such as description modularization, structural type equivalence, control of
visibility, encapsulation, inheritance and dynamic binding have been incorporated in the
language’s structure.

SCRIPT is a special purpose object oriented computer-processable language so that
denotational semantic descriptions can be effectively executed and debugged with the help
of computers.

Mosses’ SSL and DSL notations[3, 9, 10] have been taken as SCRIPT ’s starting point
in the sense that many of its features have been adopted, notably grammar and abstract
syntax specification notation, tuples, lists, parse tree nodes, patterns, CASE and LET
notations. Other features such as list comprehension came from widely known functional
languages Miranda[18] and ML[1].

A SCRIPT program is formed by three kinds of modules. There is a special module
called PROJECT, which basically describes the environment in which SCRIPT programs
are processed. The environment includes the idenfication of the main function of a formal
definition, the input and output files associated with the main function domain, and the
modules that compose an entire formal definition. There can exist only one PROJECT

module per definition.

Another distinguised module is the SYNTAX module, which specifies the concrete and
abstract syntax of a language. The syntactical elements of a language, whose syntax is
defined by sections SYNTAX and LEXIS of this kind of module, serve to generated translators
to render programs in the defined language into a λ-calculus notation for abstract syntax.
There can exist only one SYNTAX modules per definition.

The third type of modules, simply referred to as MODULE, serves to encapsulate domain
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2 CHAPTER 1. THE SEMANTICS DEFINITION LANGUAGE SCRIPT

and function definitions. These modules consist of the following optional sections:

• EXPORTS: identifies the entities exported by the module;

• IMPORTS: specifies the entities imported by the module;

• DOMAINS: declares variables and defines domains;

• DEFINITIONS: defines functions and other values.

Each SCRIPT module (PROJECT, SYNTAX or MODULE) can be separately compiled into
an enriched version of λ-calculus, and ultimately linked together to form a machine pro-
cessable denotational definition.

1.2 Basic Symbols

The reserved keywords of SCRIPT are:

AND AUG CASE CAT CONC COMPONENTS

DEF DIV DOMAINS EL END EQ

EXPORTS EXT FF FIX FOR GE

GT IMPORTS IN INFILES IS LAM

LE LET LEXIS LT MAXINT MININT

MINUS MODULE MULT N NE NOT

NUMBER OR OUT OUTFILE PRE PLUS

PROJECT Q QUOTE REM RENAMES SIZE

SYNTAX T THIS TRUTH TT UNIT

VAL

The special symbols are:

. " { } = ^ , $ < > ; ’ | + - / * ! : [ ] ? ( )

1.3 SCRIPT Comments

Comments in SCRIPT descriptions start either with the symbol “!” or with “--”, and
end with the next line-feed or form-feed ASCII characters.

1.4 Syntax Summary

1.4.1 SCRIPT Modules

script ::= module+ ;
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module ::= "PROJECT" project-ide pro-section* "END" project-ide ;

| "SYNTAX" syntax-ide syn-section "END" syntax-ide ;

| "MODULE" module-ide mod-section* "END" module-ide ;

project-ide ::= proper-noun ;

pro-section ::= imports | domains | infiles | outfile | components ;

syntax-ide ::= proper-noun ;

syn-section ::= syntax domains lexis ;

module-ide ::= proper-noun ;

mod-section ::= exports | imports | domains | definitions ;

1.4.2 Project Section

infiles ::= "INFILES" file-defn+ ;

outfile ::= "OUTFILE" file-defn ;

file-defn ::= domain-ide "=" filename ;

filename ::= quotation ;

components ::= "COMPONENTS" filename+-"," ;

1.4.3 Exports Section

exports ::= "EXPORTS" exported-item+-"," ;

exported-item ::= closed-domain

| open-domain

| domain-ide "." var-ide

| var-ide ;

closed-domain ::= domain-ide ;

open-domain ::= open-sign domain-ide ;

open-sign ::= "*" ;
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1.4.4 Imports Section

imports ::= "IMPORTS" windows ;

windows ::= window+-";" | window+ ;

window ::= module-ide "(" imported-item+-"," ")" ;

imported-item ::= item | new-item "RENAMES" item ;

item ::= closed-domain | open-domain | var-ide ;

new-item ::= domain-ide | var-ide ;

1.4.5 Domains Section

domains ::= "DOMAINS" dom-decl+-";" ;

dom-decl ::= variable+-"," ":" domain-ide "=" dom-exp

| variable+-"," ":" domain-ide

| variable+-"," ":" "=" dom-exp

| domain-ide "=" dom-exp ;

variable ::= common-noun | domain-ide "." fun-ide ;

domain-ide ::= proper-noun | builtin-dom ;

var-ide ::= common-noun digit* prime* rep-op* ;

builtin-dom ::= "Q" | "T" | "N" ;

dom-exp ::= dom-a+-"|" ;

dom-a ::= dom-b "->" dom-a | dom-b ;

dom-b ::= dom-of-tuple | dom-of-node | dom-of-list

| domain-ide | quotation | "(" dom-exp ")" ;

dom-of-tuple ::= basic-tuple

| dom-of-tuple "EXT" basic-tuple ;

basic-tuple ::= "(" field*-"," ")" | tuple-ide ;
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tuple-ide ::= domain-ide ;

field ::= field-ide ":" dom-exp | field-ide | dom-exp ;

field-ide ::= var-ide ;

dom-of-node ::= "[" dom-c* "]" ;

dom-c ::= domain-ide rep-op* | quotation ;

dom-of-list ::= dom-b rep-op* ;

1.4.6 Syntax Section

syntax ::= prod-range+-";" ;

prod-range ::= production | range ;

production ::= nonterminal "::=" alternative+-"|" ;

range ::= nonterminal "===" spec+-"|"

| nonterminal "=/=" spec+-"|" ;

lexis ::= "LEXIS" unit-def prod-range+-";" ;

unit-def ::= "UNIT" "::=" nonterminal+-"|" ;

alternative ::= element* ":" exp | element* ;

element ::= grammar-sym sep-op terminal | grammar-sym rep-op

| grammar-sym ;

grammar-sym ::= nonterminal | terminal ;

nonterminal ::= common-noun ;

terminal ::= quotation ;

sep-op === "*-" | "+-" ;

spec ::= terminal | one-char-str ".." one-char-str ;
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one-char-str ::= quotation ;

1.4.7 Definitions Section

definitions ::= "DEFINITIONS" def-binding* ;

def-binding ::= "DEF" definition ;

definition ::= lhs "=" exp | lhs ":" dom-exp "=" exp ;

lhs ::= pattern-exp | fun-head pattern-exp* ;

fun-head ::= fun-ide | domain-ide "." fun-ide ;

fun-ide ::= common-noun digit* ;

pattern-exp ::= pattern-exp pat-di-op pattern-a | pattern-a ;

pattern-a ::= pat-mon-op pattern-a | pattern-b ;

pattern-b ::= "(" pattern-exp*-"," ")"

| "[" pattern-exp* "]"

| pattern-c ;

pattern-c ::= var-ide | var-ide ":" dom-b | literal-const ;

pat-di-op ::= "PRE" | "EXT" ;

pat-mon-op ::= "NUMBER" | "QUOTE" | "TRUTH" | "VAL" ;

exp ::= "LAM" pattern-exp "." exp

| "FIX" pattern-exp "." exp

| let-binding+ "IN" exp

| exp-a "->" exp else-symbol exp

| exp-a updating-exp

| exp-a seq-op exp

| exp-a ;

let-binding ::= "LET" definition ;

else-symbol ::= "ELSE" | "," ;

exp-a ::= exp-b "IS" pattern-exp | exp-b ;
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exp-b ::= exp-b di-op exp-c | exp-c

exp-c ::= mon-op exp-c | exp-d ;

exp-d ::= exp-d exp-e | exp-e ;

exp-e ::= case-exp | tuple-exp | list-exp | node-exp | exp-f ;

case-exp ::= "CASE" exp-a clause+ "END"

clause ::= "/" pattern-exp+-"/" "->" exp ;

list-exp ::= "<" exp*-"," ">"

| exp-a ".." exp-a

| "<" exp "|" qualifier+-"|" ">" ;

qualifier ::= generator | filter ;

generator ::= pattern-exp "<-" source-exp ;

source-exp ::= exp-a ;

filter ::= exp-a ;

tuple-exp ::= "(" exp*-"," ")" ;

node-exp ::= "[" exp* "]" ;

exp-f ::= literal-const | var-ide | fun-design | "THIS"

| field-qualif ;

fun-design ::= fun-ide | exp "." fun-ide | fun-ide "^" ;

field-qualif ::= exp "." field-ide

updating-exp ::= "{" exp+-"," "/" exp+-"," "}" ;

seq-op ::= ";" | "$" ;

1.4.8 Miscellaneous

uppercase ::= "A" .. "Z" ;
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lowercase ::= "a" .. "z" ;

anycase ::= lowercase | uppercase | "-" ;

proper-noun ::= uppercase anycase ;

common-noun ::= lowercase anycase ;

digit ::= "0" .. "9" ;

prime ::= "’" ;

rep-op ::= "*" | "+" ;

di-op ::= "AND" | "OR" | "EQ" | "NE" | "LS" | "GR"

| "LE" | "GE" | "PLUS" | "MULT" | "DIV" | "REM"

| "CAT" | "AUG" | "PRE" | "EL" | "EXT"

mon-op ::= "NOT" | "NUMBER" | "QUOTE" | "TRUTH" | "CONC"

| "SIZE" | "VAL" | "NEG" | "OUT" ;

literal-const ::= number | quotation | "TT" | "FF" | "MAXINT"

| "MININT" | "?" ;

number ::= digit+ | "-" digit+ ;

quotation ::= "\"" quotation-ch* "\"" ;

quotation-ch ::= char-1 | special-char ;

char-1 =/= "\\"

special-char ::= "\b" | "\\" | "\ddd" | "\r" | "\f" | "\t"

| "\n" | "\0" | "\"";



Chapter 2

Syntax Specification

2.1 Introduction

The purpose of the syntax specification module is to provide a notation for specifying con-
crete syntax of a programming programming language and for indicating how the abstract
syntax parse tree for programs in the language can be derived from a given concrete syntax.
The syntax module is composed of three sections named SYNTAX, DOMAINS and LEXIS.

2.2 Syntax Specification

The SYNTAX section consists of a set of production rules of a context free grammar. Each
production has a nonterminal symbol to the left of “::=”, and a list of alternatives, sepa-
rated by “|”, to the right.

The first production occuring in the SYNTAX section defines the grammar starting sym-
bol. Nonterminal symbols of the grammar are formed from lower-case letters and dashes. A
terrminal symbol of the grammar is a quotation, which consists of a sequence of characters
written in quotes (").

A list of repeated terminal or nonterminal symbols can be specified as an iterator, which
can written as:

• x* = zero or more occurences of grammar symbol x,
• x+ = one or more occurences of grammar symbol x;
• x+-t = zero or more occurences of grammar symbol x, separated by terminal t.
• x+-t = one more occurences of grammar symbol x, separated by terminal t.

A production alternative defines a possibly empty sequence of terminals, nonterminals
or iterators. For example, the classical grammar for expression can be specified as:

exp ::= exp "+" term

| term ;

term ::= term "*" factor

9
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| factor ;

factor ::= ide | constant | "(" exp ")" ;

There is also a special kind of production rules called range, whose syntax is borrowed
from [10]. Ranges are production rules whose alternatives can only be a single terminal
symbol or an interval of ASCII characters. The value produced is always the specified ter-
minal symbol recognized as a quotation. Ranges are distinguised from normal production
rules by the use of the symbols “===” or “=/=” to separate the production sides instead of
“::=”. The “===” symbol defines the left hand side as the set of terminal specified in the
alternatives and the “=/=” symbol defines it as the complement of the specified set.

In the example

digit === "0" .. "9" ;

comment-char =\= ";" ;

the range defined by digit above is equivalent to:

digit === "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

and comment-char is anything but a semicolon.

2.3 Domains and Abstract Syntax

From the concrete syntax specification, the SCRIPT compiler generates parse-tables,
scanner routines and ultimately produces a compiler that translates programs in the spec-
ified language into abstract syntax tree code. Normallly, the abstract syntax tree is gener-
ated during the program parsing by creating nodes corresponding to productions involved
in the recognition process. Unless specified otherwise, nodes are constructed from the val-
ues associated with each grammar symbols occurring in the production alternative. The
value associated with terminal symbols is the terminal itself, i.e., a quotation. The value as-
sociated with nonterminal is the value produced when the nonterminal was reduced by the
parser. The label of each node is the concatenation of the domain names of the grammar
symbols occuring in the corresponding production alternative. The domain of terminal is
the quotation itself. The domain of noterminals can be inferred by default, by capitalizing
its first letter, or it is explicitly declared in a DOMAINS section. The resulting node becomes
the value associated with the nonterminal on the left hand side of the production rule.

However, if a different value is desired, a value-expression can be attached to the pro-
duction alternative. In this case, the value produced is that of the attached expression,
which, in principle, can be an expression of any type. A value-expression is any valid
SCRIPT expression whose operands are terminal or nonterminal symbols occurring in
the corresponding production altenative. The value of each operand is that of the value
expression implictly or explicitly associated with it. Repeated nonterminals should be
referenced in the same order they appear in the production alternative so as to avoid
ambiguity.
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This facility for producing abstract syntax tree allows the following type of transfor-
mations:

1. Elimination of precedence information present in concrete syntax specifications by
an appropriate domain specification.

2. Placement of constructs with similar semantic properties in a single syntactic domain,
while making sure that domains with different semantic roles are distinct.

3. Elimination of production rules which lose their semantic significance after the op-
erations described in items above are performed. These are, in general, productions
that would only yield extra “chain-reduction” nodes in the parse tree.

4. Elimination and addition of delimiters (terminal symbols) to simplify and unify the
structure of constructs.

5. Change of the order of occurrence of the constituents of constructs. For example,
if a+b, +ab and ab+ are different representations of the same expression, it might
be desirable to reorder the components of some of them in order to have just one
abstract form. Operations of this type are useful to reduce the number of semantic
equations.

For example, given the production rule:

exp ::= exp "+" factor | factor ;

where exp and factor are in the domain Exp, the resulting abstract syntax production
would be:

Exp = [ Exp "+" Exp ] | [ Exp ];

Nodes which correspond to alternatives that contain only one nonterminal symbol,
such as [Exp] above, can be eliminated by making that nonterminal symbol itself the
corresponding value-expression, as in:

exp ::= exp "+" factor

| factor : exp;

It is also possible to delete or add terminal symbols to abstract syntax alternatives even
if they do not exist in the concrete specification. The example that follows illustrates this
system capability. Suppose we have the following productions and value-expressions:

SYNTAX

s-exp ::= s-exp s-exp-seg : [ "(" s-exp "." s-exp-seg ")" ];

func ::= "label" "[" ide ";" func "]" : [ "label" ide ";" func ] ;

and the domain specification

DOMAINS

s-exp, s-exp-seg : S;

func : F;

ide : Ide;
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The resulting abstract syntax is:

S = [ "(" S "." S ")" ]

F = [ "label" Ide ";" F]

2.4 Lexical Specification

The LEXIS section of a syntax module always starts with a fixed production rule of the
form:

unit-def ::= "UNIT" "::=" nonterminal+-"|"

where each production alternative specifies the units which are to be recognized by a parser
associated with LEXIS. The left part of this production rule is always the keyword UNIT,
whereas the right part is as usual, except that the attached value-expressions must be
tuples, each denoting the token value to be returned by the generated scanner.

All quotations ocurring in the SYNTAX section cause an implicit addition of a suitable
alternative to the definition of UNIT, so all terminal cited in the grammar can be prop-
erly recognized. This automatic inclusion is not performed if the quotation is marked by
keyword OUT.

2.5 A Small Example

SYNTAX MiniL

prog ::= "program" body "end" ;

body ::= "read" id ";" cmd+-";" ";" "write" exp

: ["read" id cmd+ "write" exp];

cmd ::= id ":=" exp | cmds

| "while" exp "do" cmds "end" ;

cmds ::= cmd+-";" : cmd+ ;

exp ::= "ID" id | "suc" exp | "NM" num;

LEXIS

UNIT ::= id : (OUT "ID", id) ;

| num : (OUT "NM", num) ;

id ::= letter+ : QUOTE letter+;

letter === "a" .. "z" ;

num ::= digit+ : NUMBER digit+;

digit === "0" .. "9" ;

END MiniL



Chapter 3

Domains

3.1 Introduction

SCRIPT domains are complete partial orders with a minimal element bottom [11, 12, 13,
14, 15, 16, 17, 19, 20]. Domains have properties to guarantee that solutions of possibly
reflexive domain equations always exist up to isomorphism. The special value bottom, which
is not directly representable in SCRIPT , serves to model the semantics of nontermination.
Every domain also contains a special undefined value, which is represented as “?”, and is
used to indicate the value of semantically non sensical expressions.

3.2 Domain Identifiers

A domain name consists of a sequence of one or more letters, possibly containing embed-
ded hyphens ("-"), and that always starts with a capital letter, e.g., Store, Command,

Environment. Domain names denote built-in standard domains or user defined domains.

3.3 Standard Domains

Domains N, Q, T and ? are standard, and thus directly available in every semantic def-
inition, and each has a number of pre-defined operations. In these operations, if any of
the operands is undefined (?) or bottom, the result of the operation is undefined or bottom
respectively, otherwise it denotes the expected value.

3.3.1 Domain of Integers

N is the flat domain [16] of integer numbers. The defined operations on members n1 and
n2 of N are listed below.

• n1 PLUS n2 - add
• n1 MINUS n2 - subtract

13
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• n1 MULT n2 - multiply
• n1 DIV n2 - divide
• n1 REM n2 - remainder
• NEG n1 - change sign
• n1 LT n2 - less
• n1 LE n2 - less or equal
• n1 GT n2 - greater
• n1 GE n2 - greater or equal
• n1 EQ n2 - compare equal
• n1 NE n2 - compare not equal

Constants in domain N are the integer decimal numbers in the range MININT..MAXINT.
MAXINT and MININT are pre-defined symbolic constants. Negative numbers are represented
as usual, e.g. -32768.

3.3.2 Domain of Quotations

Q is the flat domain of quotations or strings. If q, q1 and q2 are in domain Q, and q* in
domain Q* of list of quotations, the following operations are defined:

• q1 LT q2 - less in lexographic order
• q1 LE q2 - less or equal
• q1 GT q2 - greater
• q1 GE q2 - greater or equal
• q1 EQ q2 - compare equal
• q1 NE q2 - compare not equal
• q1 CAT q2 - the quotation formed by the concatenation of quotations q1 and q2.
• QUOTE q* - the quotation whose characters are the concatenation of the elements of

list q*. For instance, the expression QUOTE <"This", " is", " ", "it"> denotes
quotation "This is it".
• NUMBER q* - the decimal number whose digits are the components of q*, which must

have at least one component. Otherwise it is the value undefined.
• TRUTH q* - the value TT if q* is <"T","T">; the value FF if q* is <"F","F">; otherwise

it is undefined.

The allowed constants in domain Q are strings or quotations, which are sequences of
ASCII characters enclosed in quotes ("), e.g., "This is a quotation!".

Special characters are entered in quotations as shown below:

Name Coded as Name Coded as Name Coded as

backspace \b carriage return \r newlines \n

backslash \\ form feed \f null character \0

bit pattern \ddd horizontal tab \t quote \"
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For example,
"She said: \"This is a quotation\""

denotes the quoting of
She said: "This is a quotation".

3.3.3 Domain of Truth Values

T is the flat domain of truth-values. If t1 and t2 are expressions in the domain T of
truth-values, then the following operations are valid:

• t1 AND t2 - logical and
• t1 OR t2 - logical inclusive or
• NOT t1 - logical negation
• t1 EQ t2 - compare equal
• t1 NE t2 - compare not equal

The constants in domain T are TT and FF, for true and false, respectively.

3.3.4 Domain of Undefined Values

The flat domain of undefined values is represented by the symbol ?. Any SCRIPT opera-
tor can be applied to undefined value ?; the result is always undefined. Functions can also
be applied to ?, but the result depends on the evaluation of the function’s body, because
SCRIPT implements the lazy mechanism for parameter passing [4, 8]. Any function can
also return the undefined value.

3.4 Constant Domains

All quotations are in domain Q. However, for technical reasons, any quotation occurring in
places where a domain is expected is considered to represent the domain whose only proper
non-bottom element is the quotation itself. The name of this domain is the quotation itself.
For instance:

DOMAINS

Mode = "int" ;

The string "int" when occurring in domain expressions denotes a domain containing
only the quotation "int".

3.5 Variable Declaration

An identifier denoting a variable, i.e., a function, a field name or other values, consists of a
sequence of one or more letters, possibly containing embedded hyphens (“-”), and that al-
ways starts with a lower-case letter. Variable identifiers may also be “decorated” (suffixed)
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by sequence of decimal digits and/or primes, and optionally ended by a sequence of "*"
and/or "+" signs to suggest that they are lists. The following are valid SCRIPT variables:
r-value, r-value*, r-value1, r-value1*, r-value’, r-value1’’.

Variable declarations serve the purpose of associating undecorated variables with their
domains, and, if necessary, to provide denotations for new user defined domains. A decla-
ration has the following general format:

variable names : domain name = domain expression ;

whose parts may be omitted in a particular definition as long as at least two of them are
present. The delimiters (“:”,“=”,“;") must be always present so that the declared elements
can be easily identified by the compiler. For example, the following variable declarations
illustrate of the possible cases:

DOMAINS

a,b,c : A = N -> N ;

d,f,g := (f1:N, a*, b:Q)

B = (N) -> N ;

x,y,z : (A) ;

Variables a, b and c above are in domain A, which is the domain of functions from N

to N. Variables d, f and g are tuples of three components of type N, A* and Q. B is defined
to be the domain of functions from tuples (N) to N. And finally, variables x, y and z are
one component tuples containing a function from N to N.

Not all variables need be declared. In fact, decorated variables can never be explic-
itly declared. Unless a variable is explicitly declared, SCRIPT adopted the following
convention:

• Any undecorated variable is assumed to be in the domain whose name is that of the
variable with the first letter capitalized.
• Any variable decorated with primes and/or decimal digits is implicitly in the same

domain as its corresponding undecorated version. For example, undeclared variables
s, s1 and s’ are by default in the domain S.
• if a is in domain A, then the occurrences of a+ and a* are interpreted as member of
A+ and A* respectively.

These conventions are intended to contribute to description compactness and conve-
nience of writing. Since they are very simple and uniform, no loss of readability is expected.

Variables may be declared in a DOMAINS sections or at the binding points. For instance,

DEF f ( n ) : Q = ...

DEF f n1 : Q = ...

declares two functions, both named f: one, in the domain (N) -> Q, maps tuples whose
single component is in N to Q, and the other is in the domain N -> Q. The domains of the
function arguments are used to resolve the name overloading.
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3.6 User Defined Domains

There exists a variety of domain operators so that the user can create domains expressions
denoting more complex domains to model syntactic or semantic properties of programming
languages.

Domain expressions normally occur in DOMAINS sections as the denotations of new
domains, but they can also be attached to any variable name occurring in binding context
in order to provide their domains locally. A domain expression may be a domain name, a
quotation, which is assumed to denote a domain whose only proper element is that constant,
or a combination of simpler domain expressions and domain operators. Particularly, a
domain expression may denote union of domains, domain of tuples, domain of lists, domain
of nodes or domain of functions.

In the following , assume that d, d1, · · · , dn are arbitrary domain expressions, D1, · · · , Dn

are domain identifiers or quotations, q is a quotation and a1, · · · , an are variable identifiers.

3.6.1 Union of Domains

The domain expression d1 | . . . | dn represents the union of the domains denoted by
expressions d1, d2, . . . , dn. SCRIPT uses plain union (|) as opposed to separated sum (+)
of D. Scott [14]. This approach relieves the user of having to cope with projections and
injections between a sum and its summands throughout denotational descriptions. So the
domain of values need not to be carried at run-time. Note, however, that to ascertain
from which operand of a union a given value came, it necessary that the operands are
distinguishable by the enquiry operation IS, which will be defined later.

3.6.2 Domain of Tuples

The domain expression (a1 : d1, . . . , an : dn) represents the domain of n-tuples whose i-th
component is in the domain denoted by di, and can be selected by field identifier ai, for
1 <= i <= n. This is the cartesian product of domains. For any component, either its
field name or its corresponding field domain may be omitted. If the domain of a field is not
specified, the default domain is assumed. The domain denoted by the expression above is
(d′1, . . . , d

′
n), where each d′i, for 1 ≤ i ≤ n, is either the domain di explicitly specified or

assumed by default from the name of the field ai.
Domains of tuples are extensible in the sense that a tuple domain can be defined as an

extension of another domain of tuples. The expression d1 EXT d2 represents the domain
of tuples extended from the domain of tuples d1, i.e., it denotes a domain of tuples whose
elements are the concatenation of the elements of tuples in d1 followed by the elements of
tuples in d2. The heading components of the extended tuple have the same field names as
those of its base tuple, and field names cannot be repeated.

If the domain declaration A = B EXT c, where B is a domain name and c denote domains
of tuples, then A is defined to be a direct extension of domain B, and B is a direct base of
A. Thus, a domain A is defined to be an extension of a domain B if
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1. A and B are the same domain identifier or
2. A is a direct extension of an extension of B.
3. The domains of the fields of B are the equivalent to domains of the heading fields of
A, in the same order. The names of the fields are irrelevant.

Conversely, a domain B is a base of a domain A if A is an extension of B.
There are two operations defined on tuples: field selection and tuple construction.

Field Selection

Selection of fields of tuples is expressed via the dot notation t.f, where t is a tuple expres-
sion and f is one of its field names.

Tuple Construction

Tuples can be constructed by explicitly enumerating its components by means of the nota-
tion (e1, · · · , en) where expressions ei, for 1 ≤ i ≤ n, define the values of the components.
Note that pairs of parentheses are always an operator to build tuples, and so they must be
used consciously.

A new tuple can also be created from another by redefining some of its fields. This kind
of tuple is called updating tuple and is of the form t{ v1, · · · , vn/f1, · · · , fn }, where t and
vi are expressions, fi field names, for 1 ≤ i ≤ n. This operation creates a new tuple which
has the same components of tuple resulting from the evaluation of expression t, except
that the components identified by fields fi contains the values of vi.

The tuple extension operator EXT, when applied to domains, mainly serves to highlight
the existing relation on the given pair of domains. Indeed, it is possible to altenatively
create extended tuples directly, just listing all their components. EXT can also be applied
to tuples in order to construct bigger tuples by concatenating them. In the example below,
both A-elem, B-elem and C-elem are valid extensions of Stk-elem, and a-elem1 is defined
by extending stk-elem0.

DOMAINS

Stk = Stk-elem* ;

Stk-elem = (a : N) ;

A-elem = Stk-elem EXT (b : N);

B-elem = A-elem EXT (c : N, d : N) ;

C-elem = (N, N, N, N) ;

DEFINITIONS

DEF stk0 = <>

DEF stk-elem0 =(1)

DEF push(stk)(stk-elem) : Stk = stk-elem PRE stk
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DEF mark(stk-elem)(n) : Stk-elem = stk-elem{n/a}

DEF teste : Stk =

LET a-elem1 = stk-elem0 EXT (2)

LET a-elem2 = mark(a-elem1)(100)

LET b-elem1 = (11,12,13,14)

LET c-elem1 = (21,22,23,24)

LET stk1 = push(stk0)(a-elem2)

LET stk2 = push(stk1)(b-elem1)

LET stk3 = push(stk2)(c-elem1)

IN stk3

Tuple a-elem1 has all the elements of stk-elem0 followed to a element with value 2.
Domain Stk is the domain of finite lists of components whose base type is Stk-elem. Note
that the formal parameter of functions push and mark can correspond to any extension of
Stk-elem, which makes these functions truly polymorphic [6]. Note that the expression
stk-elem{n/a} denotes a value constructed from that currently bound to stk-elem.

3.6.3 Domain of Lists

Expressions of the form d+ denotes domains of finite non-empty lists whose components
are in d. d* is the domain of possibly empty finite list whose components are in d. An
instance of a list is denoted as <a1, a2, · · · , an>, where each ai ∈ d, for 1 ≤ i ≤ n.

Assume that e, e1, . . . , en are arbitrary SCRIPT expressions, and x a variable name.
Lists can be built up and manipulated by means of the following operations: creation,
indexing, length, concatenation and augmentation.

List Creation

The operations to create new lists are: list enumeration, list range, list updating and list
comprehension.

List enumeration is an operation to create lists by enumerating their components by
means of the notation < e1, · · · , en>, where all expressions ei, for 1 ≤ i ≤ n are in the same
domain. The domain of the list is the domain of the elements suffix by “*”. The empty list
is denoted as <>. The exacty domain of the empty list depends on the context it occurs.

List range is an operation to create lists of integer values or lists of character values
via interval specification of the form e1..e2, where e1 and e2 are either integer expressions
or character constants. The interval specification denotes a list containing the sequence
of all values in a given range. For instance, 10..12 represents the list <10,11,12>, and
"d".."f" denotes the list <"d","e","f">.

List comprehension is another notation to built lists. It employs a syntax adapted from
conventional mathematics for describing sets. Its syntax is <e | p1 <- s1 | f1 | · · · fn>,



20 CHAPTER 3. DOMAINS

where e is any valid expression and, for 1 ≤ i ≤ n, pi is a pattern-expression (see section
4.3), si a list expression called source list, and fi a logical expression called filter. The
identifiers occurring in pi are successively bound to elements drawn from the corresponding
source list and may be used in e or fi. Terms of the form pi <- si are called generators. A
list comprehension may contain an arbitrary number of generators and filters.

The components of the list comprehension are computed as follows:

1. Component values are drawn in the order they occur on the source list of each
generator.

2. Values produced by each generator are matched against the corresponding pattern.
If all values match, identifiers encountered in the patterns are properly bound to
parts of the drawn values (see section 4.3).

3. Then all filters are evaluated in the scope of the identifiers bound in the above step.
4. If all filters succeed, i.e., they all evaluate to TT, the component e is computed and

inserted in the resulting list.

List updating is an operation to create new lists from another by redefining some of its
elements. An updating list of the form

e{v1, · · · , vn/i1, · · · , in}
where e is a list expression, vj are expressions, ij are integer expressions whose values
satisfy the condition ij ≤ SIZE e, for 1 ≤ j ≤ n, denotes a new list, which has the same
elements of list e, but with the values at the positions designated by ij containing the
values of vj. If any ij > SIZE e, the resulting list is the undefined value.

List Length

The operation SIZE e∗ gives the number of components of list e*.

List Indexing

The elements of a list can be retrieved through indexing operation of the form e∗ EL k,
where k is an integer expression. This operation produces the value of the k-th component
of list e*, or has the undefined value ? if the value denoted by k is greater than SIZE e∗
or less than 1.

List Concatenation

Binary concatenation of lists is of the form e1∗ CAT e2∗, where e1 and e2 are lists in the
same domain. The result of this operation is a list whose components are those of e1∗
followed by those of e2∗.

Unary concatenation of lists is of the form CONC e** where e** is a list of lists. The
result is a list formed by concatenating (CAT) the lists that are the components of e ∗ ∗. If
e** is in domain A**, the resulting list is in domain A*.
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List Augmentation

The operation e PRE e∗, where the value of e is in the same domain as the elements of e∗,
produces a new list whose head (first component) is e and whose remaining components
(its tail) are those of e∗.

Similarly, e∗ AUG e is the list whose components are those of e∗ appended with the
value denoted by e.

3.6.4 Domain of Continuous Function

The domain expression d1 -> d2 denotes the domain of continuous functions [14, 16]
from d1 to d2. The operator “->” has precedence over “|” and associates to the right, for
instance, d1 -> d2 -> d3 is equivalent to d1 -> A, where is A is defined as d2 -> d3.

3.6.5 Domain of Nodes

A domain expression of the form [D1 . . . Dn] represents the domain of tree nodes, which
consist of a label and a tuple of emanating branches.

The operator “[ · · · ]” requires Di, for 1 ≤ i ≤ n, to be either quotation or domain
identifier possibly followed by a sequence of *’s or +’s.

The label serves to distinguish nodes and is implicitly defined by the quotation:
QUOTE <q1, ..., qm>,

where each qi, for 1 ≤ i ≤ m, m ≤ n, is the name of the domains occurring in the same
order in [D1,· · ·, Dn]. Quotations in domain expressions denotes constant domains.

The tuple of branches emanating from each node is formed with values in the non-
quotation domains specified in [D1 . . . Dn]. A tree node can be viewed as a labeled
tuple with no field names.

Members of the domain [D1 · · ·Dn] are represented as [e1 . . . en], where e1, . . . , en are
expressions in the domains D1, . . . , Dn, respectively.

3.7 Domain Equivalence

In SCRIPT , types are synonymous to domains. The type discipline is such that every-
thing concerned with type is conducted at compile time so that once the type checker has
accepted a SCRIPT definition, objects do not have to carry their types at run time. All
new domains must always be explicitly declared in a DOMAINS section of some module. The
type discipline of SCRIPT is based on structural equivalence[2], which is defined as
follows.

Two domains A and B are equivalent if and only if at least one of the following applies:

1. A and B are identical domain names.



22 CHAPTER 3. DOMAINS

2. A and B are distinct domain names, each being the recursive reference to a reflex-
ive domain definition occurring in exactly the same corresponding position in their
domain structure.

3. A and B are the same constant domain of a single quotation.

4. A and B are the domain ? of undefined values.

5. B is a domain expression and A is a domain name, whose visible definition is such
that A = d or A = A1 = A2 = ... = An = d, where Ai, for 1 ≤ i ≤ n, are domain
names, and domain expression d is equivalent to domain expression B.

6. A is a domain expression and B is a domain name whose visible definition is such
that B = d or B = B1 = B2 = ... = Bn = d, where Bi, for 1 ≤ i ≤ n, are domain
names, and domain expression A is equivalent to domain expression d.

7. A and B are domains of lists, A is of the form a*, B is of the form b*, and a is
equivalent to b.

8. A and B are domains of lists, A is of the form a+, B is of the form b+, and a is
equivalent to b.

9. A and B are both the polymorphic domain of empty lists.

10. A and B are domains of tuples, A is of the form (a1, · · · , an), B is of the form
(b1, · · · , bn), and for 1 ≤ i ≤ n, ai is equivalent to bi. Field names are not relevant
to determine domain equivalence.

11. A and B are unions of domains, A is of the form a1 | a2 | · · · |an, B is of the form
b1 | b2 | · · · |bn, and for 1 ≤ i ≤ n, ai is equivalent to bi.

12. A and B are domains of nodes, A is of the form [a1, · · · , an], domain B is of the
form [b1, · · · , bn], and for 1 ≤ i ≤ n, ai is equivalent bi.

13. A and B are domains of continuous functions, A is of the form a1 -> a2, B is of the
form b1 -> b2, a1 is equivalent to b1, and a2 is equivalent to b2.

3.8 Domain Compatibility

The type checking discipline requires that variables can only occur in contexts where their
domains are compatible to the domains expected for those contexts.

The notion of domain compatibility in SCRIPT merges the concepts of structural
equivalence defined above and type inclusion [6] found in many imperative programming
languages.

A domain A is compatible to a domain B if and only one of the following applies:
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1. A and B are identical domain names.

2. A and B are distinct domain names, each being the recursive reference to a reflex-
ive domain definition occurring in exactly the same corresponding position in their
domain structure.

3. B is a domain expression, A is a domain name whose visible definition is such that
A = d or A = A1 = A2 = ... = An = d, where Ai, for 1 ≤ i ≤ n, are domain names,
and domain expression d is compatible to domain expression B.

4. A is a domain expression and B is a domain name whose visible definition is such
that B = d or B = B1 = B2 = ... = Bn = d, where Bi, for 1 ≤ i ≤ n, are domain
names, and domain expression A is compatible to domain expression d.

5. A and B are domains of lists, A is of the form a* or a+, B is of the form b* or b+,
and a is compatible to b.

6. A is the polymorphic domain of empty list and B is a domain of lists of any kind of
elements.

7. A and B are domains of tuples, and A is an extension of B.

8. A and B are domains tuples, A is an extension of another domain of tuple C, C
is of the form (c1, · · · , cn), where ci, for 1 ≤ i ≤ n denotes the domains of the C’s
components; B is of the form (b1, · · · , bn), where bi, for 1 ≤ i ≤ n, is the domain of
the B’s components, and each ci is compatible to its corresponding bi, for 0 ≤ i ≤ n.
The names of the tuple fields are not considered for the purpose of determining
compatibility of domains.

9. A is a tuple domain of the form (A1), and A1 is compatible to B.

10. A is domain expression, B is a union of domains of the form b1 | · · · | bn, and A is
compatible to some bi, for 1 ≤ i ≤ n.

11. A and B are unions of domains, A is of the form a1 | a2 | · · · |an, B is of the form
b1 | b2 | · · · |bm, n ≤ m, and ai is compatible to bi, for 1 ≤ i ≤ n.

12. A and B are domains of nodes, A is of the form [a1, · · · , an], domain B is of the
form [b1, · · · , bn], and ai is compatible to bi, for 1 ≤ i ≤ n.

13. A and B are domains of continuous functions, A is of the form a1 -> a2, B is of the
form b1 -> b2, and b1 is compatible to a1, a2 is compatible to b2.

14. A is a constant domain of one quotation and B is the built-in domain Q.

15. A is the domain ? of undefined values.

From the definitions of domains equivalence and compatibility follows that if domains
A and B are equivalent then A is compatible to B, and vice-versa.
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Chapter 4

Expressions

4.1 Introduction

SCRIPT expressions may be literal constants, variables, integer expressions, quotation
expressions, logical expressions, list expressions, tuple expressions, node expressions, pat-
tern expressions, inquiry expressions, conditional expressions, case-expressions, lam-ab-
stractions, pattern-abstractions, let-expressions, functional applications or any well-formed
combination of simpler expressions and operators.

Literal constants are members of the standard domains N, Q, T and ?.
Variables are used to denote members of domains. Those which denote lists are usually,

but not necessarily, suffixed by sequences of *’s or +’s. For instance, x* may denote a finite
tuple of arbitrary size, whereas x+ represents a non-empty finite tuple. Further information
about lists represented by either x* or x+ are provided by the associated domain declaration
of x.

Integer expressions are built upon the operators NUMBER, PLUS, MINUS, MULT, DIV,

REM, NEG and SIZE.
Quotation expressions involve the operators CAT, CONC and QUOTE.
Logical expressions use the operators TRUTH, LT, LE, GT, GE, EQ, NE, NOT, AND

and OR.
Tuple expressions are expressions whose results are tuples. Every expression enclosed

in parentheses is a tuple. However, parentheses may still be used to group terms of a
formula, because all operators or functions that require a parameter of type, say A, accepts
parameters of type (A) , which is automatically coerced to A.

List expressions are expressions whose results are lists.
A node expression is of the form [ e1 · · · en ], where ei, for 1 ≤ i ≤ n are any expression.

4.2 Inquiry Expressions

Expressions of the form e1 EQ e2 are used to test whether or not two expressions denote
the same value. This expression evaluates TT if e1 and e2 have the same non-functional

25
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value, FF if e1 and e2 are functional values or denote distinct values, and bottom if either
e1 or e2, or both are bottom. The negation of e1 EQ e2 is written as e1 NE e2.

The operators EQ and NE only allow to test values denoted by expressions. However,
in many cases it is desirable to investigate the structure of a value rather than the value
itself. For example, sometimes it is important to ascertain whether the value denoted by
an expression is a tuple or a node. To that end, SCRIPT makes available the inquiry
operator IS and the associated pattern capabilities[10].

The operation e IS p performs a pattern-matching operation in order to check whether
expression e has the particular “form” or structure described by pattern p. In essence, if
the value denoted by e can be structured according to the rules dictated by p, then the
result of the expression above is TT. Otherwise, it is FF. It also is FF if e is undefined. The
result is bottom, if e denotes bottom.

4.3 Pattern Expressions

A pattern-expression can be the undefined value ? (which matches any type of value), an
identifier (which is generally treated as ? in the operation IS), a literal constant (which
matches itself) or a combination of simpler pattern-expressions and pattern construction
operators. Notice that because pattern ? matches anything to test for the undefined value
itself, the operator EQ must be used instead of IS.

If p, p1, · · · , pn are pattern-expressions, then new patterns can be built up as follows:

1. (p1, · · · , pn) - to match tuples with n components.
2. p* - to match lists with zero or more components.
3. p+ - to match lists at least one component.
4. p1 PRE p2* - to match lists with at least one component.
5. [p1 · · · pn] - to match nodes. Pattern p1, · · · , pn are required to be identifiers or literal

constants from which the node label can be determined. A matching occurs if the
value being tested is a node with the same label.

6. NUMBER p+ - to match numbers.
7. TRUTH p+ - to match truth-values.
8. QUOTE p* - to match quotations.

4.4 Conditional Expressions

Conditional expressions are of the form t-> e1,e2, where t is an expression which evaluates
to TT, FF, ? or bottom, and e1 and e2 are arbitrary expressions. The expression above is
equivalent to e1 if t denotes TT; equivalent to e2 if t stands for FF; equivalent to ? if t
evaluates to ?, and equivalent to bottom if t represents bottom.
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4.5 LAM-Abstractions

Anonymous non-recursive functions are specified by the operation LAM x.e. Usually, x

is an identifier or a tuple of identifiers, and expression e is an arbitrary expression. The
operator LAM binds x in the scope of the expression e, and denotes the function whose type
is A -> B, if x:A and e:B.

Anonymous recursive functions are defined via the fixed point operation FIX x.e which
is equivalent to Y(LAM x . e), where Y is the Paradoxical Combinator [5] defined as

Y = LAM (LAM b. a(b(b)))(LAM b. a(b(b))).
Expressions defining functions as above are called “LAM-abstractions”.

4.6 Pattern Abstractions

Pattern-abstraction is a generalization of the notation for LAM-abstractions. The basic
idea is to allow patterns to occur in binding contexts, such as in LAM p.e and FIX p.e,
where p is a pattern-expression.

The pattern-abstraction’s binding mechanism provides a powerful mean of extracting
components of a value. If, for example, e is a SCRIPT -expression such that e IS <x1,x2>

is equivalent to TT, then x1 and x2 will be bound to the first and second components of tuple
e, respectively, in the scope of expression e1 in (LAM <x1,x2> . e1)(e). If e IS <x1,x2>

denotes FF, then the value of this function application is ?. Notice that occurrences of x1
and x2 in the inquiry operation IS above are treated as ?, but their occurrences in the
pattern-abstraction are not. In fact, they get bound to the corresponding components of
e.

Another illustration is the following pattern-abstraction application:
(LAM [x1 x2] . e1 )( e2 )

which binds x1 and x2 to the immediate subtrees of e2 in the scope of e1, if e2 IS [x1 x2]

is equivalent to TT.
In summary, the application of the pattern-abstraction LAM p.e, to argument a, where

p is a pattern, e and a are expressions, produces the following result:

1. if the evaluation of e effectively needs the value of at least one of the identifiers
occurring in p then:

• if a IS p, the identifiers in p are bound to corresponding values in the structure
of a, and then the body e is evaluated.
• if a IS p produces FF, the result of the function application is ?.

2. if no identifiers in p is needed to evaluate e, the patterm-matching is not performed.

If p, p1, · · · , pn are pattern-expressions, x, x* and x+ are identifiers, and the pattern
matching operation a IS p produces TT, then the bindings produced by the application of
the pattern-abstraction (LAM p.e)(a) are recursively defined as follows:

1. if p is a literal constant, no bindings result.
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2. if p is identifier possibly decorated by *’s and +’s, then that identifier is bound to a.
3. if p is of the form (p1, · · · , pn), then the identifiers in pi, for 1 ≤ i ≤ n, are properly

bound to the corresponding components of a.
4. if p is of the form p1 PRE p2, then the identifiers in p1 are properly bound to the first

element of the list a, and the identifiers in p2 to the tail of a.
5. if p is of the form [p1 · · · pn], then the identifiers in pi, for 1 ≤ i ≤ n, are bound to

the corresponding parts of node a.
6. if p is of the form NUMBER x+, then x+ is bound to a list of quotations containing the

decimal digits of number a.
7. if p is of the form TRUTH x+, then x+ is bound to the list of quotations either

<"T","T"> or <"F","F"> depending on the value of a.
8. if p is of the form QUOTE x*, then x* is bound to the list of quotations containing

the characters of the quotation a.

A “recursive” pattern-abstraction is defined via FIX p.e, with the restriction that the
value e IS p must be always “manifestly” TT [10].

In conjunction with LAM and IS, SCRIPT also provides the monadic operator VAL

makes the enclosing LAM or IS strict, i.e., if the value of the pattern in front of a VAL is
bottom then the enclosing LAM or IS also stands for bottom.

4.7 Case-Expressions

The CASE construct provides a mechanism to investigate the structure or “form” of a value,
not the value, denoted by an expression according to a number of patterns and to produce
as a result the expression which is associated with the first pattern that corresponds to the
given value structure. The case-expression is of the form:

CASE e
/p1 -> e1

...
/pn -> en

END

where e, e1, · · · , en are ordinary expressions and p1, · · · , pn are patterns. The entire con-
struct is equivalent to the following conditional expression:

e IS p1 -> (LAM p1.e1)(e),
...

e IS pn -> (LAM pn.en)(e), ?

In essence, the structure of the value denoted by e is inquired in accordance with
patterns p1, · · · , pn. Then the first pattern, say pi, that corresponds to the structure of e is
used to decompose e via a pattern-abstraction whose body is the corresponding expression
ei, and whose formal parameter is pattern pi.

Note that the evaluation of e, the pattern-matchings and corresponding bindings are
carried out before the evaluation of any of the case clauses. The case pattern-matching is
too strict but it gives a consistent rules for how case expressions are evaluated.
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4.8 Let-Expressions

Large expressions can be broken into small pieces by means of let-expressions, which as-
sociate names with expressions and allow the use of these names in scope of a given
expression.

Expressions of the form LET p = e′ IN e, where p is an identifier, is the general form for
defining non-functional values, but it can also define de-sugared functions. In this case,
the definition p = e′ may be deemed as a mechanism for giving a name to an expression e
so that p can be used as an abbreviation for e′ in the scope of the definition. When p is a
more complicated pattern, the definition p = e′ provides a mechanism to implicitly check
the structure of e′, and to decompose its value according to the structure depicted by p.
For instance, if x* IS (? PRE ?*) is TT then the definition x1 PRE x1* = x* associates
the name x1 with the head of list x*, and x1* with the tail of x* throughout the definition’s
scope.

The general form of a let-expression is:
LET a1 = e1 LET a2 = e2 · · · LET ai = ei · · · LET an = en IN e

which defines ai, for 1 ≤ i ≤ n, in the scope of expressions ei and e. Each ai mentioned
above may occur in the form of pattern binding or function definition.

In case of pattern binding, each ai must be a pattern expression. The value of expression
e, which occurs in the corresponding IN-clause, is evaluated in the scope of the bindings
of the identifiers in each pattern ai to the corresponding structures of ei.

Pattern bindings are used to decompose values into their components according to their
structure. The expression

LET p1 = e1 LET p2 = e2 · · · LET pi = ei · · · LET pn = en IN e
is equivalent to the following pattern-abstraction

LAM (p1, · · ·, pn ) . e )( e1, · · · , en ).
The above equivalence relation requires that pattern-matching in let-expressions to be

lazy. This means that the patterm conformance checking and the correspondig bindings of
the identifiers in patterns pi, for 1 ≤ i ≤ n, are performed only if needed in the evaluation
of expression e.

In case of function definition, each ai is a function header of the form
f(p1:d1) · · · (pn: dn) : d

where f is the function head (usually an identifier), p1, · · · , pn are pattern-expressions,
d, d1, · · · , dn are optional domain expressions. Function definitions are used to introduce
a named pattern-abstraction whose formal parameters are patterns to be matched and
bound to the corresponding parts of the actual parameters, and whose bodies are specified
after the corresponding = sign. In other words, the expression

LET f(p1:d1) · · · (pn: dn) : d = e
is tantamount to

LET f = LAM p1 . LAM p2 . · · · LAM pn . e.
The function head f may be a function identifier, a term of the form D.g or g^, where

D is a domain name and g if a function identifier, which is said to be bound to D. The
symbol ^ has to do with polymorphism and dynamic binding of functions. It indicates a
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reference to the previous redifinition of a domain bound function.

Non-curried functions are specified as in
LET f(p1:d1, · · · ,pn: dn) : d = e.

Notice that because tuples of patterns are perfectly good patterns, one may write
LET <e′1, · · · ,e′n> = <e1, · · · ,en> IN e

in place of a list of definitions of the form
LET e′1 = e1 · · · LET e′n = en IN e.

A sequence of let-clauses of the form
LET f1 = e1 LET f2 = e2 · · · LET fi = ei · · · LET fn = en IN e

where each fi, for 1 ≤ i ≤ n is a function designator, may also be used to introduce
collections of mutually recursive definitions. The syntax makes no distinction between
recursive and non-recursive functions.

A let-expression of the above form is equivalent to
(LAM (f1,· · ·,fn).e)(e1,· · ·,en)

if none of the fi, for 1 ≤ i ≤ n, is recursive, otherwise it is equivalent to:
(LAM (f1,· · ·,fn).e) (FIX (f1,· · ·,fn).(e1, · · ·,en)).

4.9 Updating Functions

It is quite common in denotational semantic descriptions to define certain functions in a
stepwise fashion. For instance, Initially, a function is defined to be ? or another constant for
all values of its argument. Then, the elements of this function are gradually “updated” for
certain values of the argument as the definition progresses. Note that the term “updating
function” is just an abuse of notation. A new value is always produced as expected in
the functional paradigm. Consider, for example, the domain S of stores commonly used in
standard denotational semantic descriptions [7]. Stores are frequently modelled as:

S = Loc -> Sv,
where Loc is the domain of locations and Sv that of storable values. Initially, the store is
assumed empty and a function s:S is defined as follows to reflect that fact:

s = LAM loc."unused",
where "unused" is a special value in the domain Sv. Later, when the value denoted by a
given expression e is to be associated with a given location, say a:Loc, in the mapping s,
function s is “updated” to s{e/a} such that for any x: Loc:

s{e/a}(x) =

{
e if x = a

s(x) otherwise
In SCRIPT , an updating function consist of an expression, which must possess func-

tional type, followed by a sequence of one or more “updatings” as in:
f{e1, · · ·, en/x1,· · ·, xn}

where e1, · · · ,en are arbitrary expressions in the domain A; x1, · · ·, xn are expressions
denoting members of B, and f has type A -> B. The meaning of the “updating” function
above is given by:

LAM x.x EQ x1 -> e1, · · ·, x EQ xn -> en,f(x)
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4.10 Function Application

4.10.1 Sequential Expressions

Sequential expressions are combinations of SCRIPT expressions via the so-called sequen-
tial operators, which provide functional compositions in the way they are commonly used
in denotational semantic descriptions.

The expression f g e, where g and f are expressions denoting functions and e is an
arbitrary expression, is construed as (f(g))(e).

It is often the case that the association of operators in the opposite way would be
much more convenient. In particular, expressions of the form f(g(e)) are so common in
denotational semantic descriptions that it is convenient to write them as f;g;e in order
to avoid excess of parentheses. The scope of the operator ; extends until the end of the
expression.

Traditional functional compositions are written as f $ g so that f $ g (e) is construed
as f(g(e)).

4.10.2 Parameter Passing

SCRIPT is a pure, non-strict (or lazy) functional language so the evaluation of function
arguments is delayed until they are needed. This means that the evaluation of the function’s
body is initiated before the evaluation of the arguments. Note that in pattern-abstraction,
the pattern-matching mechanism and the associated binding process are also delayed until
the variables in the pattern are needed in the abstraction’s body.

The domain of each actual parameter must be compatible to the domain of the corre-
sponding formal parameter. Even in the case of tuple parameters, the binding mechanism
always preserves the value of the actual parameter. So, if a tuple value is bound to a for-
mal parameter whose domain is a base of that of the actual parameter, its whole value is
delivered to the the function, although only its base part is accesible. Any further binding
to the value passed still preserves the value originally passed. In the example below,

DOMAINS

A = (x : N, y : N) ;

B = A EXT (z : N) ;

DEFINITIONS

DEF f(a) : A = a{3/x}

DEF g(b) : B = ... LET a1 = f(b) ...

the definition a1 = f(b) binds the value of the 3-element tuple b to formal parameter
a, which is a 2-element tuple. Function f returns a new 3-element tuple constructed by
“updating” value bound to a. Then, the defintion a1 = f(b) binds a1 to a 3-element tuple
whose x component has value 3.
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4.10.3 Domain Bound Functions

Functions can be associated with (or bound to) a given domain. For example, the function
push below is defined to be bound to a domain named Stk.

DEF Stk.push(elem) : Stk =

LET stk1 = elem PRE THIS IN stk1

The application of push must always be associated with a variable (or object) in the
domain Stk or in any extension of it. In the body of push, keyword THIS denotes the value
of the currently associated object. The domain of the variable THIS is the domain of the
object associated to each call.

A function that is bound to a domain, say A, may be redefined and bound to any
extension of A. In this case, the domains of the function in all of its redefinitions must
be equivalent. Function redefinitions form a hierarchical chain in accordance with the
extension relation of the associated domains, and the valid redefinition is the lowest one in
the hierarchy. Within the body of a domain bound function, previous redefinition of the
function, that is, the definition bound by its direct base domain, can be referenced via the
notation f^. In the example below, the function call b.f computes the value of body of
B.f, which uses f^ to activate function A.f.

DOMAINS

B = A EXT (N,N)

DEFINITIONS

DEF A.f(x) = ...

DEF B.f(x) = ... f^(x) ...

DEF ... b.f(x) ...

4.10.4 Overloading of Functions

Function may have the identical names in the same scope, that is, names of functions
can be overloaded. The declared domains of the arguments should be enough to resolve
ambiguities.

The overloading resolution procedure that identifies the function being called in a func-
tional application of the form f a1 · · · an, where ai is in domain Ai, follows the steps:

1. from the function designator f, determine the set C of candidate functions. If f

denotes a call to domain bound functions, only the functions bound to the indicated
domain, or in any of its base domains, are considered; otherwise all functions with
the same name in the scope should be entered in the candidate set;

2. for each actual parameter ai, for 1 ≤ i ≤ n, eliminate from C functions which have
a corresponding formal parameter pi in domain Pi such that Ai is not compatible to
Pi. Note that only the first n formal parameters of f are considered in this process;

3. if cardinality of C is greater than 1, perform the following steps:
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(a) assign to each function in C the number of nominal-matchings occuring between
the domains of the arguments and those of the corresponding parameters. A
nominal-matching occurs when both domains are identical domain names.

(b) keep in C only the functions to which the greatest nominal-matching number
has been assigned.

4. if C is empty, the called function has not been declared in the calling scope. If
cardinality of C is greater than 1, the function calling is ambigous.

For example, considered the following function definitions:

DOMAINS

A = N ;

B = Q ;

C = N ;

D = Q ;

DEFINITIONS

DEF f a b = a -- 1

DEF f n b = n -- 2

DEF f q n = q -- 3

Then:

• f a1 refers to function 1;
• f n1 refers to function 2;
• f q1 refers to function 3;
• f c1 is ambiguous; functions 1 and 2 are canditates;
• f d1 refers to 3.
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Chapter 5

The Module Structure

5.1 Introduction

A complete formal definition in SCRIPT consists of a main module along with zero or
more (secondary) external modules which may either be compiled together with the main
module or extracted from a library of already compiled modules. The main module is the
one which contains the main function defined to model the meaning of an entire denota-
tional semantic definition.

The basic function of a module is to allow related entities, such as domains and func-
tions, to be grouped and then used by other modules. It provides a mechanism whereby
details of certain domain and function definitions can be hidden from the user of the
module, while making available a selected group of domains and functions for outside use.

There are three kinds of modules namely PROJECT, SYNTAX and MODULE.

5.2 PROJECT Module

The PROJECT module serve to define parameters and the environment in which the formal
definition is to be evaluated.

This module may import only one function, which is undertood as the main function
of the formal definition. In the example below, the main function is elab-prog, which is
imported from module Program, defined to be the main function. The necessary domains
can be imported freely.

For the sake of clarity, the signature of the main function may be redefined in the
DOMAINS section of the PROJECT module provided that the new signature is equivalent to
the old one. In the example below, Prog-tree and Input-data have been introduced only
to emphasize to nature of the function arguments.

The INFILES and OUTFILES sections defines the association between files and the do-
mains of argumentos of the the main function. This association is necessary to establish
where the input arguments of the main function can be found, and where its result must

35
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be recorded. The identification of each file is written within quotes ("), and it must obey
the rules of the local operating system, where is SCRIPT language is implemented.

The COMPONENTS sections defines the files that contain the various modules that com-
prise the formal definition.

PROJECT MiniL

IMPORTS

Program(elab-prog, Prog, A)

DOMAINS

elab-prog := Prog-tree -> Input-data -> A;

Prog-tree = (Prog)

Input-data = (N) ;

INFILES

Prog-tree = "name of the input file for (prog)"

Input-data = "name for the input file for (n)"

OUTFILE

A = "name of the file in which the result of elab-prog"

COMPONENTS

"Minil.lds", "Program.lds", "Env.lds", "Command.lds", "Expression.lds"

END Minil

5.3 SYNTAX Module

The SYNTAX module normally contains three sections:

• SYNTAX: defines the concrete and abstract syntaxes.
• LEXIS: defines the structure of lexical symbols.
• DOMAINS: specifies domains of non-terminal symbols.

The following example defines the grammar of a simple language:

SYNTAX MiniL

prog ::= "begin" dcls stmts "end" ;

dcls ::= dcl+ ;

dcl ::= "int" id+-"," ";" : [int id+] ;

stmts ::= stmt* ;

stmt ::= id ":=" exp

| "if" exp "then" stmts "fi"
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| "while" exp "do" stmts "end" ;

LEXIS

UNIT ::= id : <"ID", id>

| numeral : <"NM", numeral> ;

id ::= letter+ : QUOTE letter+

numeral ::= digit+ : NUMBER digit+ ;

letter === "a" .. "z" ;

digit === "0" .. "9" ;

DOMAINS

dcls, dcl : Dcl ;

stmt, stmts : Stmt ;

END MiniL

5.4 MODULE Module

Modules of type MODULE serve to encapsulate the definition of domains and functions and
to establish the interface of comunication between modules. Each module is composed of
three type of sections, namely:

• EXPORTS sections: defines the entities exported by the module and their degree of
encapsulation.

• IMPORTS sections: lists the names of the entities imported to the modules along
with their degree of visibility.

• DOMAINS sections: declares domains, variables and functions.

• DEFINITIONS: defines functions and other values.

Every entity1 declared in a module is private to the module, unless it is explicitly
exported. The export list of a module defines its interface window with other modules
in the semantic definition. Conversely, the only idenfifiers visible in a module are those
defined inside it or diretly imported to it. A module is therefore a mechanism for explicit
control of visibility.

Both exportation and importation of entities between modules can be closed or open.
A closed exportation imposes on the exported entities the highest degree of information

hiding with respect to their internal structures. A closed exportation may only correspond
to closed importation. In this situation, when a domain idenfifier is imported, only its
domain name becomes available in the importing module; its definition remains encap-
sulated in the corresponding exporting module. Thus, no knowledge or access, from the
importing modules, is allowed to the domain definition. When a variable is imported, only

1An entity is a variable, a domain or a function.
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its name and domains signature, defined at the definition of the variable, are revealed at
the importation point. The domain signature, or simply signature, of a variable is the
domain expression directly associated with the variable, without unfolding the denotation
of the domain occurring in this expression. All domains names mentioned in the signature
of a variable must also have be explicitly imported if any reference to them is desired.

For example, consider the following definitions of modules M1 and M2:

MODULE M1

EXPORTS

A, B, C, a, d, f, g

DOMAINS

A = B -> C ;

B = <Q,N> ;

C = N ;

D = B -> C ;

d := <A,C> ;

F = <Q,N> ;

DEFINITIONS

DEF a = LAM b. ... -- signature of a is A

DEF d = ... -- signature of d is <A,C>

DEF f(b) : C = ... -- signature of f is B -> C

DEF g(b:F) : C = ... -- signature of g is F -> C

END M1

MODULE M2

IMPORTS

M1(B, C, a, d, f, g)

....

END M2

In module M2 the domain names B, C and identifiers a, d, f and g are available and
no knowledge regarding the definitions of B and C is allowed. The visible signatures of the
imported variables are:

a : A

d : <A,C>

f : B -> C

g : F -> C

Although imported variables a, d and g cannot be effectivelly used anywhere within
M2, because domains A and F were not imported along. On the other hand, function f can
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be used freely, but the definitions of imported B and C is not locally available. Note that
in the scope of M1, the domains of f and g are structurally equivalent, but they cannot be
considered so in the the scope of M2.

On the other hand, an open exportation gives the importing modules the oportunity
to decide the degree of information hiding which is more convenient to its aplication. An
open exportation does not reveal the entire structure of the exported entities; for example,
the open exportation of a domain B autorizes access only to the first level of the domain
denotation of A. The internal structure of any domain occurring in this denotation is
remain completely encapsulated in the exporting modules, unless their open exportation
and importation are explicitly specified too.

Open exportation or importation is indicated para the “*” sign in front of the entity
name. In the example below, A is exported closed, B is exported open, C is imported closed
and D is imported open from module M1.

MODULE M

EXPORTS A, *B ;

IMPORTS M1(C, *D) ;

...

END M

5.5 Example

Now the denotation definition of the toy language MiniL whose PROJECT and SYNTAX

modules have been defined above is presented.

MODULE Program

EXPORTS elab-prog;

IMPORTS

Env(State, A, *Ec, *Cc, state0, V, is-N, to-A);

Command(Cmd, elab-cmds);

Expression(Exp, elab-exp, Id, elab-id);

DOMAINS

Prog = ["program" Body "end] ;

Body = ["read" Id Cmd+ "write" Exp];

k : Ec; c : Cc;

DEFINITIONS

elab-prog (prog)(i:N) : A =

LET ["program" body "end"] = prog

LET ["read" id cmd+ "write" exp] = body

LET k = LAM v . is-N(v) ->

to-A(v), to-A("Error")

LET c = LAM s. elab-exp(exp) k s

LET s = state0.set(i,elab-id(id))
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IN elab-cmds(cmd+)(c)(s)

END Program

Note that the continuation domains EC and Cc, which are defined in module Env below,
are exported and imported opened in order to make the details of their internal structure
known inside module Program so the continuation functions k and c above can be defined
locally as it is usual in standard denotational semantics. If opened exportation were not
allowed, it would be very inconvenient to work with continuation semantics. The mod-
ule Env encapsulates everything concerned to the environment in which the semantics is
modelled.

MODULE Env

EXPORTS

State, state0, State.get, State.set, A,

to-A, *Cc, *Ec, V, inc, is-N, is-undef;

DOMAINS

State = Id -> V;

V = [N] | ["undefined"] ;

Cc = State -> A;

Ec = V -> A ;

A = N | "Error" ;

DEFINITIONS

DEF is-N(v) : T = v IS [N]

DEF is-undef (v) : T = v IS ["undefined"]

DEF inc([n]) : V = [ n PLUS 1 ]

DEF to-A "Error" : A = "Error"

DEF to-A v : A = LET [n] = v IN n

DEF state0(id:Q) : V = ["undefined"]

DEF State.get(id:Q): V = this(id)

DEF State.set(n,id:Q) : State = this{n/id}

END env

The semantics of MiniL commands is defined as:

MODULE Command

EXPORTS

Cmd, elab-cmds;

IMPORTS

Expression(Exp, elab-exp, Id, elab-id);

Env(*Ec, *Cc, V, State, state0, A,

is-N, to-A, to-N);

DOMAINS

Cmd = [Id ":=" Exp] | [Cmd+] | ["while" Exp "do" Cmd+] ;
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DOMAINS

c : Cc; k : Ec; s : State;

DEFINITIONS

DEF elab-cmds(cmd*)(c)(s) : A =

CASE cmd*

/<> -> s

/cmd1 PRE cmd1* ->

LET c1 = LAM s. elab-cmds(cmd1*)(c)(s)

IN elab-cmd(cmd1)(c1)(s)

END

DEF elab-cmd(cmd)(c) (s) : A =

CASE cmd

/[id ":=" exp] ->

LET q = elab-id(id)

LET k = LAM v. is-N(v) ->

c (s{v/q}), to-A("Error")

IN elab-exp(exp)(k)(s)

/[cmd+] -> elab-cmds(cmd+)(c)(s)

/["while" exp "do" cmd+] ->

LET c1 = LAM s1 . elab(cmd)(c)(s1)

LET k = LAM v .

is-N(v) -> to-N(v) EQ 0 ->

c(s), elab-cmds(cmd+)(c1)(s),

to-A("Error")

IN elab-exp(exp)(k)(s)

END

END Command

The semantics of MiniL expressions is defined as:

MODULE Expression

EXPORTS

Exp, Id, elab-exp, elab-id;

IMPORTS

Env(*Ec, V, State, state0, A, is-N, to-A, to-N);
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DOMAINS

Exp = ["0"] | [Id] | ["suc" Exp];

Id = ("ID", q) ;

k : Ec;

s : State;

DEFINITIONS

DEF elab-id(id) : Q =

LET ("ID", q) = id IN q

DEF elab-exp(exp)(k)(s) : A =

CASE exp

/["0"] -> k(to-V(0))

/[id] ->

LET q = elab-id(id)

LET v = s.get(q)

IN is-undef(v) -> to-A("Error"), k(v)

/["suc" exp] ->

LET k1 = LAM v . is-N(v) -> k(inc(v)),

to-A("Error")

IN elab-exp(exp)(k1)(s)

END

END Expression



Chapter 6

Object-Oriented Programming in
SCRIPT

6.1 Introduction

SCRIPT is considered an object-oriented language for denotational specification because
it features the basic concepts of classes, objects, type inheritance, data encapsulation,
information hiding, polymorphism, virtual functions and dynamic binding.

6.2 Class and Objects

The SCRIPT analogous to the classes of imperative object-oriented programming lan-
guages is the tuples. The module mechanism permits the encapsulation of domain defini-
tion and means to provide a well specified interface. Since domain of tuples implements
classes, tuples as objects.

6.3 Inheritance

The device to extend tuples is in fact a mechanism to achieve inheritance. Any extended
tuple is a descendent of its base tuple. Analogous to class inheritance, tuple extension is a
mean to create a hierarchy of tuple types. An extended tuple domain heirs the structure
of its base tuple along with all functions bound to the base domain.

6.4 Polymorphism

The allowed forms of polymorphism are overloading and inclusion.
Polymorphism of overloading occurs when more than one function receives the same

name in the same scope. The types of the arguments must permit unambigous resolution of
the name overloading. A set of functions with equal name may be viewed as a polymorphic
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function that can be applied to arguments of number of different types, according to each
function definition.

Polymorphism of inclusion is connected to the domain extension capability of tuples.
Every function that has an argument of a tuple type also accepts arguments in domains
which are extensions of that type. The extension relation between two domains of tuples
is an is-a relation. This means that a tuple in an extended domain is always an instance
of tuple in the corresponding base domain.

6.5 Data Encapsulation

Module is the mechanism to encapsulate data and exercise information hiding. The ex-
port/import facility of the language allows tight control of visibility and information hiding
as required to achieve high degree of modularization.

6.6 Virtual Functions

Functions can be associated with or bound to domains. These functions are equivalent to
the virtual functions of object-oriented imperative programming languages.

If the domain to which the function is bound is a tuple, then every application of
this function must be qualified by an object whose domain is the bound domain or in an
extension of it.

A domain bound function may be redefined in any extension of the associated domain.
The redefined function is avaliable from that point it was defined downward in the domain
hierarchy. By definition, if a function is bound to a tuple domain, then it is said to be
bound to all its descendent, unless it is redefined.

6.7 Dynamic Binding

The conjunction of the concepts of polymorphism and virtual functions gives rise to dy-
namic binding of functions. Whenever the object that qualifies the call of a domain bound
function is a formal parameter of type tuple, the function to be activated is the one cur-
rently bound to the domain of the current value of the actual parameter, whose type can
be any extension of the domain of the formal parameter.

6.8 A Polymorphic Stack

Lists serve to model the concept of a stack whose operations are push, pop, top and empty.
The following module, named Stack, defines the encapsulated domain Stk, the stack, the
type of the stack element, and associated stack operations. Note that the elements of the
stack have type Stk-elem which is an empty tuple. A client module of Stack may freely
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extend Stk-elem to incorporate the type of information that actualy must go to the stack.
Functions push and pop should handle the polymorphic elements of the stack properly.

MODULE Stack

EXPORTS

Stk, stk0, Stk-elem, stk-elem0, Stk.push, Stk.pop, Stk.top, Stk.empty

DOMAINS

Stk = Stk-elem*

Stk-elem = ()

DEFINITIONS

DEF stk0 = <>

DEF stk-elem0 = ()

DEF Stk.push(stk-elem) : Stk = stk-elem PRE THIS

DEF Stk.top : Stk-elem =

THIS.empty -> ?, LET stk-elem PRE stk1 = THIS IN stk-elem

DEF Stk.pop : Stk = LET stk-elem PRE stk1 = THIS IN stk1

DEF Stk.empty : T = (SIZE THIS) EQ 0

END Stack

Note that because the stack may have elements of differents types in the domain hier-
archy that start with Stk-elem, it is wise to bind the value returned by function pop to a
variable in the highest domain in the hierarchy and then explicitly test its form via a case
construct.

MODULE User

IMPORTS

Stack(Stk, stk0, Stk-elem, stk-elem0)

DOMAINS

A-elem = Stk-elem EXT (elem : N);

B-elem = Stk-elem EXT (elem1 : Q, elem2: T)

X = (N | (Q,T))

DEFINITIONS
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DEF test : X =

LET a-elem1 = stk-elem0 EXT (1)

LET stk1 = stk0.push(a-elem1)

LET b-elem1 = stk-elem0 EXT ("A", TT)

LET stk2 = stk1.push(b-elem1)

.................

LET a-elem = stk2.top

LET stk3 = stk2.pop

IN CASE a-elem

/stk-elem EXT (elem) -> elem

/stk-elem EXT (elem1, elem2) -> (elem1,elem2)

END

END User
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