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Abstract

Modern computer architectures have motivated research for more efficient compiler
techniques. These new architectures, however, delegate the solution of the most com-
plicated problems in code generation to the compilers. This paper shows the design
of a code generator system for superscalar architectures based on formal machine de-
scription. We also discuss about several problems related to code generation to these
processors.

1 Introduction

The focus of the code generator system described in this paper is the superscalar proces-
sors. These processors are an evolution of the RISC (Reduced Instruction Set) architectures.
Superscalar architectures include several common features. The most importants are: (a)
the ability to execute more than one instruction per cycle; (b) the incorporation of mul-
tiple functional units operating in parallel; (c) the inclusion of pipeline mechanism. An
important advantage of these features is the ability to exploit the instruction level paral-
lelism by executing concurrently a number of operations in the various pipeline stages and
in different functional units[6]. Independently of the mechanism used to extracted these
concurrent operations from an essentially sequential instruction stream, the compiler must
effectively take an advantage of these features in order to generate a quality code. Register
allocation and instruction scheduling play a very important role in this process.

The global register allocation algorithm maps user variables and compiler-generated tem-
poraries to machine registers over an entire procedure. The allocation is considered good
if the user variables stays in registers its entire lifetime. Instruction scheduling is the pro-
cess of moving instructions in order to allow them to be scheduled to the different units
of the processor. This process minimize the total execution time and produces code that
uses more efficiently the target’s pipelines and functional units. The two most important
points in the instruction scheduling are: (i) good utilization of the target architecture and
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(ii) preserving the semantics of the program, i.e., a valid scheduling must preserve the
execution order described by the edges of graph which gives the instructions dependences.

The most important unresolved problem is to determine the degree of communication
between register allocation and instruction scheduling that makes possible to generate a
efficient scheduling. Questions like how much these two functions must be integrated to
improve the generated code still remains without answer. Nevertheless, work has been
done in these subject [3, 4, 2, 21], and [7] makes some suggestions it continues being a
big issue. The machine description language issue is another problem in the sense that no
languages completely cover the RISC class [7].

The goal of this work is to present the tool based on the ideas proposed by Bradlee [3, 4, 5],
which helps the implementation of compilers in the superscalar machine environment. This
work comprises: components: (a) the design and formal definition of the semantics and
syntax of a machine description language (LDA) that allows specification of instruction
scheduling requirements along with other code generation information necessary in su-
perscalar architectures; (b) the project of a retargetable code generators (GGCO) whose
objective is to generate automatically tables to directy the code generator kernel from the
machine especification of an architecture. A retargetable code generator is one that can be
changed automatically from a description of a new target machine, so that it can generate
code for that new target; (c) the identification of the level of integration necessary between
instruction schedules and register allocation.

2 Compiler Construction Methodology

In the last decade the instruction selection for Complex Instruction Set Computers (CISC)
was the biggest issue handled in the code generators by compiler developers. Results of this
can be seen in systems like PO [12] and successors, in CODEGEN [20]and AutoCode [11].
Since the CISC architectures implement the most common operations in many different
ways, their code generators concentrated on machine especifications that allow instruc-
tions to be selected by pattern matching [1]. With the advent of the Reduced Instruction
Set (RISC), the phase of instruction selection of the compiler for these architectures were
simplified. In these new processors, all arithmetic, logical, or conditional instructions are
register-based. All memory accesses are done with loads and stores, the functional units
and pipeline cost are exposed to the code generator. Besides that, the RISC architec-
ture implements most operations only one way. As a consequence, the compiler needs
not choose anymore among instructions with multiple addressing modes. Therefore, the
compiler’s emphasis was shifted from code selection to instructions scheduling and register
allocation. As the emphasis has been changed, problems related with the code generators
for RISCs architectures become different from the ones related with CISC architectures.
Now, to produce a efficient code generator the compiler should capture most schedul-
ing information, like operation latencies and resource conflits. Taking in acount that the
scheduler needs registers to overlap the execution of independent operations, it is very
important the interaction between register allocation and instruction scheduling. Less
attention can be devoted to the interaction between code selection and register allocation



given the relatively simplicity of code selection.

Practically there does not exists retargetable code generators systems especifically designed
for RISC architecture. Even less for superscalar machines. The Gnu [24] and Marion sys-
tems [3] are the only ones found in the literature. Up today, Marion [3] is the only system
that includes a machine description language, but it can not model complicated features
found in some superscalar architectures, like the SPARC’s register windows, instruction
side effects, such as setting the condition code, general multiple instruction issue, and the
88000’s resource contention priority scheme.

Until recently, the interpreted machine description present in the GNU system did not
contained scheduling information. Actually, there exists at least two GNU versions that
include a method to schedule instructions. One of them uses the Gibbons (et al) algorithm
[16], in which the register allocation is made before the instruction scheduling and there
is no communication between these two phases. The other one includes a algorithm
developed by Tiemann [25], with the target-dependency latency and resource information
encapsulated.

3 The GGCO System

The GGCO is the code generator generator we have designed. The GGCO design was
based on the work of Bradlee [3, 4, 5]. Its architecture, illustrated in Figure 1, comprises
the following parts: (a) MD.c, which is a file with a set of automatically generated tables
and routines. (b) gen-mdc, a module containning the semantics of a description in LDA
(see Section 5); (c) MD.h, a module with the definitions of the most important data struc-
tures and types used in the file MD.c; (d) The front-end modules correspond to the LCC file
written by Fraser and Hanson [15]; (e) The back-end module [3] contains the instruction
scheduling and register allocation strategies. The GGCO system receives as input a pro-
cessor specification in the machine description language LDA, (see Section 4) and provides
automatically a set of tables and functions that represents the result of executing the most
important directives of LDA. The MD.c, the front-end and back-end files of Figure 1, are
processed by MAKE to produce the mcc compiler for the desired architecture. The mcc
compiler receives a C input file and generates an intermediate language and gives control
to code generator that produce an object code semantically equivalent to the input file.

The compiler’s front end accepts ANSI C and generates an intermediate language of di-
rected acyclic graph (DAGs). This language provides the initial configuration for the code
DAG. The DAG edges represent all possible operators present in the instruction set of
the architecture under analysis. The front end transforms all control flow operators (for,
while, if, etc.) into low level compare and branch operations. The C language operators
with side effects are changed into explicit arithmetic and branch operations.

Each code generator is produced from a machine description of a specifically machine



gen-mdc
?

?

formal machine description in LDA

MD.c file MD.h file front-end file back-end file

? ? ? ?

?
Make

?

mcc compiler file

Figure 1: Code Generator Generator Architecture–GGCO

architecture and performs code selection by pattern matching and then moves control
to the code generation strategy. The code generation strategy is responsable for: (1)
the activation of the instruction scheduling and global register allocation; (2) the degree
of communication between these two functions; (3) by the inclusion of the scheduling
algorithm.

The GGCO code generation strategy is the same proposed by Bradlee in the Marion sys-
tem [3]. It consists of two parts: strategy-independent portion, and strategy-dependent
portion. The strategy-independent part of the back end posseses three components: the
constructor of the code DAG, the global register allocator and the scheduling support.
The code DAG builder is responsible for the construction of a DAG from the machine
instructions for each basic block. A basic block is a sequence of code that have no in-
ternal branching. Scheduling support handles low-level scheduling details, for instance, it
controls the list of instructions that can be scheduled without causing a delay, verify the
resource conflits. The strategy-dependent part includes the scheduling algorithm, tables
and functions generated from the machine specification. Its modular structure permits
quick reconfiguration of new strategies of instruction scheduling and register allocation.
Based in this modularity, we have incorporated this new strategy in GGCO.

3.1 Instruction Scheduling

The most important data structure in the scheduling process is the scheduling graph, the
code DAG. It is represented in this data structure the basic block instructions in which the
program was divided. In the code, DAG nodes represent instructions, and directed labeled
edges represent dependences between instructions. As the scheduling considered in this
project is inside basic block, the precedence restrictions considered are: restrictions based
on data dependence and control dependences. Control dependence exists only between
basic blocks and their corresponding edges are derived from the control flow graph of the
program. The dependence data between instruction can be a true-dependence or a false-
dependence. A true-dependence, also called flow dependence, is an edge from a definition
to a use. A false-dependence is classified in output dependence and an anti-dependence.



An anti-dependence is an edge from a use to a definition. An output-dependence is an
edge between two definitions [27].

The approach used for instruction scheduling is list scheduling [14], [18], [19], [13], [16],
[3], [26], [17]. It works as follow: given a code DAG, the scheduler mantains a list of
instructions that are ready to be scheduled without causing a delay. On each iteraction
it selects the highest priority node in the ready list to be scheduled using a heuristc
and then updates the list. According to [3] this approach, in general, has worst-case
running time of O(e), where e is the number of edges in the DAG, but the heuristic
can increase the complexity. All list scheduling algorithms found in the literature use
heuristics to assigning priority to nodes in the ready list. The difference among their
systems is the order they apply the heuristic. A frequently used heuristic for assigning
priority is called maximum distance. This heuristic is defined by the length of the longest
path through the code DAG from the instruction node to a leaf node. The length of a
path is the sum of all edge labels along the path. The idea behind this heuristic is that the
node farthest from completion is the most critical, so the others nodes can be scheduled
later. Another heuristic gives higher priority to nodes with more successors. The point
here is that scheduling a node with several successors creates more opportunities for the
scheduler in the next cycles because it permits more nodes to become ready sooner. As
third choice there is a heuristic which chooses a node with greater operation latency to
have higher priority. than one of its successors. The philosophy is that scheduling such a
node first, there will be more opportunities to overlap the latency with other instructions.
The GGCO’s code generation strategies use list scheduling algorithms with the maximum
distance as the primary heuristic as in [3].

3.2 Register Allocation

Register allocation problem has been treated in terms of coloring a graph. In this approach,
nodes in the graph represent variables and the edges represent interference. Therefore, we
connected two variables in the graph if there is a interference between them, i.e., if they
cannot simultaneously use the same register at some point in the program. The objective
of the register allocator algorithm is to assign a register (color) to every variable such that
each one has a different color from any of its neighbors [10]. With the advent of the new
architecures such as, superscalar, parallel, allowing the parallelism between instructions,
an optimal coloring of the interference graph algorithms does not necessarily results in a
good machine utilization. It happens because in these architectures it is also necessary to
take into account the reordering of the instructions performed by the instruction scheduler
algorithm. When instruction reordering is done after register allocation the selection of
registers may limit the possibilities to reorder instructions due to false dependencies that
are introduced with the reuse of registers. On the other hand, when instructions reordering
is made before register allocation the number of live registers is increased, implying longer
register lifetimes thus more registers are needed and more spills may be introduced. In
addition, in some cases register allocation must precede instruction scheduling since the
exact register assignment is needed by the scheduler [19].



Several compilers use different graph models to implement register allocators and instruc-
tion schedulers functions [17, 26, 3]. Since the meanings of the nodes and edges in those
graphs are different, a simple combination of the graphs is impossible. Nevertheless, the
strategy used in GGCO for register allocation and instruction scheduling uses a simple
common graph, common framework, the parallel interference graph, for representing the
input program for both tasks. In this framework the emphasis is on register allocation,
and the method used to allocate register is based in the Chaitin work [9]. This strategy
was originally proposed by Pinter [23].

Pinter’s algorithm works as follows: to generate a parallel interference graph, first we
introduce all the scheduling constraints explicitly in the schedule graph. In this approach
as much more edges are present in the graph the better the results will be; that happens
because what we really going to use is the edges that are in the complement of the con-
structed graph. The edges in the complement graph present the parallelism available in
the machine for the given program. The next stage of his algorithm is to integrate those
edges with the interference graph. With this new graph the register allocation algorithm
can take the available paralellism into account. The scheduling is done after the register
allocation.

Since the minimum coloring problem is NP-complete, in general the number of registers is
smaller than the number of colors. Thus, in practice a spilling stage is carried out. With
this in mind, the problem of register allocation algorithm, for superscalar machine is to find
a optimal register mapping with minimum number of register, minimized cost of spilling
and whose scheduling graph does not have a false-dependence. To get that it is necessary to
apply on the parallel interference graph the same heuristics used during register allocation
or scheduling. One type of heuristic could eliminate edges from the graph, but to do that
it is necessary the knowlege of which edge may be eliminated. It involves consideration
of both the scheduler and the allocator. For instance, if it is considered removing edges
that prevent false-dependences some parallelization options are lost because of register
pressure. On the other hand, it is possible to remove interference edges which may lead
to spill and preserve some edges that yield good parallelization.

Chaitin [9] and Pinter [23] algorithms do not deal with register pairs problem. Pairs of
registers are often needed in processors to represent half registers in a double precision
loads, stores and instructions moves. In their algorithms, a pseudo-register can be removed
from the graph if it is garanteed to exist one physical register for it during the coloring
phase, which we call unconstrained node. This means that its degree, i.e., the number of
its neighbors in the interference graph, is fewer than allocable physical registers. Register
pairs change the definition of an unconstrained node. A node now is considered uncon-
strained if the sum of the physical register requirements of its neighbors plus the number
of physical registers required by itself is less than the number of allocable registers. With
the introduction of this new definition it is possible to get a good coloring of the parallel
interference graph even though the demand of the neighbors of a node is greater than the
number of allocable registers. The reutilization of colors in neighbors whose edges do not
constrain can generate a coloring of this graph preserving the objetive proposed by Pinter,
that is, “find a optimal register allocation whose scheduling graph does not have a false
dependence”.



4 LDA, The Machine Description Language

The GGCO’s machine description language, LDA, possesses three main facilities: (a)
resources declaration, (b) compiler writer’s virtual machine description, (c) instructions
definitions. In the declaration section are specified the registers, machine resource, func-
tional units, constants, memory size and other features of the architecture. In the com-
piler writer’s virtual machine are described a runtime model. It offers directives to specify
general purpose registers, the pipeline stages, memory, etc. The instruction section intro-
duces each machine instruction, its functions and scheduling requirements. Besides that,
it includes tree transformations necessarily to match intermediate language patterns with
machine language patterns. To get a perspective of the aplicability of the LDA features
and GGCO system as well, we list in the sequel common architectural features not yet
treated by other compiler systems. LDA possesses, besides all features of Marion [3], the
following resources: (1) facilities to supports register windows. It is possible to specify
parameters and arguments separately, to model the register renaming; (2) the machine
description language, LDA, establishes the resource necessary for each instructions. With
this information LDA constructs a resource vector for each instruction. Each element of
the resource vector contains all resources needed on a particular cycle. In the Motorola
88010 processor [22] the priority is defined as follows: integer instructions have the highest
priority, then floating point instructions, and lastly load instructions. To solve the struc-
tured hazard like a priority scheme to regulate the use of the register write-back-bus of
Motorola 88010, GGCO adopts the following scheme suggested by Bradlee [3]: (a) allow
a priority range to be associated with a resource declaration in the machine description;
(b) allow an element of a resource vector associated with an instruction to indicate its
priority; (c) examine priorities when checking for structural hazards and allow schedules
to contaim structural hazards, if they are caused by higher priority resources. (3) To
avoid control hazards, the LDA specifies the number of delay slots into the instruction
directive. To avoid fills branch delay slots with no-ops as in Marion [3], we proposed a
Gross and Hennessy [19] algorithm implementation in GGCO, including it as a separated
intra-procedural pass after instruction scheduling. This algorithm attempts to fill delay
slots with instructions that are before the branch, with instructions that follow the branch
target, and with instructions that follow the branch. Gross and Hennessy found that, on
a machine whose branches have one delay slot that is always executed, their algorithm
filled, counted statically, 90% of the delay slots.

5 Philosophy of the LDA Formal Definition

The formal definition of LDA follows the denotational method for specifying the semantics
of programming languages, which defines a set of mapping from the syntactic domains4

of description to the corresponding code generators. Figure 2 shows the most important
mapping of a machine description architecture to its corresponding code generator. This
mapping is defined by function gen-mdc which specifies the semantics of a description in

4Domains can be seen as type being used to model syntax or semantics properties in a given program-
ming language.



LDA. The final result of this mapping is a piece of code in C language, which corresponds
to a machine dependent portion of the code generator for the described processor.

lda

declare instrs

vmdecl

Mdc

env1

env3

env2

gen-mdc

elab-declare

elab-instrs

elab-vm

Semantic domainSyntax  domain

Figure 2: Mapping of LDA in Mdc.

The gen-mdc function receives as input a file with the LDA specification in the form of
abstract syntax tree, ativates the functions: elab-declare, elab-vmdecl, elab-instr
and elab-tables to elaborate the several parts of a machine description and generate
the machine dependent code of the code generator. This formal definition can be seen
as a code generator generator system produced from a machine description. The piece
of code generated is stored in MD.c file. The function elab-declare elaborates the LDA
declarations; the elab-vmdecl function elaborates the virtual machine information; the
function elab-instr elaborates the instructions of LDA, and the function elab-tables

elaborates the final tables, producing the C code. The complete formal especification of
LDA can be found in [7].

In the specification of this mapping the most important semantic domain is env, which
defines the environment where the formal definition are estabilished, i.e., defines a tu-
ple composed of the identification of all generated auxiliary entities to the final tables
elaboration. This domain comprises a set of tables and lists constructed from each LDA
specification. It is also part of a signature of most semantic functions.

The present formal definition is written in SCRIPT [8], which is a functional language
that offers a simple notation to describe the denotational semantics of a programming
language in modular and legible style. The abstract syntax is defined in SCRIPT as a
production list of a context free grammar. Non-terminals represent syntactic domains and
the tokens are "quotations" domains. The formal definition of all semantics domains are
grouped in modules, which control the visibility of their denotations and provide the ser-
vices associated with each domain. For each of the most important semantic domains used
in the definition of mapping gen-mdc there exist a module SCRIPT , which encapsulates
their denotations and provides the associated services.



The most high level function of the LDA formal definition, the function gen-mdc, maps
LDA description into portions of C code, which comprise the machine dependent part
of the code generator. This portion of program stored in a MD.c file includes the data
structure and types definitions declared in the previous MD.h file (see Section 3).

The most important generated tables are: table of resources and productions. The re-
source table describes the resources used by instructions and is one of the most important
information to scheduler. Its contents is used essentially in the basic routines of instruc-
tion scheduling to verify existents conflicts and to group instructions. The production
table is an array that contains instructions information. Each array element corresponds
to an instruction directive given in the description and contains: (a) a pattern tree and a
replacement symbol derived from the expression given in the directive; (b) an array that
indicates, for each instruction, its operand kind and their location within the pattern and
subject trees; (c) an index into an array of resource vectors; and (d) cost, latency and
delay slot data. Information in this table are used by the code generator when performing
instruction scheduling, register allocation and code selection. Other generated tables con-
tain declarations, information about the virtual machine, classes and elements, auxiliary
latencies, patterns, etc.

The two most important target-dependent functions are the one that returns the general
purpose register set for a given type, and the one that returns register overlapping informa-
tion and register sizes. These informations are used during the creation of pseudo-registers
and register allocation.

6 Conclusions

It was presented in this paper the facilities provided by a code generator generator, GGCO.
The most important contribution is the formal specification of the processor dependent
part of the code generator by means of a special purpose language. Its formal definition
may be seen as a code generator system which provides from the machine description
the mapping of the processor to its code generator, and whose final result is piece of C
program, which corresponds to the dependent machine part of the code generator for the
architecture described.

The system prototype is not yet completely implemented. For instance, the facilities to
support register windows of sun station SPARC permit only one window. Particularly: (a)
additional studies must be done before the incorporation of the register allocation algo-
rithm presented in Section 3.2 in the system in order to evaluate and compare it with the
algorithm proposed by Bradlee for scheduling and register allocation; (b) implementation
of Gross and Henessy algorithm is needed to fill the delay slots with valid instructions dur-
ing scheduling; (c) implementation of the proposed solution to attend the priority schema
present in some superscalar architecture is still yet to be accomplished. On the other
hand, all above facilities are already available in LDA.
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