
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Retractile Continuations

by

Roberto da Silva Bigonha

RT 01/96

Caixa Postal, 702

30.161 - Belo Horizonte - MG

January 4, 1996

Abstract

We introduce the notion of retractile continuation, which is the basis of a
technique for accommodating, in a same denotational semantics definition, both the
continuation and direct semantics styles.

i

Contents

ii

1 Introduction

The kind of semantics used in most denotational definitions is continuation semantics[?,
?, ?, ?, ?]. The continuation approach is generally chosen for its convenient way of deal-
ing with error conditions. However, the sequential nature of continuations presents some
difficulties. Take a list of mutually recursive equation definitions as an example. In or-
der to manufacture each one of the definitions, it is required that all others have already
been defined so that the types of free variables in each one are available in a common
environment.

In the direct approach to semantics, a situation like this is easily modelled by defining a
system of mutually recursive equations, each defining a partial environment that results
from the evaluation of the associated definition. Each equation is then defined in the
same global environment, which should be recursively defined in terms of those partial
environments produced by the individual equations.

On the other hand, in the continuation approach, each semantic function is supposed to
pass the intermediate value it produces, for example an environment, to the rest of the
definition, i.e., to the normal continuation, which generally maps intermediate results to
final answers. Thus, strictly speaking, intermediate values in the continuation approach
usually are not available locally to construct the desired system of recursive equations.

Clearly, the continuation approach makes it easier to cope with error conditions and the
direct approach facilitates the modelling of non-sequential evaluations. Thus, it would
be very convenient to have a mechanism that allows a harmonious coexistence of both
semantics styles, so that we may use the right kind of semantics where it works best.

2 The Style Switching Mechanism

The above problem is solved here by defining a method of switching from continuation to
direct semantics, which allows the establishment of systems of mutually recursive equations,
and then, to move back to continuation semantics to formulate the rest of the definition.

The switching mechanism is implemented by passing to the semantic functions involved in
the process not the normal continuation but a conveniently manufactured special contin-
uation that just indicates the value to be returned by the function. For example, let f be
a semantic function of type:

f : X 7→ C 7→ Ans

1

where C = V 7→ Ans is a domain of continuations, Ans is that of final answers, and V is
the domain of intermediate values that f passes to its continuation.

The first step is to make f return a value, say v ∈ V , rather than the final answer. The idea
is to make arrangements to force f to return the intermediate value v it produces instead
of passing it to the normal continuation. And this must be achieved without modifying
f , because this function may be also applied in different contexts, which certainly assume
that f still deals properly and systematically with its continuation.

The solution we have devised consists of passing to f a special type of continuation, named
retractile continuation, with the purpose of hoisting the intermediate value produced
by f to the passing point. A retractile continuation works like a boomerang which when
correctly thrown (passed as parameter) glides back to a point near the thrower (the calling
point).

A retractile continuation τ has type:

τ : V 7→ A

and must be always defined as an identity function such as:

τ = λv . v

where the new domain of final answers A is the domain Ans extended to incorporate the
domain V . The type of f must be changed accordingly.

Hence, the value of a ∈ A in a = f(x)(τ) is the intermediate value which f passes to
the continuation τ if it succeeds; otherwise a denotes some other value in the domain of
final answers, such as an error message, for example.

Later, when comes the time to switch back to continuation semantics, the intermediate
value a produced locally can be explicitly passed to the normal continuation as would have
been done under normal conditions.

3 An Example

In order to illustrate the application of the proposed mechanism, the denotational semantics
of a toy language Ω is presented in the sequel using a combination of continuation and direct
semantics.

2

A program in the language Ω is simply the constant 0, an identifier id, a function ap-
plication, a λ-abstraction or a sequence of let-clauses ended by an in-expression. The
let-clauses serve to bind identifiers to Ω-expressions. Bound identifiers can be freely used
in any of Ω-expressions of the let-clauses and in the corresponding in-expression. In order
to capture this semantics, all let-clauses shall be evaluated in a environment containing
all bindings they introduce, possibly in a mutually recursive fashion. The direct semantic
approach is more indicate to model the meaning of this feature.

The initial environment in which Ω is defined has all identifiers bound to a special value
unbound. Thus, an error should be indicated whenever, in the evaluation of an Ω-
expression, a reference to identifier not bound by any of the let-clauses is encountered.
Errors should also be indicated when non-functional values are applied to any other val-
ues. Since continuation semantics works best in this situation, it shall be used here.

The syntactic domains of Ω are:

exp ∈ Exp = Def+ in Exp Ω-expressions
| Id (Exp) function application
| λId . Exp λ-abstraction
| Id bound identifier
| 0 constant zero

def ∈ Def = let Id = Exp let-clauses
id ∈ Id = left unspecified Ω-identifiers

To formulate the continuation semantics of Ω, the following semantic domains are defined:

Ans = N + error Traditional final answers
a1, a2 ∈ A = Ans + Env Extended final answers
ρ, ρ′ ∈ Env = Id 7→ Dv Environments
v ∈ Dv = N + F0 + F1 + unbound Denotable values
δ, τ ∈ Dc = Env 7→ A Decl continuations
κ ∈ Ec = Dv 7→ A Expr continuations
F0 = Ec 7→ A Function without args
f1 ∈ F1 = Dv 7→ Ec 7→ A One arg function
N = { 0 } A natural number

The domain Env of environments is part of the domain A of extended final answers in
order to implement the proposed switching mechanism.

The initial environment ρ0 ∈ Id 7→ Dv is defined as:

ρ0 = λid .unbound

3

The retractile continuation τ ∈ Dc needed by the switching mechanism is defined as:

τ = λρ . ρ

The semantic function E , which defines the denotation of Ω-expression, has type:

E : Exp 7→ Env 7→ Ec 7→ A

Hence, the continuation semantics of an Ω-constant 0 is given by:

E [[0]](ρ)(κ) : A = κ(0)

The continuation semantics of an Ω-idenfifiers id is given by:

E [[id]](ρ)(κ) : A =
ρ(id) = unbound → error, κ(ρ(id))

The continuation semantics of λid . exp is given by:

E [[λid . exp]](ρ)(κ) : A =
let f1 = λv κ′ . E [[exp]] ρ{id← v} κ′
in κ(f1)

The notation ρ = ρ1{z ← y} defines an environment ρ such that:

ρ(x) =

{
y if x = z
ρ1(x) otherwise

The continuation semantics of functional applications id (exp) is given by:

E [[id (exp)]](ρ)(κ) : A =
ρ(id) ∈ F1 → let κ1 = λv . ρ(id) v κ

in E [[exp]]ρ κ1, error

The continuation semantics of let-expressions of the form def + in exp is:

E [[def + in exp]](ρ)(κ) : A =
let δ = λρ′ . E [[exp]] ρ′ κ
in L[[def+]] ρ δ

In our notation, def∗ denotes a list of zero or more def, and def+ is a list with at least one
element. The symbol <> denotes an empty list.

4

The function L, which defines the semantics of a list of let-clauses, has the type:

L : Def∗ 7→ Env 7→ Dc 7→ A

The semantics of the empty list of let-clauses is:

L(<>)(ρ)(δ) : A = δ(ρ)

The meaning of non-empty lists of let-clauses is given the equation below which is defines
L in terms of a system of recursive equations in a pure direct semantics style:

L(def :: def∗)(ρ)(δ) : A =
let τ = λρ . ρ
let a1 = F [[def]] ρ′ τ
let a2 = L[[def∗]] ρ′ τ
let ρ′ = a1, a2 ∈ Env→ ρ{a1}{a2}, ρ
in a1 ∈ Env→ (a2 ∈ Env→ δ(ρ′), a2), a1

The occurrence of a term like def :: def∗ in the binding context above indicates that def is
to get bound to the first element of the given list, and def∗ is to be bound to the remaining
elements. Note that the functions F and L are called to evaluate local environments,
and that at the end of the body of L the computed environment ρ′, that is, the new
environment containing all the bindings in def and def∗, is passed to the continuation δ in
order to comply with the rest of the definition.

The notation ρ′ = ρ{ρ1}{ρ2}, for ρ1, ρ2 ∈ Env, defines a new environment ρ′ such that:

ρ′(x) =


ρ2(x) if ρ2(x) 6= unbound
ρ1(x) if ρ2(x) = unbound ∧ ρ1(x) 6= unbound
ρ(x) otherwise

To conclude the example, the function F , which defines the semantics of a let-clause, has
the type:

F : Def 7→ Env 7→ Dc 7→ A

And the equation for F is:

F [[let id = exp]](ρ)(δ) : A=
let ρ1 = ρ{id ← (λκ . E [[exp]] ρ1 κ}
in δ(ρ1)

5

4 Conclusion

We have proposed a method for accommodating in a same denotational semantics definition
both the continuation and direct semantics styles and illustrated the application of the
method through an example.

We claim that the advantages of this method is that it permits the right kind of semantics to
be used where it works best. The continuation approach makes it easier to cope with error
conditions and the direct approach facilitates the modelling of non-sequential evaluations.

We successfully used retractile continuation for the first time in 1981 in the formulation
of the formal definition of a functional language of realistic size and complexity[?].

References

[1] Roberto S. Bigonha. A Denotational Semantics Implementation System. PhD thesis,
University of California, Los Angeles, 1981. 428 pages.

[2] C.A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT
Press, Cambridge, Massachusetts, 1992.

[3] R. E. Milne and C. Strachey. A Theory of Programming Language Semantics, Parts a
and b. Chapman and Hall, London, 1976.

[4] Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn
& Bacon, 1986.

[5] C. Wadsworth and C. Strachey. Continuations - a mathematical semantics for handling
full jumps. Technical monograph prg-11, Oxford University Computing Lab, 1974.
Programming Research Group.

[6] G. Winskel. Semantics of Programming Languages. MIT Press, 1993.

6

