
A Powerful LR��� Error Recovery Mechanism in the Compiler
Implementation System Environment

Mariza A� S� Bigonha�

Roberto S� Bigonha �

Abstract

This paper presents a scheme for error recovery in the context of LR��� parsers based on the
method proposed by Burke�Fisher ���� The purpose of this method is the diagnosis of all syn�
tactic errors found during the syntactic analysis without presenting misleading messages� The
recovery process automatically issues error messages with the possibility of substitution� deletion
or insertion of terminal or nonterminal symbols in the parser stack or in the input stream� The
error recovery is conducted before and independently of any semantic analysis of the program�
Nevertheless� the approach does not perclude the use of semantic information in the process of
error recovery� This automatic syntactic error recovery strategy is integrated into the parser
generator system developed at UFMG �SIC ���� �	��� It is entirely transparent to the user and
it produces good quality results without increasing signi
cantly the size of the compiler� This
method does not introduce any constraints on the use of default reductions�

Key Words

Compilers� Compiler Generators� LR Parser� Syntactic Error Recovery�

�DSc �PUC�RJ � ������ Department of Computer Science� Federal University of Minas Gerais� Belo Horizonte
� MG � Brazil� E�mail	mariza
dcc�ufmg�br

�PhD� �UCLA�USA ������ Department of Computer Science� Federal University of Minas Gerais� Belo Hori�
zonte � MG � Brazil� E�mail	 bigonha
dcc�ufmg�br�

The Powerful LR��� Error Recovery Mechanism in the
Compiler Implementation System Environment

Abstract

This paper presents a scheme for error recovery in the context of LR��� parsers based on the
method proposed by Burke�Fisher ���� The purpose of this method is the diagnosis of all syn�
tactic errors found during the syntactic analysis without presenting misleading messages� The
recovery process automatically issues error messages with the possibility of substitution� deletion
or insertion of terminal or nonterminal symbols in the parser stack or in the input stream� The
error recovery is conducted before and independently of any semantic analysis of the program�
Nevertheless� the approach does not perclude the use of semantic information in the process of
error recovery� This automatic syntactic error recovery strategy is integrated into the parser
generator system developed at UFMG �SIC ���� �	��� It is entirely transparent to the user and
it produces good quality results without increasing signi
cantly the size of the compiler� This
method does not introduce any constraints on the use of default reductions�

Key Words

Compilers� Compiler Generators� LR Parser� Syntactic Error Recovery�

� Introduction

Before the advent of interactive systems for development of programs� the availability of some
syntactic error recovery method in commercial compilers was essential� This occurred because
it is unacceptable for a compiler running in batch mode to abort the compilation process in the
presence of the
rst syntactic error� With the increasing popularity of interactive systems� it
becomes reasonable to have a compiler without syntactic error recovery mechanism� Compilation
can then be interrupted after the detection of the
rst error� and the user provides the necessary
corrections and then reinitiates the compilation� If the compiler is su�ciently fast� the cost of
recompilation is perfectly acceptable� However� this approach presents as a drawback the fact
that the compilation can not continue even when the user thus desires� In addition� the absence
of mechanism of syntactic error recovery in the compiler a�ects negatively the quality of its
error messages� In summary� even though there exist applications where it is possible to have
compilers without syntactic error recovery� the availability of this mechanism is certainly very
helpful� because at least it makes possible to improve the quality of the messages issued and
makes the operations of these systems more exible�

Recently� P� Degano and C� Prianni ���� made a comparison of syntactic error handling in
LR parsers� They compared several methods and di�erent techniques� for instance� minimum
distance techniques ��� ��� phase�level recoveries ���� ��� ���� local recovery ��� �� �� ��� global
recovery ���� ��� etc�� and interactive recovery ���� etc� They consider a correction to be
excellent if it repairs the program as a programmer would have� A correction is poor if more
spurious errors are introduced� Regarding the methods for local recovery� their studies make it
clear that the method of Burke�Fisher ��� is characterized by better correction than the other
types of techniques� These motivate us to present our experience in implementing such method�

To develop an automatic syntactic error recovery mechanism which is at the same time e�cient�
practical and applicable within the general context of syntactic analysis based in the viable
pre
x property ���� we have studied several approaches ��� ��� ��� ��� ��� ��� ��� �	� ��� ���� and
decided� as a starting point� to use Burke � Fisher�s method� which was adapted in order to
t
in a LR��� syntactic analysis based on table compression ����

� General Description

Burke�Fisher�s method supposes a context where the LR parser maintains an input bu�er and
two stacks� called PS and PE� The bu�er may have part or all of the input stream of terminal
symbols not yet processed� and possibly stack symbols� The PE stack is used as a scratch store�
The PS stack is used to store parser states� such that the current state is always on its top�

The error recovery routine is activated when� given the current state and the next input terminal
symbol� there is no legal syntactic action to be done� In this case� the terminal symbol or current
symbol is the one that caused the error detection� The heart of this approach is to determine
the nature of the error� A simple error is one which can be corrected by changing only one
symbol of the input stream� This modi
cation of the input may be an insertion� a deletion
of a symbol or a substitution of a terminal symbol by another one� This type of correction is
called a simple correction� If the error is not simple� its correction may involve the deletion
or insertion of a small piece of program� The program piece removed may precede� follow or
be around the symbol agged as error� The symbol inserted consist of a sequence of terminal

symbols that are needed to close one or more scopes� This kind of recovery is called scope
recovery� Scope means nested constructions� such as procedures� blocks� control structures and
parenthesized expressions� Scopes are delimited by opening and closing symbols� which are
symbols that begin and
nish� respectively� syntactic construct� For instance� the pairs ���� �
��� �� ��begin� � �end� �� ��if� � �end if� � are typical scope delimiters�

Error recovery of Burke � Fisher is composed of three phases� Phase one treats simple correc�
tions� Phase two treats correction made by scope recovery� In phase three� the correction is
made by removing a piece of program code in conjunction with insertion� deletion or substitution
of a terminal symbol� Before beginning each phase� a copy of the contents of PS is saved into
the scratch stack PE�

��� First Phase of Error Recovery

The process of trying to correct an error in a given point of the program is called a trial� The
corrections or strategies tested in one trial can be insertion� deletion of a symbol and replacement
of a symbol by another� On insertion� a terminal or nonterminal symbol may be placed before
the current one� On substitution� only the current terminal symbol may be removed�

Initially� the error recovery mechanism tries to insert� delete or replace only a single symbol� If
there is no possible correction� symbols are popped of the PE stack and put back in the input
bu�er� For each one of these symbols the recovery mechanism tries the three strategies described
above� This process continues until a correction is found or an scope opening symbol appears
in the PE stack top� In this case� the scope opening symbol found marks the end of a syntactic
construct that has been detected as syntactically wrong� As the text to be corrected is inside
this piece of code� there is no need nor it is desirable to pop more elements o� the stack�

The set of symbols which will be used as candidates for insertion or substitution are those that
can be read from the current parser con
guration� i�e�� the lookahead symbols of the current
state� The approach used to determine whether a correction is successful is based on the distance
that the parser advances in the input stream� In this implementation the maximum distance
analyzed is given by the constant MAXCHECK� While testing a set of candidates for insertion�
all candidates that allow the parser to advance up to the maximum distance MAXCHECK are
considered valid and reported� However� only one is selected� It is possible that no candidate
makes the parser advance a MAXCHECK distance� In this case� the candidate chosen� if there is
one� is that which makes the parser to advance over more symbols� given that the parser also
advances at least the distance MINCHECK� The minimum and maximum distances are de
ned
according to the context in which the error occurs� The minimum distance can not be too small
and must be such that the parser is guaranteed to advance through the input stream after the
recovery� Since errors can appear near each other� the maximum distance must not be too big�
The values � for MINCHECK and �� for MAXCHECK have produced good results ����

����� Strategy �� Insertion

Suppose that the programmer made a mistake by omitting a symbol� To test this hypothesis
the following is done� each lookahead symbol in the current con
guration of the LR��� parser is
inserted in the bu�er just before the current input symbol and a trial to advance in the syntactic
analysis is attempted� If the distance advanced is greater than or equal to the distance recorded
for other lookahead symbols� then it is kept as the best candidate for correction so far� For

example� consider the toy language whose grammar is presented in Section �� The messages
produced by the error recovery algorithm is shown in Figure ��

��

� P� procedure�i � integer�

� a� boolean

� begin

� i �� 	

� end�

 Q� procedure�h� integer�

 j � integer�

� i � integer�

� R � procedure�i � integer�

����������������

					 Symbol �id� inserted before symbol �	� on line �

					 Other possible corrections�

					 Insert nonterminal symbol �cte�

					 Delete terminal symbol �	�

					 Replace �	� with terminal symbol ���

Figure

��

����� Strategy �� Symbol Deletion

In this strategy� suppose that the programmer has made a mistake by writing an extra symbol�
To test this hypothesis the following strategy is used�
rstly� a test is done to check if the current
symbol is a terminal� Only terminal symbols may be removed from the input stream� In the
next step� starting with the symbol right after the current one� a trial to advance in the input
stream is performed� If� when advancing at least a minimal distance MINCHECK is achieved�
the symbol is considered as a candidate for correction� Figure � illustrates the error messages
produced for the syntax analysis of a program piece�

��

� begin

� i �� j�

� if h � then P�j�

�
 else if h �
 then then P�i�

�� else R�k�

�� end

�� begin

�� i �� �

�� j ��
�

�� k �� ��

�� Q�k��

�������������������������������

					 Symbol �then� deleted just before symbol �id� on line �

Figure �

��

����� Strategy �� Symbol Replacement

Suppose that the user has made a mistake by writing a symbol in the place of another� To
test this hypothesis� the current symbol is replaced� in turn� by each lookahead symbols� and

they are tested as in the case of insertion� For example� the syntactic analyser of the program
in Figure � produces the following error messages corresponding to the error recovery for this
strategy�

��

� Q � procedure�h� integer�

� j � integer�

� i � integer�

�

� R � procedure�i � integer�

� b � integer

�������

					 Symbol ��� replaced by symbol ��� on line
��

Figure �

��

��� Second Phase of Error Recovery

The second phase of the error recovery mechanism is activated when the
rst phase is not
successful� This phase implements scope recovery� i�e�� forces the closing one or more scope
opening symbols by inserting appropriate sequences of closing symbols� The set of scope opening
symbols and their corresponding scope closing symbols is language dependent and must be
defered for each language� In this strategy� suppose that the programmer made a mistake by
forgetting one or more scope closing symbols� which must now be inserted� The closing of one
or more scopes is done in the following way� in the
rst place� the set of possible scope closing
symbols is determined for each scope opening symbol in the PE stack� Each one of this closing
symbol is a candidate for correction� The parser rejects a candidate if it cannot advance over
it� On the other hand� if the parser advances at least a minimum distance� �MINCHECK�� the
closing symbol can be used to correct the text� If the parser advances only over the candidate�
then it must recursively try to close the next scope opening symbol present down in the stack�
This process is repeated until there are no more scope closing symbols to the given opening
symbol� For example� Figure � shows the message produced by this strategy of error recovery
mechanism�

��

� R� procedure�i � integer�

� b� integer

� begin

� i �� i �
�

� b ��

�� begin

��������������

					 Symbol �end� inserted just before line ��

to close symbol �begin� on line
�

Figure �

��

��� Third Phase of Error Recovery

This phase is activated only if the second one has not been successful� This phase resembles the

rst one described in Section ���� The di�erence between them is that now both the elements
from the stack and those from the input bu�er are discarded� Thus� this phase does not return

poped symbols into the bu�er� and it removes terminal and nonterminal symbols from the bu�er
in an attempt to recover from the error�

Starting with the terminal symbol that caused the error �the current symbol�� it is checked
whether the parser is able to recover simply by deleting the PE stack top element in conjunction
with one of the strategies� insertion� deletion or substitution� If not� then more PE stack
elements are popped without putting them back in the input stream� This process is repeated
until
nd a scope opening symbol on top of PE top or a correction occurs� As in the
rst phase�
the scope opening symbol serves as a ag� stopping the popping process from the left context� It
is important to notice that� for this phase to be more e�cient� the parser is allowed to advance
up to the minimal distance MINCHECK��� If no correction is possible with the current symbol�
then it is deleted� i�e�� the next symbol in the input bu�er becomes the current symbol and
the stack is reset to the initial con
guration� The process is then repeated as described above�
Figure � illustrates messages issued in this phase of error recovery�

��

� Q � procedure�h� integer�

� j � integer�

� i � integer�

�

� begin �	 comments are not allowed in this language 	�

� i �� j�

� if h � then P�j�

� else if h �
 then P�i�

� else P�k�

��

					 Text deleted from line
� column
� until line
� column �

					 Symbol ��� deleted just before symbol �id� on line
�

Figure �

��

� The Error Analysis

The process of error recovery requires reading portions of the input stream several times in order
to determine the most appropriate correction� When a syntax error is found� the parser must
only report the error situation� activating the error recovery mechanism� and then resume the
analysis� The semantic routines are never activated during error recovery� In order to have a
more e�cient syntactic analysis during recovery a new parser was created� whose objective is
to determine the distance achieved in each trial of error correction� This parser is essentially a
syntactic analysis LR��� without the mechanism to defer reductions �see Section �� and with a
method for identifying transaction labels eliminated by default reductions�

��� Candidate Chosen for Correction

It may happen that more than one symbol or more than one strategy would make the recovery to
succeed� as shown in Section ���� If the
rst encountered candidate is a candidate for insertion�
deletion or substitution then this strategy is chosen� Other candidates� if they exist� are indicated
as other possibilities for error correction� However� if the
rst candidate is obtained from the
scope recovery strategy� all scope closing symbols successfully inserted are reported as possible
corrections� In this case� only one candidate is chosen by the method� It has been observed

that the best order to attempt to correct a syntax error is�
rst insertion� then deletion and
then substitution ���� When substitution has preference over insertion� the recovery achieved
is in general not as good� Experience showed that changing the order of the three strategies
reduces the quality of error recovery and messages generated� The possible cause for this is that
the most frequent error is omission of symbols� Nevertheless� more studies are needed on this
subject in order to support this claim�

Insertion and substitution of nonterminal symbols may simplify the recovery� However� only
some nonterminal symbols should be considered in order not to degrade the quality of the error
messages issued by the compiler� Speci
cally� only substitution or insertion of nonterminals
authorized by the user are permitted�

� E�ects of Error Recovery on the Parser

Since reductions in the parser stack may be done even in the presence of a syntax error in the
input stream� and given that default reductions are used by table compactation methods ����
some problems appear�

�� How to restore the stack parser to the con
guration after the last �shift�� considering
that reductions may have been done prematurely� In other words� how to neutralize the
e�ects of these reductions in order to have a more precise error recovery�

�� How to recover information about transaction labels eliminated from reduction states in
the compacted parse table� The labels of these transactions are necessary on attempts to
recover from a syntactic error�

A solution for problem �a� is to defer reductions� as done by Burke and Fisher ���� during parsing�
reductions are deferred until the syntactic analyser is able to read the next input symbol� The
technique used to defer reductions will be discussed in detail in Section ����

The solution for problem �b� is to recover the eliminated labels by analyzing the
nite state
automaton corresponding to the canonical collection of LR�	� items ����� This is possible because
labels of transitions to reductions states ��� are also labels to states transitions that can be
reached after a sequence of default reductions� In other words� these labels are symbols that
must necessarily be read after the reductions have taken place� Therefore� to recover eliminated
labels by the introduction of default reductions� the parser must advance by performing default
reductions until it reaches a read state� The labels of transitions which leave all the states
the parser has traversed belong to the set of desired labels� To determine the
rst read state
achieved after default reductions� it is enough to insert in the input one especial terminal symbol
not belonging to the language and to activate the error analysis� When a syntax error is detected
and the o�ending symbol is exactly that special symbol� the current state on top of the stack is
the desired state and the states visited are exactly the ones desired�

��� New LR��� Parser

The LR��� parser shown in Figure � incorporates the e�ects of LR��� table compression and
implements the technique of deferring reduction until the next symbol is pushed� The PE stack

Sm

PE

Sm

PS

Syntax

Analyser compacted

table

Input

a1 ai an $

STACKS

top1 top

MINTOP

Sm Sm

...

(including the buffer)

Figure �� New LR��� Syntax Analysis

is used as a scratch stack� As with the PS stack� it is used to store the parser states� so that the
current state is on its top� During syntax analysis the PE stack presents exactly the situation
of the analysis� On the other hand� the PS stack is updated only when a symbol is pushed into
the stack� It presents the stack con
guration immediately after the last symbol pushed� So�
this stack does not show always the current situation of the analysis� When a reduction action
is detected� the production number which de
nes the reduction must be properly stored� and
the PE stack shows immediately the result of the application of this reduction� However� the
reduction is not applied to the parser stack� PS� and the semantic routine is not activated either�
i�e�� it is deferred�

When a shift action is detected� all reductions stored since the last shift and its respective
semantic actions performed on the parser stack PS must be performed so as to make PS equal
to PE� It is important to remember that all read symbols are pushed simultaneously on both
stacks PE and PS�

When an situation of a syntaxe error is detected� the parser must go back to the con
guration
that existed at the moment the symbol preceding the terminal which caused the error was pushed�
i�e�� PE must be restored to the con
guration of PS� Making PE equal to PS corresponds to
undoing the reductions performed after the last push� so eliminating the e�ects of the default
reductions included�

� Conclusion

The method proposed by Burke�Fisher was used as the basis for the implementation of a mecha�
nism of error recovery in the System for Implementing Compilers �SIC� developed at UFMG�
���� �	�� The part of this system which corresponds to error recovery contains ��		 lines of
Pascal code� SIC users need only specify the grammar of the language for which they desire
to implement a compiler� The user does not have to worry about syntax errors and respective
messages� The error recovery and the messages are all generated automatically�

To complete� P� Degano and C� Prianni ����� when evaluating the performance degradation due
to error�recovery routines they have found that the only performance degradation is caused by

keeping its auxiliary data structures consistent with those of the parser� The method of Burke�
Fisher uses two stacks� as stated before� due of the deferred action mechanism� but they claim
that the degradation caused by the use of the second stack is no greater than �	� in their
strategy� But� if stack PE �Section �� is activated only after the detection of the
rst error�
there is no performance degradation� Because of performance degradation more space is needed
to store information on the stacks PE and PS since more data structures should be updated�
However� the better correction quality of Burke�Fisher�s method repays the memory overhead�

� Grammar De	nition used in the Examples

program � proghead dcls cmdc�

proghead � �program� �

dcls � dcl �

dcls � dcls ��� dcl �

dcl � �id� ��� �integer�

� �id� ��� �boolean�

� prochead ��� par ��� dcls cmdc �

par � �id� ��� �integer�

� �id� ��� �boolean� �

prochead � �id� ��� �procedure� �

cmdc � �begin� cmds �end� �

cmds � cmd

� cmds ��� cmd �

cmd � �id� ���� exp

� �id� ��� exp ���

� �if� cond �then� cmd �else� cmd

� �while� cond �do� cmd

� cmdc �

cond � exp �

exp � exp �	� exp � exp ��� exp � exp ��� exp �

� exp �		� exp � exp ��� exp � ��� exp � ��� exp ���

� �id� � �cte� �

References

��� Aho� Alfred V� and Sethi� R� and Ullman� J� D�� Compiler Principals� Techniques and Tools�
Addison Wesley Publishing Company� ����

��� Burke� M�� Fisher Jr�� G�A��� A Practical Method for Syntatic Error Diagnosis and Recovery�
pages� �������� ACM Transactions on Programming Languages and Systems� Vol� �� No���
April �����

��� Burke� M�� Fisher Jr�� G�A��� A Practical Method for Syntatic Error Diagnosis and Recovery�
pages� ����� ACM �����

��� Aho� A� V� and Peterson� T�J� A minimum distance error�correction parser for context�free
languages� pages� �	������ SIAM J� Comput�� ����� �����

��� Aho� A� V� and Johnson� S�C�� LR parsing� ACM Computing Surveys� ����� ������� �����

��� Tai� K� C��� Syntactic Error Correction in Programming Languages� IEEE Trans� Software
Engineering� SE�� ���� �������� �����

��� Boullier � P� and Jourdan� M�� A New Error Repair and Recovery Scheme for Lexical and

Syntactic Analysis� Science of Computer Programming� �� �������� �����

��� Charles� P�� An LR�k� Error Diagnosis and Recovery Method� Second International Works�
hop on Parsing Technologies� ������ February �����

��� Bigonha Roberto S� � Bigonha� Mariza A�S�� A Method for E�cient Compactation of

LALR��� Parsing Tables� to be published�

��	� Bigonha� Mariza A�S�� Bigonha� Roberto S�� Russo� Valeska� Costa� Marco� An Environ�

ment for Language Implementation called SIC� Anais do �nd� Congreso Argentino de

Ciencias de la Computacion� ��� de novembro������ p�aginas� ��������

���� Bigonha� Mariza A� S�� Bigonha� Roberto� S�� SIC � Uma Ferramenta para Implementa�c�ao

de Linguagens� Trabalho vencedor do III Pr�emio Nacional de Inform�atica ����	

Categoria Software� Anais do XXI Congresso Nacional de Inform�atica� SUCESU� Rio
de Janeiro� RJ� �������� �����

���� Druseikis� F� C�� Ripley� G�D�� Error Recovery for Simple LR�k� Parsers� Proc� Nate�

Conf� of ACM	 Houston	 TX	 ��
��

���� Feyock� S�� Lazurus� P�� Syntax�directed Correction of Syntax Errors� Software Practice

and Experience� Vol� �� �����

���� Fisher C� N� and Mauney� J�� Determining the Extent of Lookahead in Syntactic Error

Repair� ACM TOPLAS� �	 ���� �������� �����

���� Wilcox� T� R�� The Design and Implementation of a Table�driven Interactive Diagnostic

Programming System� CACM �� ����� �	������ �����

���� Graham� S�� Rhodes� S�P�� Practical Syntatic Error Recovery� CACM� November �����

���� Graham� S�� Haley� C�B�� Joy� W�N�� Practical LR Error Recovery� Sigplan Notices� Au�
gust �����

���� Krol� J�S�� Simple Error Recovery Scheme for Optimized LR Parsers� TR ������ March
�����

���� Levy� J� P�� Automatic Correction of Syntax Errors in Programming Languages� Acta

Informatica � �������� �����

��	� Mickunas� M�D�� Modry� J�A�� Automatic Error Recovery for LR Parsers� CACM	 june

��
�	 Vol� ��	 Number ��

���� Poonen� G�� Error Recovery for LR�k� Parsers� Information Processing� August �����

���� Rohrich� Johannes� Methods for the Automatic Construction of Error Correcting Parsers�
Acta Informatica ��� �������� ���	�

���� Wirth� Nicklaus and Ammann Pascal � The Language and its Implementation� Edited by

D�W� Barron� �����

���� Degano� Pierpaolo and Priami� Corrado� The Comparison of Syntactic Error Handling in

LR Parsers� Software�Practice and Experience� ������ �������� June �����

