Universidade Federal de Minas Gerais
Instituto de Ciéncias Exatas

Departamento de Ciéncia da Computacao

Formal Semantics for
Interacting Abstract State Machines

by

Marcelo de Almeida Maia
Roberto da Silva Bigonha

RT 005/98

Caixa Postal, 702
30.161 - Belo Horizonte - MG
September, 1998

Abstract

In this work we propose an extension to the original model of Abstract State
Machines. We focus on the modularization support and on the explicit in-
teraction abstraction between the modules (units of specification). We pro-
vide the new language syntax and formal semantics, and also some examples
showing its use.

Chapter 1

Introduction

Much of the work being done in the software engineering area concerns the
development of mechanisms that facilitate the reuse and flexibility of software
components. The most powerful resource to achieve these goals is modular-
ity, which is based upon abstraction and information hiding and it is the only
effective way to break down the complexity of large systems. Even though
Abstract State Machines[6] support abstraction and information hiding, we
advocate more powerful abstraction mechanisms. If we consider the inherent
methodology of producing ASMs specifications as a methodology that pro-
vides a vertical abstraction mechanism, in the sense that the ground model is
successively refined until considered adequate, it is reasonable to think that
it does lack some kind of horizontal abstraction to support the reuse of ex-
istent specifications. An argument to support this view can be found in [9],
where are defined some desired characteristics for good modularization mech-
anisms such as modular composability, modular decomposability, modular
understandability, modular continuity and modular protection. Considering
these characteristics, a central theme that affects directly each one of them is
the specification of how software modules interact with each other. So, our
decision is in the direction of a formalism that explicitly enables the software
engineer to write down how the interaction occurs between the modules. We
adopt a message exchanging style because we believe it provides a natural
abstraction of how objects interact in the real world. When we explicitly
specify the interaction between modules, we are automatically inclined to
think about the concurrency issues involved in the interaction process. In
our view, modularization and concurrency concepts are interdependent and
should not be addressed separately, and this has influenced our decision of
putting them together in a unique framework.

In the context of ASMs, there is already some work in the direction
of providing them with some kind of horizontal abstraction. Glavan and

4 CHAPTER 1. INTRODUCTION

Rosenzweig developed a theory of concurrency [5] that enables the encoding
of some traditional calculus as the m—calculus [10] and the Chemical Abstract
Machine [2]. However, we can not see an explicit message passing mechanism
and it does not support encapsulation and information hiding mechanisms,
issues which will be directly treated in this work. May [8] has developed
a work with the same aims as ours, and although it provides some form
of encapsulation and information hiding, the usual modularization concepts
must be further added to the model. The explicit message passing encoding
is not considered too.

Instead of putting on the user the burden of providing the complete spec-
ification of the message interchanging between different specifications, our
approach provides special constructions to help the explicit specification of
how different pieces of specifications interact with each other. This idea can
be thought as a better development of the concept of external functions [6],
because the approach provides some environment behavior formalization. It
is not necessary to know how the environment behaves internally, but it
is necessary to know how it interacts with the system being specified. So,
when we specify a system, we must have in hands a minimal formalization of
the observed environment behavior that affects the system, what is a little
diferent from the raw concept of external functions.

Chapter 2

Abstract State Machines

Abstract state machines (ASMs) [6] are transition systems which states are
first-order interpretations of functions symbols defined by a signature T over
a non-empty set U called the super-universe. These states are also called
static algebras. The transition relation is given by a finite set of transition
rules describing the modifications of the interpretation of the function sym-
bols from one state to another. This is the reason why ASMs were formerly
called Evolving Algebras. Before introducing the transition rules, let us de-
fine the auxiliary notions: locations, updates, update set. A location [of a
state S is a pair (f,), where f is a non-static function symbol, € U™ and
n is the arity of f. An update « over the state S is a pair (I,t), where [is
a location and ¢ is a term in the sense of first-order logic. If v € U is the
value for interpreting the term ¢ on S, then firing o = ((f, %), t) at state S
transforms S into S’ such that the result of interpreting (f,Z) is v and all
other locations are not affected. An update set Updates(R, S) is a set of up-
dates over the state S, collected from the transition rule R. The update set
is consistent if it does not contain any two updates «, o’ such that o = (I, x)
and o/ = (I,y) and x # y. Otherwise, the update set is inconsistent. To fire
an update set over a state S means to fire simultaneously all its updates and
produce the corresponding state S’. Firing an inconsistent update set means
to do nothing, i.e., means to produce a state S’ = S.

The transition relation of ASMs is defined by the following transition
rules:

F(ty,oty) =t

Rle

if e then R, else R, endif

extend U with v R; endimport

choose v in U satisfying e IR endchoose

6 CHAPTER 2. ABSTRACT STATE MACHINES

e var v ranges over U IR, endvar

The first three kind of rules are called basic rules, respectively, the update
instruction, the block construction and the conditional construction. Their
semantics are given by means of an update set Updates(R, S), i.e., to fire R
over a state S fire Updates(R,S). This update set is inductively defined on
the structure of R:

1. if R = f(t,...,t,) :=t then Updates(R,S) = {(l,S(t))},
where [= (f,(S(t1),...,5(tn))), and S(t) is the result of interpreting ¢
on S,

2. if R = Ry...Ry, then Updates(R, S) = U¥_,Updates(R;, S);

3. if R = if e then Ry else R, endif, then Updates(R,S) is defined as:
Updates(Ry,S) if S(e) holds
Updates(Rs,S) otherwise.

The last three kind of rules introduce variables, respectively, the eztend
construction which produces new fresh elements that are added to the ex-
tended universe, the choose construction which performs non-deterministic
choices from a universe, and the var construction, which allows a simple form
of synchronous parallelism. The variables of these rules must be bound to
some value of a universe belonging to the super-universe. So, the definition of
the update set is extended with an environment p which binds the variables
to values, and a choice function & which determines the variable bindings
for extend and choose rules. The function & maps the bound variables to
elements of a special universe called Reserve, which is used to produce new
elements. The update set Updates(R, S, p,&) can be defined inductively as
well.

Given an initial state Sy, a run is a sequence of states Sy, Si,... such that
the state S;y1 is obtained as the result of firing the transition relation at S;.

Finally, let us define a distributed ASM, which contains several computa-
tional agents, which execute concurrently a number of single-agent programs
(called modules). A distributed ASM consists of a finite indexed set of single-
agent programs 7, (modules) and finitely many agents a such that, for some
module name v, Mod(a) = v, where the function name Mod represents the
relation between modules names and agents. Each module has a correspond-
ing enumerating universe of agents, which can be extended or retracted as
necessary. There is also a nullary function name Self that allows the self-
identification of agents: self is interpreted as a by each agent a.

An agent a makes a move from a given state S if the corresponding
update set of a is fired at S resulting a new state S’. Thus, a move can

represented as a pair (S,S’). Building upon this basic concept of move, a
partially ordered notion of run for distributed ASMs can be defined as a
triple (M, A, o), where:

1. M is a partially ordered set where its elements are agent moves.

2. Aisafunction that, given a move from M, returns the agent performing
that move. It is used to impose that the set {m : A(m) = a} is linearly
ordered.

3. 0 is a function that give an initial segment of M (possibly empty)
assigns to it the corresponding state S.

In order to make the specifications more readable we will define a con-
crete syntax which extend the standard notation of ASMs with the notion
of types, functions, and pattern-matching as introduced in [4]. We call this
specification language ASM-MG®.

Now we will give an example written is ASM-MG while we show the
language constructions. We will specify a very simple programming language
which has only output and assignment statements. In ASM-MG we would
specify the type of the language statement as:

freetype STMT ==
Assign : STRING * TERM,
OQutput : TERM

}

The terms of the simple language would be either a constant, or a variable,
or an application. We would specify like the following:

freetype TERM ==
Con : INT,
Var : STRING,
App : STRING * [TERM]

The freetype definition introduces a new type name into the specification
and describes its structure. The above free types are the only one in the
example.

An ASM-MG specification is a sequence of definitions. Like the freetype
definition there are other kinds of definitions. The definitions the ASM-MG
language supports are:

e Freetype definitions: enables the specifications of user-defined types.
It is possible the definition of traditional structured types.

! The name MG is due to the joint work of three federal universities of the Minas Gerais
state, namely UFMG, UFOP, and UFV

CHAPTER 2. ABSTRACT STATE MACHINES

— tuple types: () or (type_1, ..., typemn) or type_l * ... *
type-n

— derived form for types:
x list types: [typel
* set types: {type}
* map types: {type_1 -> type_2}

e Function definitions: enables the definition of static, dynamic and de-
rived functions.

— Static functions are used to bind any term to a function name. It
can be parameterized and thus allowing the macro definition for
terms.

— Dynamic functions represent the evolving state of the specifica-
tion.

— Derived functions are introduced to allow the specification of com-
putable functions in a purely functional style. They do not affect
the ASM philosophy in the sense that they are computed in only
one ASM-step.

e Transition definitions: provide a kind of ASM rules abstraction. In
every specification there must be a transition named "main" which
defines the begining of the update set calculation.

e Module definitions: enables the definition of distributed abstract state
machines.

Back to our example, we will define the following function:

dynamic function env :STRING -> INT

initially finite map
{ v -> ord (V) - OI‘d ("X") | v in { "X", llyll, IIZII } }

This function env , representing the environment on which the programs

of our simple language will be executed, has a special derived form of type
which is called MAP.

Besides the derived form MAP, there are also derived forms representing
set and list types represented by "{ type }" and "[type 1", respectively.
Below we define a function representing the output of the programs of our

simple language. Note the type of the function out is a list of integers.

dynamic function out :[INT]

initially []

Next we define a static function defined with two parameters: a string
representing a function of the simple language and a list of parameters.

This function introduces the notion of pattern-matching. This notion
is implemented by the case construction, which gets a pattern and tries
to match it sequentially against several other patterns. When a successful
matching is found then the corresponding term is returned.

static function eval_app (f, args) ==
case args of
[x1 : case £ of
"abs" : abs (x)

endcase ;

[x, y]1 : case f of
ll+ll : X + y ;
n_n X - y ;
Wyt . X % Vo3
"div" : x div y ;
"mod" : x mod y

ndcase

endcase

Now we define a derived function which is defined in a purely functional
style. The function eval_term has a parameter ¢ which is matched against a
constructor application pattern. Note that the constructors are the same as
defined in the free type Term. Also, note that the function may be recursively
called.

derived function eval_term (t) ==

case t of
Con (x) HED G
App (£, t_list) : eval_app (f, [eval_term (t) | t in t_list 1) ;
Xar (v) : env (v)

en

Finally, we have two functions definitions working as a macro for calling
the terms constructors.

static function Add (x, y)
static function Mul (x, y)

App ("+", [x, y 1D
App ("x", [x, y 1)

Now we will define the transition rules that works as an interpreter for
our simple language.

The transition which executes an assignment has a parameter which is a
variable and a term to be assigned. Note that this transition is executed in
only one step, even though the term evaluation is as large as wanted.

The transition which executes an output append the evaluated term to
the dynamic function out.

10 CHAPTER 2. ABSTRACT STATE MACHINES

transition ExecuteAssign (v, t) ==
env (v) := eval_term (t)

transition ExecuteOutput (t) ==
out := append (out, [eval_term (t) 1)

We define a transition for executing a statement. Note that this transi-
tion just matches the parameter stmt against the corresponding statement
constructor and executes the proper transition. Also note that the previous
transitions definitions are working just as macros because the execution of
this transition requires just one ASM-step. Indeed, the following transition
also works as a macro because it would be expanded into the main transition
Interpreter.

transition ExecuteStmt (stmt) ==
case stmt of)
Assign (v, t) : ExecuteAssign (v, t) ;

Output (t) : ExecuteOutput (t)
endcase

Finally, we define the main transition Interpreter? which takes the simple
language program as a dynamic function and iteratively interprets it. At the
end of the simulation the environment and the output will have the expected
values.

transition Interpreter ==
case prog of
stmt :: rest_of_prog :
ExecuteStmt (stmt)
prog := rest_of_prog
endcase
dynamic function prog
initially [
Assign ("x", Con (10)),
Output (Var ("x")),
Assign ("y", Con (12)),
Output (Mul (Var ("x"), Add (Var ("y"), Con (3))))
]

For the sake of completeness, let us provide additional syntax for terms,
patterns and modules.
There are the following possibilities for writting terms:

e Special constants: integers, floats, and strings.
e Variables: an applied occurrence of a variable represented by its iden-
tifier.

2The definition of which transition is the main one is left to the environment on which
the ASM simulator runs

11

Ordinary terms: provided by function application. The application
may be written in prefixed or infixed style depending on the function
definition.

Tuple terms: are written using the tuple constructor written just like
the tuple type definition.

Ex: ("red", "green", "blue")

Conditional terms: are written using an if-then-else syntax, regard-
ing that the alternative clauses are terms.

Ex: if x > 0 then "black" else "white" endif

Let terms: are written using a let patt == term ... in term endlet
syntax.

Ex: let x == 0 in x+1

Case terms: are written using a case patt of patt : term ... otherwise:

term endcase syntax.

Ex: case x of [1 : 0; x::xs : length(xs) + 1

Set, list, and map comprehension terms.

Ex: {x -1 | x in 0,1,2 with x > 0}

Ex: { v -> ord (v) - ord ("x") | v in { "x", "y", "z" } }
List terms.

Ex: [1, 2, 3] or [1: 2:: 3:: nil]

e Set enumeration terms.
e Map enumeration terms.

There are the following possibilities for writting patterns:

Special constants: such as integers, floats and strings.

Occurrences of variables.

Placeholders: written as "_".

Ordinary patterns: defined by constructor application. The constructor
may be a nullary one, such as, nil, true, It also may be a built-
in or user-defined one, or even a infixed or prefixed one.

e Tuple patterns: defined by the constructor "(...)".

List patterns: defined by the constructors "[... 1" or "

Finally, modules may be written using the following structure:

module <module name> [enumerating universel

<trapsitions>

endmodule

12

CHAPTER 2. ABSTRACT STATE MACHINES

Chapter 3

The Interactive ASM Language

A specification is defined as a set of unit definitions and unit instances. Units
definitions are classified as system units and environment units. System units
are those which will be completely specified, whereas environment units will
be partially specified. We use the word environment not only referring to
the external portion of the system, but also referring to some components of
the system that had already been specified and are being reused.

The intention of specifying a system as a set of units is to encapsulate
some portion of the state inside small pieces of specification. This leads
to an isolation of the internal state of a unit. The information contained
in the internal state of a unit only can be communicated to other units by
explicitly specifying a pattern of interaction between the involved units. This
interaction specification does not only specify the information flow but also
the synchronization restrictions within the interaction.

In the sequel we present the abstract syntax of our proposed language.

A system unit definition U, is composed of several parts and it is defined
as:

U, == unit unit_-name
function names function_names
interaction interaction
rules rules
where:

e function_names is a subset of the vocabulary that contain the names
of the functions. It represents, together with the respective interpreta-
tions of the names into the super-universe, a local state alterable only
by the local unit rules and interaction. Each function name may be op-
tionally initialized with an arbitrary value. In order to make the ideas
clear, we will define an abstract data type (ADT) Stack, as we explain

13

14

CHAPTER 3. THE INTERACTIVE ASM LANGUAGE

the parts of a unit. For the Stack unit we may have the following
function names:

function names

max := 100 % Maximum length of Stack

S % The stack itself

top := 0 % Index of the top elem
topelem % The top element

ack % Acknowlegdement of pushing
c % The client of the Stack

e An interaction 7 is defined as:

1 = internal_pub_name -> u_name
buffered_var <-- u_name.pub_name
var <- u_name.pub_name

connect u:Us | connectu:U | connectu
new u:U

destroy w:U

iy +iy | i 7

iy ; l2

il

waiting(name)

if guard then i

extend U with z ¢ endextend

choose v in U satisfying e ¢ endchoose

var v ranges over U i endvar
The basic operators for interaction are those that provide input and
output within a unit. They are the -> and <-, used to send a value to
a unit and to receive a value from a unit into a variable, respectively.
The operator <-- denotes a buffered input that avoids an inconsistent
update if two or more different inputs to same variable occur in the
same step. Since we expect to define dynamically the communication
topology, we provide the connect operator which binds a unit name to
some unit instance. The operators new and destroy are used to create
and destroy unit instances. Since units are mapped into agents, these
operators update the corresponding enumerating set of agents derived
from a module. In order to address complex interaction patterns that
may exist between units we provide the well-known composition oper-
ators "+, +?" (different kinds of non-deterministic choice), "1, |,
| (different kinds of parallel composition), and ";" (sequential com-
position). As we will define soon, one cannot reason about the relative
speed of execution of an atomic interaction compared to an internal
rule of a unit. Thus in order to synchronize the interaction part with

|

|

|

|

|

|

| i I i | i s i | i | i
| .
|

|

|

|

|

|

15

the computation part of a unit we introduce labeled interactions and
the barrier waiting(name). The label [uniquely identifies an inter-
action, and denotes how many times the interaction labeled with [has
completely occurred. Its initial state is zero. We also inherit from the
ASM notation the if, extend, choose, and the var rules.

Coming back to our example, the ADT Stack may be seen as a server
and thus it must connect with the Client before performing any infor-
mation exchanging. As we will see, the connect operator used below
waits until there is an interested unit instance requesting the connec-
tion. After the connection, it may receive requests from the Client
instance. The requests guide the sequel of the interaction, and the unit
Stack interacts with its Client by sending to it the element on the top
of the stack (popping it or not) or receiving from it an element to be
pushed onto the stack.

interaction
connect c;

request <- c;

if request = "top" then
topelem -> ¢

elseif request = "pop'" then
waiting (popped) ;
topelem -> ¢

elseif top < max then

elem <- c.elem;

waiting(pushed) ;

%gk -> cC

e rules is defined as an element of ASM_RULFES. These rules work
by changing the internal state represented by function_names. In the
abstract data type Stack we may define the rules as:

rules

if waiting(popped) then
top—;
waiting(popped) := false;

endif

if waiting(pushed) then
topt++;
s(top+l) := elem;
waiting(pushed) := false;

endif

Now, let us define an environment unit as a restriction on a system unit.
It shows the public portion of a system unit that can be imported by other

units and can be defined as:
U, = environment unit unit_name

interaction interaction
Each system unit has a corresponding environment unit specifying what
will be exported to other units.

16

CHAPTER 3. THE INTERACTIVE ASM LANGUAGE

Chapter 4

Semantics

In this section we specify the [ASM language formal semantics. We provide
it in a translational style that maps a syntactic domain corresponding to the
TASM constructions into the original ASM language defined by Gurevich[6].

4.1 Unit Definition

Unit definitions are translated by the D compilation scheme, defined as in
Figure 4.1. The idea of this compilation scheme is to put together, inside a
module, the rules corresponding to each construction of each unit definition.
The target specification of the module will be generated from the unit defini-
tion U. This compilation scheme guarantees that each unit instance derived
from this unit definition will have its own clock, and thus its execution will be
independent from the other instances. We will also make use of the function
Self which allows an agent to identify itself between other agents. Since a
unit definition will correspond to an ASM module, it introduces an enumer-
ating universe of the agents corresponding to unit instances. The elements of
this enumerating universe are the instances names, each of them composed
of the unit instance declaration name labeled with the unit definition name,

D, Dimoq: TASM_CONSTRUCTIONS — ASM_RULES
DU,... Uy | = U, DunoalUi]
Dinod [[U]] =
module U
7 [U.interaction |
R [U.rules |
end module

Figure 4.1: Translation scheme for unit definitions

17

18 CHAPTER 4. SEMANTICS

Ustatic J[U . U]] =

T(u(-)) := true
Mod(u) :=TU
extend U with x name(x) := "U.u"

Figure 4.2: Translation scheme for static unit instantiation

and additionally possibly labeled with the instance name from which it has
been instantiated.

4.2 Internal State

Since an ASM specification has only a global state, the internal state of each
unit instance has to be mapped into the global state.

This can be trivially done by adding an additional element to the tuple
that identifies a location. This additional element is a term which value
is self. So every internal location of a unit instance f(xy,...,x,) has to be
replaced by the location f(self, x1, ..., x,).

4.3 Unit Instantiation

The instantiation of a unit means extending the universe that enumerates
the agents corresponding to the instances of a unit definition. Each element
of the enumerating universe is identified by the corresponding unit instance
name. There are two ways of declaring units:

1. Static declarations are those done in the startup definition. These dec-
larations actually create the initial unit instances which will live during
the whole execution of the specification. The unit instance name is de-
fined by the declared instance name and labeled by the unit definition
name. The label is added to the left of the instance declaration name
separated by a dot. In Figure 4.2 we define the translation scheme
Usiagic for static unit declarations (instantiations).

2. Dynamic declarations are those done inside a unit definition, and do
not create a unit instance. Instead, it produces a function name that
will be dynamically bound to a unit instance name, either a statically
created, or a dynamically created one. A dynamic unit may be created
and destroyed with the interaction instructions new and destroy, re-
spectively. Because unit instances are agents, creating and destroying

4.4. INPUT/OUTPUT INTERACTION 19

Ugynamic [u: U] = T(u(-)) := true
7z ﬁnew u: U] hole =
Mod(u) := U;
extend U with x
name (x) := Self ++ "U.u"
endextend;

7 [destroy u : U] hole =
Mod(u) := undef;
choose x in U satisfying name(x) = Self ++ "U.u"
U(x) := false;
endchoose;

Figure 4.3: Translation scheme for dynamic unit instantiation

units means to extend or retract the enumerating universe that contains
the agent names of the specified module.

In Figure 4.3 we define the translation schemes for dynamic unit dec-
laration and for the interaction instructions new and destroy. In the
translation schemes for new and destroy we introduce an extra parame-
ter hole which means that it is a point where the interaction instruction
has been fully performed and it is the point where many useful con-
text information is to be inserted. Such context information are, for
instance, updates for transferring the control, updates for internal con-
trol of the non-determininistic instruction. We have put a surronding

box in just for readability purposes.

4.4 Input/Output Interaction

There are two possible semantics for receiving a value from another unit. The
name responsible to store the received values may be buffered or not. In either
case, the special universe MSG is searched to find a message that matches
the required input interaction. If this message exists then the corresponding
updates are done and the used message is discarded from the universe MSG.
For obvious reasons, for each input interaction there must be an output
interaction.

In the case where received values are not buffered, the variable is trans-
lated into a function name and if there is a message that matches the input
interaction then the corresponding updates take place. In Figure 4.4 we
define the translation scheme for the single input.

In the other case, the buffered variable will be translated into a universe.

20 CHAPTER 4. SEMANTICS

T [var <- u-name.pub_name | hole =
if has-message(‘u_name.pub_name) then
choose = in M SG satisfying match-msg(z, ‘u_name.pub_name)
var := cont(r);
MSG(z) := false;
endchoose;
hole

endif;

Figure 4.4: Translation scheme for single input

Z [buffered_var <-- u_name.pub_name | hole =
if has_message(‘u_name.pub_name) then
choose z in M SG satisfying match-msg(z, ‘u_name.pub_name)
extend buffered_var with y
cont(y) := cont(r);
end extend;
MSG(z) := false;
endchoose;
hole

endif;

Figure 4.5: Translation scheme for buffered input

Each time the variable receives a value, the corresponding universe will be
extended with that value.

In order to access the buffered values we will assume that a timestamp is
assigned to each value received into a buffered variable. This timestamp is
incremented with step one, and if there are many incoming values in the same
step in the same variable, then the corresponding timestamps are assigned
non-deterministically to each value. For example, suppose there is a buffered
variable = that is receiving two values, for instance “v1” and “v2”, in the
same step. If the current timestamp to be assigned to the incoming value is,
for example, 8, then the timestamps to be assigned non-deterministically to
“v1”7 and “v2” will be 8 and 9, and the current timestamp will be set to 10.
In Figure 4.5 we define the translation scheme for the buffered input.

The output interaction means that an internal value from the current
unit is sent to another unit. This sending means that the internal universe
MSG is extended with a new message. This universe contains the messages
exchanged between the units. A message carries its target, a label denoting
the source of this value, and a value. In Figure 4.6 we define the translation
scheme for the output interaction.

4.5. UNIT CONNECTIONS 21

T [internal_pub_name —> u_name | hole =
extend MSG with x

target(z) := ‘u_name;
label(x) := ‘sel f.internal _pub_name;
cont(x) := internal_pub_name;

endextend;

Figure 4.6: Translation scheme for output interaction

4.5 Unit Connections

As stated before, a unit declaration inside a unit definition only produces a
function name. Our intention is that this function name should be further
bound to another unit instance which also has a function name bound to the
former unit instance. This situation indicates an agreement between the two
instances, and it is performed with the operator connect. The arguments
for this operator are: 1) a function name u corresponding to a unit instance,
2) the name U corresponding to the unit definiton from which the instance
u was derived, and 3) a function name s declared inside U that we expect to
be bound to the current unit instance.
There are some possibilities when using connect:

e All arguments are defined. Then it must be checked that if there is
another instance that attempted a connection that matches this one.
If there is such attempt, then the connection is successfully performed,
otherwise it is blocked until such attempt occurs.

e Some arguments are undefined. This possibility is necessary because
when establishing a connection we may not know in advance which unit
instance will be connected or even from which unit definition the unit to
be connected was derived. We may write "connect u: U", where "u"
is undefined and we are not interested on which function name inside
"U" will receive the name of the current instance. Alternatively, we may
want more flexibility and write "connect u", where "u" is undefined.
In this case, any unit wanting to connect through the channel "u" can
match this connection, regarded that it has all arguments defined and
matching the channel "u".

The semantics of this operator may be given defining a universe Connec-
tions that the operator connect can update and search in order to establish
the connection. Each element of this universe is a pair representing the two
connected instances. Each element of the pair is a quadruple (u,U, o0,a),

22 CHAPTER 4. SEMANTICS

C [connect u:U.f | =
if exists x in Connections.
wants (x,u,"U","f",self,Mod(self),"u") then
choose x in Connections satisfying
wants (x,u,"U","f",self,Mod(self),"u")
Connections(x) := false;
endchoose;
extend Connections with x1
partyl(xl) := (self, Mod(self), "u", true);
party2(x1) := (u, "U", "f", true);
endextend;

else
extend Connections with x1
partyl(x1) (self, Mod(self), "u", true);
party2(x1) := (u, "U", "f", false);
endextend;
if exists x in Connections.
connected (x,u,"U","f",self ,Mod(self),"u") then
choose x in Connections satisfyin
connaﬁed(x,u,“U",“f",self,Mod%self),“u“)
Connections(x) := false;
endchoose;

endi
endif

Figure 4.7: Translation scheme for connect u:U.f

where u is the name of the instance involved, U is its corresponding unit
definition name, o is the function name whose value is the name of the other
instance belonging to the pair, and a is the awareness that each party has of
the connection.

Figure 4.7 shows the translation scheme for the fully defined connection.
It also can be used for partially defined connection, where the names are
provided, but their values are undefined. Figure 4.8 shows the translation
scheme for the totally undefined connection.

4.6 Interaction Composition and Runs

Since an IASM specification can be translated into the pure ASM notation,
as a set of modules and agents, the notion of run for interactive ASMs is
the same as that of pure ASMs. But, compared with the pure ASMs, the
composed interaction portion of the specification has a different state tran-
sition granularity. So, the reasoning mechanism of pure ASMs should not be
used for Interactive ASMs, which have a more elaborated notion of move.
Thus, in the sequel, we define a special notion of interaction cycle that is
independent from the notion of move of the internal rules. The latter obeys

4.6. INTERACTION COMPOSITION AND RUNS 23

C [connect u] hole =
if exists x in Connections.
wants (x,undef ,undef ,undef,self ,Mod(self),"u") then
choose x in Connections satisfying
wants (x ,undef ,undef ,undef,self,Mod(self),"u")
Connections(x) := false;
extend Connections with x1

partyl(x1l) := (self, Mod(self), "u", true);
party2(x1) := other party(x,self, Mod(self),"u");
endextend;
endchoose;
enal

Figure 4.8: Translation scheme for connect u

the partially-ordered semantics of distributed ASMs.

Definition 1 Interaction tree is the abstract syntax tree derived from the
interaction part of a unit definition.

Definition 2 Interaction cycle of a node of the interaction tree is the result
of executing the moves of the rules corresponding to that node until the end
of the cycle, when another cycle begins. The end of a cycle is defined by the

point.

Definition 3 Sequence: If there is an enabled interaction tree with the fol-
lowing form: (iy; ia; « -+ ; in) then one and only one interaction iy (1 < k < n)
is enabled at each time and all the sequence is executed in the cycle, regarded
that each 1y, finishes its cycle.

Definition 4 Cyclic parallelism: If there is an enabled interaction tree with
the following form: (i1|| is|| - -+ || in) then all interactions iy (1 < k < n)
are enabled and the execution of each iy is cyclic and do not depend on each
other.

Definition 5 1-Move-for-slower parallelism: If there is an enabled interac-
tion tree with the following form: (iy| is| -+ | in) then all interactions iy
(1 < k < n) are enabled and the execution of each iy is cyclic until every
interaction iy has fully completed at least a cycle.

Definition 6 1-Move-for-all Acyclic Parallelism: If there is an enabled in-
teraction tree with the following form: (i1|; isl; -+ |; i) then all interactions
ir. (1 <k < n) are enabled and the execution of each iy is performed only
once in each cycle of the whole parallel tree. In other words the end of the
cycle is a kind of barrier.

24 CHAPTER 4. SEMANTICS

T [irs...s in] hole =
if seq(Id("iy;...; 4,")) = 1 then
T [[z?]] hole ++ "seq(Id("i1;...;i,")) = 2"
elseif ...
elseif seq(Id("¢1;...;%,")) = n-1 then
Z [in—1] hole ++ "seq(Id("iy;...;ip")) := n"
elseif seq(Id("¢1;...;%,")) = n then
7 [in] hole ++ "seq(Id("iy;...;in")) := 1"
hole
endif;

Figure 4.9: The translation scheme for the sequential composition

Definition 7 FEzternal Non-determinism: If there is an enabled interaction
tree with the following form: (iy+ is+ -+ + in), then one and only one
interaction iy (1 < k < n) will be effectively performed on each cycle of the
non-deterministic interaction, and the choice is done by an external randomic
function.

Definition 8 Internal Non-determinism: If there is an enabled interaction
tree with the following form: (i1+7 is+7? - -+ +7 4y,), where i, (1 < k < n) are
atomic interactions, then one and only one interaction iy, will be effectively
performed on each cycle of the non-deterministic interaction, and the choice
15 done internally by checking which interaction is ready to be performed. If
more than one interaction is actually ready to be performed then the choice
s done by an external randomic function, just like the previous definition.

Definition 9 Blocking input: Suppose there is an enabled interaction tree
with the following form: (a < — w.b;iy), where a is a function name, and
u.b is an incoming value from the function name b of the unit u. Then, the
respective input blocks i1, until the input effectively occurs.

Proposition 1 The translation scheme for sequential composition preserves
the corresponding definition.

Proof. The function Id by definition assures that each sequence has its
own sequence counter, which initial state is alway set to 1. So, in the above
definition the first guard is always guaranteed to be true, and then the first
interaction always takes place first.

When the first interaction is completed, the sequence counter is set to 2.
This is guaranteed by augmenting the hole of the first interaction with the
proper update.

4.6. INTERACTION COMPOSITION AND RUNS 25

Zlig Il ... 11i,] hole =
7 [i1] hole ++ "™

T [in] hole ++ "™

Figure 4.10: The translation scheme for the cyclic parallel composition

Zir | ... | ip] hole =
if par(Id("e; | ... | "#p")) = "init" then
done(Id("s1")) := false,
done(Id(":,")) := false;
par(Id("i;y | ... | 4,")) := "executing"
elseif par(Id(":i; | ... | i,")) = "executing" then
if not (done(Id("#;")) and .. and done(Id(":,"))) then

T [[21]] hole ++ "done(Id("i1")) := true"

T [[7,1]] hole ++ "done(Id("i,")) := true"
else

par (Id("s; | ... | ")) := "init"
endal

endif

Figure 4.11: The translation scheme for the 1-move-for-slower parallel com-
position

By induction, regarded that each interaction iy, (1 < i < n) eventually
finishes, then interaction ¢, will be eventually performed and will complete
the cycle by updating the sequence counter with 1. W

Proposition 2 The translation scheme for cyclic parallel composition pre-
serves the corresponding definition.

Proof. Since each interaction i (1 < k < n) is mapped into an independent
rule in the same level, this implies that if one of them is enabled to execute
then all of them is enabled to execute, just like a block of ASM rules, and thus
providing the required independence and parallelism stated in the definition.
|

Proposition 3 The translation scheme for 1-move-for-slower parallel com-
position preserves the corresponding definition.

Proof. As the I-move-for-all, this kind of parallelism is performed in
two phases. Reagrded that the initial state of par(ld("i; | ... | iy"))is
"init", all the interactions i, (1 < k < n), are labeled with a boolean
stating that they were not completely performed.

26 CHAPTER 4. SEMANTICS

Z[ix ls .. |5 0] hole =
if ar(Id("zl l; ... |; 2,")) = "init" then
done(Id("zl")) := false;

done(Id("i,")) := false;
par(Id("i; |; ... |; ")) := "executing"
elseif par(Id("zl [.. [; 4,")) = "executing" then
if not done(Id("zl”)) then
7 [i1] hole ++ "done(Id("i;")) := true"

if not done(Id(":,")) then
7 [in] hole ++ "done(Id("i,")) := true"
if done(Id("#;")) and ... and done(Id("z,")) then
par(Id("sy |; ... |; 2,7)) = "init"
endif

Figure 4.12: The translation scheme for the 1-move-for-all parallel composi-
tion

The main phase has two guards that either enables the parallel execu-
tion of all 7;, or finishes the complete parallel interaction cycle. This latter
condition occurs if and only if all 7, has been completed. To prove this we
can see that when an i, has been completed the function done(Id("i")) is
set to true. When the slower iy has been completed then all done(Id("i;")),
(1 <k <n), are set to true and thus causing the end of the whole parallel
interaction cycle. In the other case, the only way to finish the parallel in-
teraction is to set all done(Id("i;")),(1 < k < n), to true, since they were
all initialized with false in the initial phase. These updates are only done
when each 7, has been completely performed at least once. W

Proposition 4 The translation scheme for 1-mowve-for-all parallel composi-
tion preserves the corresponding definition.

Proof. The translation scheme imposes two phases for executing this kind
of parallelism. Regarded that the initial state of the function par(Id("i; |;

l; i,)) is "init", always only the first guard will be executed, and
in the sequence the second guard will be executed. The body of the second
guard implies that every i; (1 < k < n) will execute, and each of them will
be blocked whenever they finish, satisfying the parallelism and the 1-mowve
execution. W

Proposition 5 The translation scheme for external non-deterministic com-
position preserves the corresponding definition.

Proof. Let chooserandom be a function that chooses randomically a number
from a list of integers.

4.6. INTERACTION COMPOSITION AND RUNS 27

T [i1 + ... +iy] hole =
i1f choosing(Id("i; +? ... +7 4,")) then
choosel (Id("41+7...+?¢,")) := chooserandom(["1",...,"n"]);
choosing(Id("s; +7 ... +7 4,")) := false;
else
if choose(Id("i; +? ... +? 4,")) =1 then
T [i1] hole ++ "choosing(Id("i; +7 ... +7 4,")) := true"
endi
elseif ...
elseif choose(Id("z; +? ... +? 4,")) = n then
7 [i1] hole ++ "choosing(Id("i; +? ... +7 ")) := true"
endif
endif

Figure 4.13: The translation scheme for the external non-deterministic com-
position

This translation scheme is also performed in two phases. Regarded that
the function choosing(Id("i; +? ... +7 4,")) is initialized with true,
then one interaction i, (1 < k < n) will be selected among the others, and
the selection will be placed in the function choose which is identified by the
label of the external non-deterministic interaction.

In the second phase, only the selected interaction will be performed, and
thus, satisfying the definition. W

Proposition 6 The translation scheme for internal non-deterministic com-
position preserves the corresponding definition.

Proof. This translation is performed in two phases, controled by the
function nondet. Regarded that the initial state of the function nondet is
"checking", then in the first phase, all interactions i, (1 < k < n), will
be checked to see if they can completely finish a cycle. The checking will be
serialized in order to prevent an inconsistent update of the function possibles
which will contain the number of each interaction that can occur. This
serialization does not contradicts the definition 4.14. If there is only one
possible interaction then this will be the interaction to be performed. This is
assured by the required update on the functions chosen and nondet. If there is
more than one possible interaction to be executed then this chosen interaction
will be selected by the same function chooserandom used in the previous
definition, thus assuring the required behavior stated in the definition. When
the selection is performed by one of the two previous guard, then mandatorily
the execution enters the second phase. In the second phase only the selected
interaction will be executed as assured by the mutual exclusive guards on the
function chosen. The cycle finishes correctly by putting all control functions

28

CHAPTER 4. SEMANTICS

T i +7 ... +7 sz hole =
if nondet(Id("iy +? ... +? 4,")) = "checking" then
if checking(Id("4;+7...+%, ")) = 1 then
if can_occur [i;] then
possibles(Id("i; +7 L+ ,M) k=
cons(l,p0331bles(Id("u,+7 +79,")));
endif
checking (Id("i1+7...474,")) := 2;
elseif ...
elseif checking(Id("41+7...+%7¢,")) = n then
if can occur [i,] then
possibles(Id("s; +7 L+ ")) o=
cons(n, p0331b1es(Id("u,+7 +7 1,")));
endif
checking (Id("41+7...+74,")) := 1;
elseif 1ength(poss1b1es(Id("u,+? . +? 4,"))) =1 then
nondet (Id("s; +7 +7 4,")) := "executing";
chosen(Id("z; +7 +7 in") 1=
car(possibles(Id("i; +?7 ... +?7 i,")));
elseif 1ength(poss1b1es(Id("u,+? +? 4,"))) > 1 then
nondet (Id("s; +7 .. 7 ")) = "executing";
chosen(Id("z; +7 +7 in") =
chooserandom(p0331bles(Id(“u,+7 +7 1,")));
endif
if nondet (Id("iy +7? +? 4p")) = "executing" then
if chosen(Id("i; +7? +? 4,") =1 then
Z [i1] hole ++
"possibles(Id("i; +7 +?7 3,")) 1= nil ++"
"nondet (Id("¢; +7? +7? in")) := "checking";"
elseif ...
if chosen(Id("i; +7? +? 4,") = n then
T [in] hole ++
"possibles(Id("i; +7 +?7 3,")) 1= nil ++"
"nondet (Id("¢; +7? +? 4p")) := "checking";"
endif
endif

Figure 4.14: The translation scheme for the internal non-deterministic com-

position

4.7. SYNCHRONIZATION OF RULES AND INTERACTIONS 29

7 [waiting war | hole =
waiting%self, "var") := true;
if not waiting(self, "var") then

Figure 4.15: The translation scheme for the waiting interaction

(possible, nondet) in the initial state. The function checking was already set
to the initial state in the checking phase. H

4.7 Synchronization of Rules and Interactions

Unit internal rules are just like ASM rules and its semantics is exactly the
same. But, there is no direct relation on the synchronism between the inter-
action rules and internal rules. In order to guarantee appropriated synchro-
nization when executing these rules, the TASM method provides:

1. A waiting rule used in the interaction section. This rule is represented
by a boolean function name. When executed the rule updates the
function with true and freezes the execution of the current node in a
interaction cycle until the function is updated with false.

Proposition 7 The translation scheme preserves the condition that
the waiting interaction finishes a cycle if and only if the corresponding
function waiting is set to false.

Proof. The only way to finish the interaction is to execute the hole
instructions. But these instructions are only executed if the function
waiting is set to false. Conversely, if this function is set to false,
necessarily the hole instructions will be executed and thus finishing a
cycle.

2. All interactions may be labeled, for example:

msgrec <- S.msgsend : nb_rcvd_msgs

The corresponding label denotes an integer value which corresponds to
how many times an interaction has been completed. This value can be
used by the internal rules.

30 CHAPTER 4. SEMANTICS

ZJi: 1] hole=
Z[i: 1]hole++ "1(Id(i))+=1"=

Figure 4.16: The translation scheme for the labeled interaction

Proposition 8 The translation scheme for labeled interaction gquarantees the
[has the number of times that © was completed, regarded that [is local to the
corresponding unit instance and it is properly initialized with zero.

Proof. By identifying [with the interaction label, we assure that [is local
and unique for the corresponding unit instance. The increment of the func-
tion [is performed in the hole portion of the interaction, which by definiton
is where the interaction finishes a cycle. Thus the function [correctly counts
the number of performed cycles. W

Chapter 5

An Example - The Alternating
Bit Protocol

In this section we show a more elaborated example: the specification of the
Alternating Bit Protocol [1]. The problem consists of transmitting messages
through an unreliable channel. The channel delivers messages in the same
order they were sent, but can occasionally loose some of them.

The specification is composed of three main unit definitions: Sender, Re-
ceiver and Channel. In addition, four other units are defined as environment
units:

e unit ClientSender: Simulates the behaviour of a client that delivers
messages; the messages are sent to the unit Sender, which sends copies
of them to ensure the correct delivery.

e unit ClientReceiver: Simulates the behaviour of a client that receives
messages from the unit Receiver.

e unit 7Tumer: Sends periodically a message to the unit Sender, at a fixed
rate, to indicate that a new copy of the current message must be sent.
Timer has a behaviour which is similar to that of ezternal functions in
pure ASM.

e unit Loose: Sends messages to the unit Channel non-deterministically,
indicating when a message will be lost. Like Timer, its behaviour is
similar to that of external functions.

31

32CHAPTER 5. AN EXAMPLE - THE ALTERNATING BIT PROTOCOL

cs: cr:
Client Client
Sender Receiver
srchan:
/ chennd
A
s: Sender r: Receiver
I: Loose

V

= rschan:
t: Timer Channel

Fig. 1. Units and the flow of messages in the AB Protocol.

Figure 1 shows the relationship between these units. Note that two in-
stances of the unit Channel are necessary.

After the unit Sender has performed the connections, it receives from
the client a message which must be delivered to the receiver through an
unreliable channel. Then it sends copies of the message through an output
channel (srchan), together with a signal bit. This process is repeated until
the unit Sender receives a correct acknowledgement message from the input
channel. Then it waits for a new request from the client.

The timer is used to indicate that the sender has spent a certain amount
of time waiting for the correct acknowledgement signal and must then deliver
a new copy of the message. Note that after the message was sent via srchan,
either the sender receives non-deterministically an acknowledgement bit or a
timeout signal, as we should expect.

uni% Sender
unction names
timeout, connected := false;

msg, recvbit;
bit := 0;
next := true;
srchan := "srchan"; rschan := "rschan"; c := "c1"; t := "t";
inte¥action
1f not connected thsﬁ .
connect srchan: annel.input, rschan: Channel.output,

c: Client, t: Timer; : Connection

ng next then
msg <- c.msg;
msg -> srchan ; bit -> srchan;
(recvbit <- rschan.bit +
timeout <- t.timeout);
if not timeout and recvbit = bit then
ack -> c;
waiting (nextmsg) ;
else
waiting(samemsg) ;
r endif
v ?f Connectign > 0 then
connected := true;
if waiting(nextmsg) then
bit := toggle(bit); next := true;
waiting(nextmsg) := false;
endif

el

33

if waiting(samemsg) then

timeout := false; next := false;
waiting(samemsg) := false;
endif
end unit

After the unit Receiver has performed the connections, it receives a
message from the input channel (srchan) and if it is not a copy of the last
value received, it is sent to the client. It also sends an acknowledgement
signal via an output channel (rschan). Note that msg is also sent via rschan
in order to correctly match the interaction pattern of Channel.

uni% Receiver
unction nages
connected := false;

msg, bit;

currbit := 0;

srchan := "srchan"; rschan := "rschan"; c := "c2";
inte¥action

if not connected t

hen
connect srchan: Shannel.output, rschan: Channel.input,
c: Client; : Connection

else . .
msg <- srchan.msg ; bit <- srchan.bit;

((if bit = currbit then
msg -> c;
waiting(nextmsg) ;

Iendif)

(msg -> rschan ; bit -> rschan))
endif
TuigE Connectign > 0 then
connected := true;
if waiting(nextmsg) then
currbit := toggle(currbit); waiting(nextmsg) := false;
end unit

The unit Channel simulates a channel that delivers the messages in the
order they are sent, but it may occasionally loose some of them. It connects
to the units representing the input and output of the channel and also to
a unit Loose that determines non-deterministically when a message will be
lost. Note that the connection of the input and output will be blocked waiting
the assignment that will be done in the units Sender and Receiver.

unit Channel

unction names . .
input, output, msg, msg2, bit, bit2;
loose: Loose;
connected := false;
queue := nil;

interaction
1¥ not connected then

connect 1input, output;

connect loose: Loose; : Connections
endif ;
((msg2 <- input.msg ; bit2 <- input.bit ;
waiting(buffering))

34CHAPTER 5. AN EXAMPLE - THE ALTERNATING BIT PROTOCOL

I
(if msg <> undef then

msg -> output ; bit -> output ;
waiting(cleanmsg) ;
endif)

(loosemsg <- loose.loosemsg ;
waiting (LoosingInQueue))

)

rule .
1% Connectlgn > 0 then
connected := true;

if waiting(buffering) then
queue := append((msg2, bit2), queue);
waiting(buffering) := false;

endif

if waiting(cleanmsg) then

msg := undef; waiting(cleanmsg) := false;
if waiting(LoosingInQueue) then
queue := tail(queue); waiting(LoosingInQueue) := false;
if msg = undef and queue <> nil then
msg = first(head(queue)); bit = second(head(queue));
queue := tail(queue);
endif;
end unit

This protocol has been previously formalized using the ASM method in
[7]. In that work, the behaviour of the communication channel was not clearly
defined. It was necessary to write identical code for both the communication

sender-receiver and receiver-sender.
Now we will specify the environment units ClientSender, ClientReceiver,

Timer, and Loose.

uni% ClientSender
u

nggﬁggc%g§e§= false;
msg := 0;
ack;
g := "S";
lnt$¥aﬁg%ogonnect§d ghen .
connect s: Sender; : Connection
else
waiting(preparing_msg) ;
msg -> 's;
ack <- s.ack;
endif
T ?f Connectign > 0 then
connected := true;
if waiting(preparing_msg);
msg := msg + 1;
waiting(preparing _msg) := false;
endif
end unit

uni% ClientReceiver
u

nction names
connectgg := false;
msg := 0;

35

r = "I‘",
interaction
1¥ not connectﬁd then .
connect r: Receiver; : Connection
else
msg <- r;
waiting(processing_msg);
. 1endif
u .
?% Connectlgn > 0 then
connected := true;
if waiting(processing_msg);
out := cons(msg, out);
waiting(processing_msg) := false;
endif
end unit
uni% Timer
unction names .
connected := false; timeout := true;
TIMEOUTPARAM := 100; firstclock; lastclock;
mode := "init"; getting_clock := true;
s :="s"; ¢ := "c"; init_signals := 0; timeouts := O;
interaction
1¥ not connectgd hen .
connect s: Sender; : Connection

init_timeout <- s.init_timeout;
first_clock <- clock.time;
last_clock <- clock.time;

1
©15€ if 1astclock - firstclock > TIMEOUTPARAM then
timeout -> s : send_timeout

| init_timeout <- s.init_timeout : recv_init_signal;
| ask_clock -> clock; last_clock <- clock.time;

r 1endif

v ?? Connectign > 0 then
connected := true;

if recv_init_signal > init_signals then

init_signals := init_signals + 1;
first_clock := last_clock;

e¥dif .
1t timeouts < send_timeout then
timeouts := timeouts + 1;
first_clock := last_clock;
endif
end unit

environment unit Clock
1nte¥act10n
if not connected then
connect req;

else
ask_clock <- req.ask_clock; time -> req
endif
end unit

uni% Loose
unction names .
connected := false; timeout := true;
c ; init_signals := 0; timeouts := O;
interaction
1% not connected Ehen .
connect c¢; : Connection
else
waiting(a_loose);
loosemsg -> ¢

endif
rules

36CHAPTER 5. AN EXAMPLE - THE ALTERNATING BIT PROTOCOL

if Connectign.z g then

connecte rue;
if waiting(a_loose) then
if random() = "loose" then
waiting(a_loose) := false;
endif
end unit

The startup specification that creates the initial unit instances may be
written as:

specification ABP
rschan, srchan: Channel;
s: Sender; r: Receiver;
t: Timer; 1: Loose;
cl: Client; c2: Client;
c: Clock;

end specification

Chapter 6

Another Example - Active
Mobile Objects

Let us give a problem to be specified. This will be useful in comparing
this approach with others and in illustrating its reasoning capability. The
following paragraph reproduces verbatim a simplified and eventually modified
version of the problem consisting in managing a virtual program committee
meeting for a conference. The problem was presented as a challenge in [3].

A conference is announced, and an electronic submission form is publi-
cized. FEach author fetches the form and activate it. FEach author fills an
instance of the form with the required data and attaches a paper. The form
checks that none of the required fields are left blank and sent the data and
the paper to the program chair. The program chair collects the submission
forms and assign the submissions to the committee members, by instructing
each submission form to generate a review form for each assigned member.
FEach assigned member is a reviewer, and may decide to review the paper
directly or send it to another reviewer. The review form keeps track of the
chain of reviewers. FEventually a review is filled and it finds its way back to
the program chair. The program chair collects all review forms. The chair
merge all review forms for each paper in a paper report form. Then the chair
declares each report form an accepted paper report form, or a rejected paper
review form, and finally returns this form to each author. All accepted paper
report forms are required to generate final version forms on which the author
attaches the final version of the paper and send it back to the program chair.

Now we will give a partial Interactive ASM semantics for this problem.
For the sake of conciseness, we will focus on the interaction section of the
specification and will omit the declaration of the internal state and the the
internal rules of each unit.

unit Author

37

38 CHAPTER 6. ANOTHER EXAMPLE - ACTIVE MOBILE OBJECTS

interaction
if (wants_to_submit) then
choose s in Submission
connect s ;
wait (submission_ok) ;
data_paper -> s;
disconnect s;
e¥d choose
endi

if (waiting_result) then
connect the_chair;
result <- the_chair.result(self);
disconnect the_chair

endif

if (ready_final) then
connect the_chair;
final -> the_chair;
disconnect the_chair
endif

end unit

This unit definition models the behavior that the author of an article
must have in order to correctly participate of a call for papers.

unit Submission

interaction
connect a: Author;
data_paper <- a.data_paper;
disconnect a;
connect the_chair;
data_paper -> the_chair;
disconnect the_chair;

end unit

The unit definition Submission models an agent that interacts with the
author of a paper, and gets all necessary information with an attached paper.
The internal rules should make all the necessary checking.

unit Chair
interaction
if (before_deadline) then
connect s: Submission;
data_papers <-- s.data_paper;
disconnect s;
endif

if (exist x in data_papers) then

choose r in Reviewer
connect r ;

wait (one_paper) ;
a_paper -> r : sent_review;
disconnect r;

dchoose
end??

if (sent_review > received_review) then
connect r: Reviewer;

39

review <- r : received_review;

jsconnect r
endg%

if (result_ok) then
var r in Result
connect author(r) ;

r -> author(r);
disconnect author(r)

d
endi? "

if (receiving_final_versions) then
var a in Author
if (accepted(a) then
connect a ;
finals <-- a.final;
d%sconnect a
asat
end??
end unit
The unit Chair is the more interactive one. It has five parallel actions,
each one represented by a guarded rule evaluated depending only on its
internal state.
unit Reviewer
interaction)
connect the_chair;
a_paper <- the_chair.a_paper;
if (directly_review) then
wait(the_review);
review -> the_chair

else . .
choose r in Reviewer
connect r;

firsthistory as history -> r | a_paper -> r ;
disconnect r;
e%dchoose
endi

connect r;
history2 <- r.history | a_paper2 <- r ;
disconnect r;
if (reviewed(a_paper2) then
connect head(history2);
(tail(history2) as history -> head(history2) |
apaper2 -> head(history2));
disconnect head(history?2)
elseif (directly_review) then
wait(the_review2);
connect head(history2);
(tail(history2) as history -> head(history2) |
review2 -> head(history2)) ;
disconnect head(history?2)
else . .
choose r in Reviewer
connect r;
cons(self, history2) as history -> r | a_paper2 -> r
disconnect r;
endchoose

40 CHAPTER 6. ANOTHER EXAMPLE - ACTIVE MOBILE OBJECTS

end unit

The unit Reviewer has an elaborated scheme for creating the dynamic
communication between the reviewers. When passing a paper forward it
adds its identification to the history of the reviewers for that paper. When
passing a paper backward in the history, it removes a reviewer from the list
being sent backward with the review.

At last, we may specify the specification startup to create some initial
unit instances. Other instances must have to be created dynamically by
some Authorization unit, intentionally not specified.

specification startup

the_chair: unit Chair;
committee_memberl: unit Reviewer;

committee_memberN: unit Reviewer;
end specification

Now, we are going to present two propositions about the previous example
and show their validity.

Proposition 9 All papers submitted after the deadline date are not received
by the chair.

Proof: The first guard in the unit chair directly guarantees this propo-
sition.

However, as it is, the specification does not treat a notification of this
fact to the author.

Proposition 10 All submissions received by the chair generates a report
form to the author if, and only if, there is a reviewer that directly reviews the

paper.
Proof:

1. If there is a reviewer that directly reviews the papers then all submis-
sions generates a report form.

We have that all paper received by the chair is sent to a reviewer. This
is guaranteed by the second guard of the unit definition Chair, that
checks that if there is a submission that was not sent to any reviewer.
Since this guard is parallel with all the other it will be executed without
being blocked.

In all guards of the unit Reviewer, it can be seen that a received paper is
either reviewed and sent backward in the history, or sent (backward or

41

forward) to another reviewer. Since, by assumption, there is a reviewer
that directly reviews the paper, the paper will certainly be sent back
through its history when reviewed. In the definition the first element
of the history is the chair. So, the paper will certainly return to the
chair.

Assuming that the internal behavior of the chair produces the final
result when all the reviews of the paper had come back, then by the
fourth guard of the unit Chair, we can guarantee that all results are
sent, back to the authors.

. All submission would have back the result report, only if there is a
reviewer that directly reviews each paper.

Suppose if for a certainly review, there is not a reviewer that directly
reviews it. Then, that review will never be sent to the chair, and
consequently, will not be sent to the author.

Depending on the internal behavior of the chair when preparing the
result, it may happen that none of the authors receives the review.

42 CHAPTER 6. ANOTHER EXAMPLE - ACTIVE MOBILE OBJECTS

Chapter 7

Conclusions

We have presented a proposal to promote the reuse of ASMs specifications
while addressing important issues such as communication and concurrency.
The idea of explicitly isolating the interaction between computing units with
different purposes makes clearer their interdependencies. This also provides
a useful mechanism to formalize the environment in which a specification will
work.

The approach was successfully used in the specification of the Alternat-
ing Bit protocol, where we have reused the specification of the unit Channel,
which may be connected differently depending on its usage. We have shown
that the explicit message passing mechanism composed with well-known op-
erators provides a powerful and natural specification mechanism.

The dynamic configuration of the communication topology presented is
an essential feature that may be used to specify mobile systems which are
being increasily used but still lacks more suitable formal approaches.

There are some aspects that must be further studied:

e study of static checking mechanism, e.g., type systems;
e study of more powerful reuse mechanisms, e.g., inheritance;

e encoding of procedure and/or function calls and/or method invoca-
tions;

e use of the approach in large scale specifications.

43

44

CHAPTER 7. CONCLUSIONS

Bibliography

1]

[9]
[10]

K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A Note on Reli-
able Full-Duplex transmission over Half-Duplex Links. Communications
of the ACM, 12(5):260-261, May 1969.

G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical
Computer Science, 96(1):217-248, 1992.

L. Cardelli. Abstractions for mobile computation. Position Paper,
http://www. luca.demon.co.uk/Papers.html, May 1998.

G. D. Castillo, Y. Gurevich, and K. Stroetmann. Typed Abstract State
Machines. Submitted to the Journal of Universal Computer Science,
1998.

P. Glavan and D. Rosenzweig. Communicating Evolving Algebras. In
E. Borger, H. Kleine Biining, G. Jager, S. Martini, and M. M. Richter,
editors, Computer Science Logic, volume 702 of Lecture Notes in Com-
puter Science, pages 182-215. Springer, 1993.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, edi-
tor, Specification and Validation Methods, pages 9-36. Oxford University
Press, 1995.

J. Huggins and R. Mani. The evolving algebra interpreter version 2.0.
Manual of the interpreter (http://www.eecs.umich.edu/gasm).

W. May. Specifying Complex and Structured Systems with Evolving
Algebras. In TAPSOFT’97: Theory and Practice of Software Develop-
ment, 7th International Joint Conference CAAP/FASE, number 1214
in LNCS, pages 535-549. Springer, 1997.

B. Meyer. Object-oriented Software Construction. Prentice Hall, 1997.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes
(Parts I and II). Information and Computation, 100:1-77, 1992.

45

46

BIBLIOGRAPHY

Appendix A

Syntactic Conventions

We have used the following conventions:

e Unit definition is the specification of the code of a unit.
e Unit declaration creates a function name or a unit instance.
e [talic letters: u;, u;.interactions denote syntactic elements.

e Typewriter letters: denote reserved words of the original ASM language
and of the constructions proposed here.

4

e ‘a : denotes a label that uniquely identifies the syntactic element a,
i.e., is the element of the vocabulary without being interpreted.

e [...] : denotes syntactic elements.

e a +=b; =a:=a + b;

e a-=>b; =a:=a-b;

e has_message(origin) =(3 x € MSG) target(z)=self A label(z)=origin
e match_msg(z, origin) = target(x) = self A label(x) = origin

e 1. apartyis(z,u, Uy, f,b) =
partyl(x) = (x,uy, Uy, f,b) or
party2(x) = (x,uy, Uy, f,b)

2. a_party-is(x,uy, Uy, b) =
partyl(x) = (x,uy, Uy, -, b) or

party2(x) = (x,uy, Uy, -, b)

47

48

APPENDIX A. SYNTACTIC CONVENTIONS

3. a_party_is(x, Uy, b) =
partyl(x) = (IL’, - Ula - b) or
party2(x) = (x, -, Uy, -, b)

4. other_party(z,u,U, f) =

if partyl(x) = (u,U, f,-) then
party2(x)

elseif party2(x) = (u, U, f,-) then
partyl(x)

else undef

a_party_is(x, uy, Uy, f1, true) and

(a_party_is(z, undef, undef,undef, false) or

5. wants(z, uy, Uy, f1,us,Us, f2) = (a_party_is(z, ug, Us, fa, false) or
a_party_is(z, ug, Us, undef, false) or
a_party_is(z, undef, Uy, undef, false))

6. connected(x, uy, Uy, f,us, Uy) = ::g:igjzg:z; g;: ;;:ZZE% and

7. can_occurfa<- u.b] =

hasmessage('u.b)
can_occurfa<-- u.b] =

hasmessage('u.b)
can_occur[connect u:U.f | =

exists x in Connections.

wants(x,u,"U","f" self,Mod(self),"u")

can_occur[connect u | =

exists x in Connections.

wants (x,undef ,undef ,undef,self,Mod(self),_)

can_occur[iy;...; i,] = false
can_occur[iy || ... || i,] = false
can_occur[iy | ... | i,] = false
can_occur[iy |;... |;i,] = false
can_occur[i; + ... +i,] = false
can_occurfi;+7...4+7i,] = false
can_occur[_] = true

Appendix B

Translating the IASM AB
Protocol

In this section we present the translation of the AB Protocol into the pure
ASM notation.

module Sender
unc¢tion names
timeout, connected := false;

msg, recvbit;

bit := 0;

next := true;

srchan := "srchan"; rschan := "rschan"; ¢ := "cl1"; t := "t";

connecte
if waiting("nextmsg") then
bit := toggle(bit); next := true;
waiting("nextmsg") := false;
endif
if waiting("samemsg") then
timeout := false; next := false;
waiting("samemsg") := false;

ules
}% Connectaon >tg ghen
i= ue;

1? ot c?nneited then
if seql = 1 then
if exists x in Connections.
wants(x,srchan,"Channel","input",self,"Sender","srchan")
choose x in Connections satisfying

wants(x, srchan,"Channel","input",self,"Sender","srchan")

Connections(x) := false;
endchoose;
extend Connections with x1
partyl(x) := (self, "Sender", "srchan", true);
party2(x) := (srchan, "Channel", "input", true);
end?xteng
seql := 2;

else
extend Connections with x
partyl(x) := (self, "Sender", "srchan", true);

party2(x) = (srchan, "Channel", "input",false);
e¥dext
if exists x in Connections

connected(x, srchan,"Channel","f“,self,“Sender“,"srchan“) then

49

50 APPENDIX B. TRANSLATING THE IASM AB PROTOCOL

choose x in Connections satisfying
connected(x,srchan,"Channel","f",self,"Sender", "srchan")
Connections(x) := false;
endchoose;
seql := 2;
n ndif
elgel% seql = 2 then
if exists x in Connections.
wants(x, rschan,"Channel","output",self,"Sender","rschan")
choose x in Connections satisfying
wants(x,rschan,"Channel", "output",self,"Sender","rschan")

Connections(x) := false;
endchoose;
extend Connections with x1
partyl(x) := (self, "Sender", "rschan", true);
party2(x) := (rschan, "Channel", "output", true);
end?xteng
seql :="3;
else
extend Connections with x
partyl(x) := (self, "Sender", "rschan", true);
party2(x) := (rschan, "Channel", "output",false);
e¥dextend . .
if exists x in Connections.

connected(x,rschan,"Channel","output",self,"Sender","rschan") then
choose x in Connections satisfying
connected(x,srchan, "Channel","output", self,"Sender",'"rschan")

Connections(x) := false;
endchoose;
seql := 3;
o ndif
n
elSeit seql = 3 then

if exists x in Comnections.
wants(x, cl, "Client", _, self, "Sender","cil")
choose x in Connections satisfying

wants(x, cl1, "Client", _, self, "Sender,'cl")

Connections(x) := false;

endchoose;

extend Connections with x1
partyl(x) := (self, "Sender", '"cl", true);
party2(x) := (cl, "Client", _, true);

end?xteng

seql :=4;

1

© ggtend Connections with x

partyl(x) := (self, "Sender", '"cl", true);
party2(x) := (c1l, "Client", _, false);

e¥dextend . .

1f exists x in Connections.

connected(x, c1, "Client", _, self, "Sender","cl") then
choose x in Connections satisfying
connected(x, c1, "Client", _, self, "Sender","ci")
Connections(x) := false;
endchoose;
seql := 4;
cnda¢HE
elseif seql = 4 then
if exists x in Connections.
wants(x, t1, "Timer", _, self, "Sender","ti")
choose x in Connections satisfying

wants(x, t1, "Timer", _, self, "Sender,"tl")
Connections(x) := false;

endchoose;

extend Connections with x1

partyl(x) := (self, "Sender", "t1", true);
party2(x) := (t1, "Timer", _, true);

end?xteng

seql :=4;

1

© ggtend Connections with x

partyl(x) := (self, "Sender", "t1", true);
party2(x) := (t1, "Timer", _, false);

e¥dextend . .

1f exists x in Connections.

connected(x, tl1, "Timer", _, self, "Sender","t1") then
choose x in Connections satisfying

connected(x, t1, "Timer", _, self, "Sender","t1l")

Connections(x) := false;
endchoose;
seql := 1;
n%if
godt
endi
els

1% seq2 = 1 then
if next then
if has_message(c, "msg") then
choose x in MSG satisfying match_msg(x, c, "msg")

msg := cont(x);
MSG(x) := false;
endchoose;
seq2 := 2;
ndif

elggl% seq2 = 2 then
extend MSG with x

target (x) := srchan;
label(x) := self + "msg";
cont(x) := msg;
dext

segs*rens,

elseif seq2 = 3 then
extend MSG with x

target (x) := rschan;
label(x) := self + "bit";
cont(x) := bit;
dext

adgrieny,

elseif seq2 = 4 then
if choosingl then

choosel := chooserandom(["1", "2"]);
choosingl := false;
else

if will_occur(l, choosel,
[("input",rschan,"bit"), ("input",t,"timeout")] then
if has_message(rschan, "bit") then
choose x in MSG satisfying match_msg(x,rschan,"bit")

bit := cont(x);
MSG(x) := false;
endchoose;
seq2 := b5;

choosing := true;

ol

52 APPENDIX B. TRANSLATING THE IASM AB PROTOCOL

endif
elseif will_occur(2, choosel,

[("input",rschan,"bit"), ("input",t,"timeout")] then
if has_message(t, "timeout") then
choose x in MSG satisfying match_msg(x, t, "timeout")

timeout := cont(x);
MSG(x) := false;
endchoose;
seq2 := 5;
choosing := true;
endif;

endif;
i f
elggg% seq2 = 5 then
if,¥ot t%meo¥t %nd recvbit = bit
if seq3 = then
extend MSG with x

target (x) := c;
label(x) := self + "ack";
cont (x) := ack;
endextend;
seq3 := 2;
elseif seq3 = 2 then
waiting("nextmsg") := true;
if not waiting("nextmsg") then
seq3d :=1;
seq2 := 1;
o290
else
waiting("samemsg") := true;
if not waiting('"nextmsg") then
seq2 := 1;
o280
endld

end unit

un%t Receiver
unction names

connected := false;
msg, bit;
currbit := 0;
srchan := "srchan'"; rschan := "rschan"; c := "c2";
rul%s .
1f Connection > O then
connected := true;
if waiting("nextmsg") then
currbit := toggle(currbit); waiting("nextmsg") := false;

if 308 ggnnegieg then

if exists x in Connections.

wants(x,srchan, "Channel","output",self,"Sender","srchan")
choose x in Connections satisfying
wants(x, srchan,"Channel","output",self,"Sender,"srchan")

Connections(x) := false;

endchoose;
extend Connections with x1

partyl(x) := (self, "Sender", "srchan", true);
party2(x) := (srchan, "Channel", "output", true);
end?xteng
seql :=2;

else

23

extend Connections with x

partyl(x) := (self, "Sender", "srchan", true);
party2(x) := (srchan, "Channel", "output",false);
e¥dextend . .
if exists x in Connections.

connected(x,srchan, "Channel","output",self,"Sender","srchan") then
choose x in Connections satisfying
connected(x,srchan, "Channel","output",self,"Sender","srchan")
Connections(x) := false;
endchoose;
seql := 2;
o ndif
elSeit seql = 2 then
if exists x in Connections.
wants(x, rschan, "Channel", "input", self, "Sender",'"rschan")
choose x in Connections satisfying
wants(x, rschan, "Channel", "input", self, "Sender,'"rschan")
Connections(x) := false;
endchoose;
extend Connections with x1

partyl(x) := (self, "Sender", "srchan", true);
party2(x) := (rschan, "Channel", "input", true);
end?xteng
seql := 3;
se
extend Connections with x
partyl(x) := (self, "Sender", "srchan", true);
party2(x) := (rschan, "Channel", "input", false);
e¥dextend . .
if exists x in Connections.

connected(x, rschan,"Channel","input",self,"Sender","rschan") then
choose x in Connections satisfying
connected(x,rschan, "Channel","input",self,"Sender","rschan")
Connections(x) := false;
endchoose;
seql := 3;
en ndif
elsel% seql = 3 then
if exists x in Connections.
wants(x, c2, "Client", _, self, "Sender","c2")
choose x in Connections satisfying

wants(x, c2, "Client", _, self, "Sender,'"c2")

Connections(x) := false;

endchoose;

extend Connections with x1
partyl(x) := (self, "Sender", "c2", true);
party2(x) := (c2, "Client", _, true);

sadgxteng,

else . .
extend Connections with x

partyl(x) := (self, "Sender", "c2", true);
party2(x) := (c2, "Client", _, false);
e¥dextend . .
if exists x in Connections.

connected(x, c2, "Client", _, self, "Sender","c2") then
choose x in Connections satisfying
connected(x, c2, "Client", _, self, "Sender",'"c2")
Connections(x) := false;
endchoose;
seql := 1;

54 APPENDIX B. TRANSLATING THE IASM AB PROTOCOL

s

© E? seq2 = 1 then
if has_message(srchan, "msg") then
choose x in MSG satisfying match_msg(x, srchan, "msg")

msg := cont(x);
MSG(x) := false;
endchoose;
seq2 := 2;

elggg%fseq2 = 2 then
if has_message(srchan, "bit") then
choose x in MSG satisfying match_msg(x, srchan, "bit")
bit := cont(x);
MSG(x) := false;
endchoose;
seq2 := 3;

4
g?séff seq2 = 3 then

if not done_parl(1l) then
if pit = cur{bit then
3 = then

if seq
extend MSG with x
target(x) := srchan;
label(x) := self + "msg";
cont(x) := msg;
endextend;
seq3 := 2;
elseif seq3 = 2 then
waiting("nextmsg") := true;
if not waiting('"nextmsg") then
seq3 =1
done_parl := true;

if
e
B
endi
if not done_par1(2) then
if seq4 = 1 then
extend MSG with x

target(x) := rschan;
label(x) := self + "msg";
cont(x) := msg;
endextend;
seqd := 2;

elseif seq4 = 2 then
extend MSG with x
target(x) := rschan;
label(x) := self + "bit";
cont(x) := bit;
endextend;
seq4 :=1;
done_par1(2) := true;
endiFH
if done_par1(1) and done_parl(2) then
done_pari (1) false;
done_par1(2) false;
seq2 := 1;

95

Channel
unl%unctlon name
input, output msg, msg2, bit, bit2;

loose: Loose;
connected := false;
queue := nil;

rul
?i Connectign > O then
connected := e;

if Waiting("bufferlng") then
queue := append((msg2, bit2), queue);
waiting("buffering") := false;

endif;
if waiting("cleanmsg") then
msg := undef; waiting("cleanmsg") := false;
if waiting("LoosingInQueue") then
queue := tail(queue); waiting("LoosingInQueue") := false;

if msg = undef and queue <> nil then
msg = first(head(queue)); bit = second(head(queue));
queue := tail(queue);

endif;

if ggt co?nec¥ed then

if ex1sts x in Connections.)
wants(x, _, _, _, self, "Channel", "input",_)

choose x in Connections satisfying
wants(x, _, _, _, self, "Channel", "input",_)

Connections(x) := false;
extend Connections with x1
partyl(x1l) := (self,"Channel", "input", true);
party2(x1l) :=
other_part(x,self,"Channel","input");
eﬁdextend
endchoose;
seql := 2;

epafPIE
elseif seql = 2 then

if exists x in Connections.
wants(x, _, _, _, self, "Channel", "output",_)

choose x in Connections satisfying
wants(x, _, _, _, self, "Channel", "out",_)

Connections(x) := false;
extend Connections with x1
partyl(x1l) := (self,"Channel","output",true);
party2(xl) :=
other_part(x, self, "Channel", "output");
Edextend
endchoose;
seql := 3;

elsggglgeql = 3 then
if exists x in Connections.
wants(x, 11, "Loose", _, self, "Channel","11")
choose x in Connections satisfying
wants(x, 11, "Loose", _, self, "Channel","11")
Connections(x) := false;

APPENDIX B. TRANSLATING THE IASM AB PROTOCOL

endchoose;

extend Connections with x1
partyl(x1l) := (self, "Channel", "11", true);
party2(x1) := (11, "Loose", _, true);

end?xteng

seql :=4;

else

extend Connections with x
partyl(x) := (self, "Channel", "11", true);
party2(x) := (11, "Loose", _, false);

e¥dextend . .

if exists x in Connections.

connected(x, 11, "Loose", _, self, "Channel","11") then

choose x in Connections satisfying
connected(x, 11, "Loose", _,self,"Loose","11")
Connections(x) := false;
seql :=1;
endi

if
nd??dl
else

if seq2 = 1 then
if has_message(input, "msg") then
choose x in MSG satisfying match_msg(x,input, "msg")
msg2 := cont(x);
MSG(x) := false;
endchoose;
seq2 := 2;

elsggglgqu = 2 then
if has_message(input, "bit") then
choose x in MSG satisfying match_msg(x,input,"bit")
bit2 := cont(x);
MSG(x) := false;
endchoose;
seq2 := 3;

elsggglgqu = 3 then
waiting ("buffering") := true;
if (not waiting("buffering")) then
seql := 1;
endif
if msg <> undef then
if seq3 = 1 then
extend MSG with x
target(x) := output;
label(x) := self + "msg";
cont(x) := msg;
endextend;
seq3 := 2;
elseif seq3 = 2 then
extend MSG with x

target(x) := output;
label(x) := self + "bit";
cont(x) := bit;
endextend;
seq3d := 3;
elseif seq3 = 3 then
waiting("cleanmsg") := true;

if (not waiting("cleanmsg")) then
seq3 :=1;

57

endif

if seq4 = 1 then
if has_message(l1l, "loosemsg") then
choose x in MSG satisfying
match_msg(x,11,"loosemsg")

loosemsg := cont(x);
MSG(x) := false;

endchoose;

seqd := 2;

elseif seq4 = 2 then

waiting("LoosingInQueue") := true;

if (not waltlng("Loos1ngInQueue“)) then
seq4 :=1;

mod¥1e ClientSender
unction names
connected := false;

msg :

ack;

0;
o= "S";

1
T ?i Connectign.> 0 then

connecte

= true;

if waiting(preparing_msg);
msg := msg + 1;
waiting(preparing_msg) := false;

endif
if n%t

else

connected tB n .
exists x 1n Connections.

wants(x, s, "Sender", _, self, _,"s")
choose x in Connections satisfying

wants(x, s, "Sender", _, self, _,"s")

Connections(x) := false;
endchoose;
extend Connections with x1
partyl(x) := (self, "ClientSender", "s", true);
party2(x) := (s, "Sender", _, true);
endextend
e . .
extend Connections with x
partyl(x) := (self, "ClientSender", "s", true);
party2(x) := (s, "Sender", _, false);
e¥dextend
1f exists x in Connections.

connected(x, s, "Sender", _, self, "ClientSender","s") then
choose x in Connections satisfying

connected(x, s, "Sender", _, self, "ClientSender",'"s"

Connections(x) := false;
seql := 2;
e¥dif
if seql = 1 then
waiting ("preparing_msg") := true;
if not waiting("preparing_msg") then
seql := 2;

if
elsggglseql = 2 then

extend MSG with x
target(x) := s;

58 APPENDIX B. TRANSLATING THE IASM AB PROTOCOL

label(x) := self + "msg";
cont(x) := msg;
endextend;
seq := 3;
elseif seql = 3 then
if has_message(s, "ack") then
choose x in MSG satisfying match_msg(x, s, "ack")

ack := cont(x);
MSG(x) := false;
endchoose;
seql := 1;
dif
ndi d%% ’
end un?t

modgle ClientReceiver
unction n S
connected := false;

msg := 0;
r = "I‘"
1nte§a88iggct18n > 0 then
connected := true;
if waiting(processing_msg) ;
out := cons(msg, out);
Waltlng(proce331ng msg) := false;

1? n%t connected then
xists x in Connections.

wants(x, r, "Receiver", _, self, _,"r")
choose x in Connections satisfying

wants(x, r, "Receiver", _, self, _,"r")

Connections(x) := false;
endchoose;
extend Connections with x1
partyl(x) := (self, "ClientReceiver", "r", true);
party2(x) := (r, "Receiver", _, true);
endextend
else
extend Connections with x
partyl(x) := (self, "ClientReceiver", "r", true);
party2(x) := (s, "Receiver", _, false);
e¥dextend
1f exists x in Connections.
connected(x,r,"Receiver",_, self,"ClientReceiver","r") then
choose x in Connections satisfying
connected(x,r,"Receiver",_,self,"ClientReceiver","r")
Connections(x) := false;
seql := 2;
end??dlf

1f seql = 1 then
if has_message(r, "msg") then
choose x in MSG satisfying match_msg(x, r,'"msg")
msg := cont(x);
MSG(x) := false;
endchoose;
seql := 2;

endif

elsegglseql = 2 then
waiting("processing_msg") := true;
if not waiting("processing_msg") then

modgle Timer
unction names

connected := false; timeout := true;
TIMEQUTPARAM := 100; firstclock; lastclock;
mode := "init"; getting_clock := true;
s :="g"; ¢ :="c"; init_signals := 0; timeouts :
IU1$§ Connectign > 0 then
connected := true;
if recv_init_signal > init_signals then
init_signals := init_signals + 1;

first_clock := last_clock;

di .

% t{meouts < send_timeout then
timeouts := timeouts + 1;
first_clock := last_clock;

endif
8t gopecyed, ghon
if exists x in Connections.
wants(x, _, _, _, self, "Timer", "s")
choose x in Connections satisfying
wants(x, _, _, _, self, "Timer", "s")

Connections(x) := false;
extend Connections with x1

partyl(x1l) := (self, "Timer", "s",

true);

29

party2(x1) := other_part(x,self,"Timer","s");

endextend
endcﬁoose;

seql := 2;
if
elsggglseql = 2 then
if has_message(s, "init_timeout") then
choose x in MSG satisfying
match_msg(x, s, "init_timeout")

init_timeout := cont(x);
MSG(x) := false;
endchoose;
seql := 3;

if
elsggglseql = 3 then
if has_message(clock, "time") then

choose x in MSG satisfying match_msg(x,clock,"time")

first_clock := cont(x);
MSG(x) := false;
endchoose;
seql := 4;

if
elsggglseql = 4 then
if has_message(clock, "time") then

choose x in MSG satisfying match_msg(x,clock,"time")

last_clock := cont(x);
MSG(x) := false;
endchoose;
seql :=1;
end??dlf
else

if lastclock - firstclock > TIMEOUTPARAM then

60 APPENDIX B. TRANSLATING THE IASM AB PROTOCOL

extend MSG with x

target (x)
label(x) := self + "timeout";
cont (x) := timeout;

endextend;

send_timeout := send_timeout + 1;

endif . .

if has_message(s, "init_timeout") then
choose x in MSG satisfying
match_msg(x,s,"init_timeout")

init_timeout := cont(x);
MSG(x) := false;
endchoose;
recv_init_signal := recv_init_signal + 1;

endif

if seq2 = 1 then
extend MSG with x

target (x) := clock;
label(x) := self + "ask_clock";
cont (x) := ask_clock;
endextend;
seq2 := 2;

elseif seq2 = 1 then
if has_message(clock, "time") then
choose x in MSG satisfying match_msg(x,clock,"time")

last_clock := cont(x);
MSG(x) := false;
endchoose;

dif
nd$¥d$¥ ’
end ungt

module Clock
1nte¥act10n
i ngt connected then .
1f exists x in Connections.

wants(x, _, _, _, self, "Clock", "req")
choose x in Connections satisfying
wants(x, _, _, _, self, "Clock", '"req")
Connections(x) := false;
extend Connections with x1
partyl(x1l) := (self, "Clock", "req", true);

party2(x1) := other_part(x,self,"Clock","req");
eEdextend
endchoose;
seql := 2;
endif
else

if seql = 1 then
if has_message(req, "ask_clock") then
choose x in MSG satisfying
match_msg(x,r,"ask_clock")

ask_clock := cont(x);
MSG(x) := false;
endchoose;
seql := 2;

if
elsggglseql = 2 then
extend MSG with x
target (x) := req;
label(x) := self + "time";

cont(x) := time;
endextend;

w5 L0080, wanss

connect false;
C

rule
1% Connectlgn > O then
connecte true;

if waiting(a_loose) then
if random() = "loose" then
waiting(a_loose) := false;

dif
% n%t connected tgen .
x1sts x 1n Connectiomns.

wants(x, _, _, _, self, "Loose", "c")
choose x in Connections satisfying

wants(x, _, _, _, self, "Loose", "c")

Connections(x) := false;
extend Connections with x1
partyl(x1l) := (self, "Loose", '"c", true);
party2(x1) := other_part(x, self, "Loose", "c");
eﬁdextend
endchoose;
elSendif
?f seql = 1 then
waiting("a_loose") := true;
if not waiting("a_loose") then
seql := 2;

if
elsggglseql = 2 then
extend MSG with x

target(x) := c;
label(x) := self + "loosemsg";
cont(x) := loosemsg;
endextend;
seq := 1;
end??dlf

