
Universidade Federal de Minas Gerais

Instituto de Ci�encias Exatas

Departamento de Ci�encia da Computa�c�ao

Formal Semantics for
Interacting Abstract State Machines

by

Marcelo de Almeida Maia

Roberto da Silva Bigonha

RT ������

Caixa Postal� ���

���	
	 � Belo Horizonte � MG

September� 	��

�

Abstract

In this work we propose an extension to the original model of Abstract State
Machines� We focus on the modularization support and on the explicit in�
teraction abstraction between the modules �units of speci�cation�� We pro�
vide the new language syntax and formal semantics� and also some examples
showing its use�

Chapter �

Introduction

Much of the work being done in the software engineering area concerns the
development of mechanisms that facilitate the reuse and �exibility of software
components� The most powerful resource to achieve these goals is modular�
ity� which is based upon abstraction and information hiding and it is the only
e�ective way to break down the complexity of large systems� Even though
Abstract State Machines�
� support abstraction and information hiding� we
advocate more powerful abstraction mechanisms� If we consider the inherent
methodology of producing ASMs speci�cations as a methodology that pro�
vides a vertical abstraction mechanism� in the sense that the ground model is
successively re�ned until considered adequate� it is reasonable to think that
it does lack some kind of horizontal abstraction to support the reuse of ex�
istent speci�cations� An argument to support this view can be found in ����
where are de�ned some desired characteristics for good modularization mech�
anisms such as modular composability� modular decomposability� modular
understandability� modular continuity and modular protection� Considering
these characteristics� a central theme that a�ects directly each one of them is
the speci�cation of how software modules interact with each other� So� our
decision is in the direction of a formalism that explicitly enables the software
engineer to write down how the interaction occurs between the modules� We
adopt a message exchanging style because we believe it provides a natural
abstraction of how objects interact in the real world� When we explicitly
specify the interaction between modules� we are automatically inclined to
think about the concurrency issues involved in the interaction process� In
our view� modularization and concurrency concepts are interdependent and
should not be addressed separately� and this has in�uenced our decision of
putting them together in a unique framework�

In the context of ASMs� there is already some work in the direction
of providing them with some kind of horizontal abstraction� Glavan and

�

� CHAPTER �� INTRODUCTION

Rosenzweig developed a theory of concurrency ��� that enables the encoding
of some traditional calculus as the ��calculus �	�� and the Chemical Abstract
Machine ���� However� we can not see an explicit message passing mechanism
and it does not support encapsulation and information hiding mechanisms�
issues which will be directly treated in this work� May �� has developed
a work with the same aims as ours� and although it provides some form
of encapsulation and information hiding� the usual modularization concepts
must be further added to the model� The explicit message passing encoding
is not considered too�

Instead of putting on the user the burden of providing the complete spec�
i�cation of the message interchanging between di�erent speci�cations� our
approach provides special constructions to help the explicit speci�cation of
how di�erent pieces of speci�cations interact with each other� This idea can
be thought as a better development of the concept of external functions �
��
because the approach provides some environment behavior formalization� It
is not necessary to know how the environment behaves internally� but it
is necessary to know how it interacts with the system being speci�ed� So�
when we specify a system� we must have in hands a minimal formalization of
the observed environment behavior that a�ects the system� what is a little
diferent from the raw concept of external functions�

Chapter �

Abstract State Machines

Abstract state machines �ASMs� �
� are transition systems which states are
�rst�order interpretations of functions symbols de�ned by a signature � over
a non�empty set U called the super�universe� These states are also called
static algebras� The transition relation is given by a �nite set of transition
rules describing the modi�cations of the interpretation of the function sym�
bols from one state to another� This is the reason why ASMs were formerly
called Evolving Algebras� Before introducing the transition rules� let us de�
�ne the auxiliary notions� locations� updates� update set� A location l of a
state S is a pair �f� x�� where f is a non�static function symbol� x� Un and
n is the arity of f � An update � over the state S is a pair �l� t�� where l is
a location and t is a term in the sense of �rst�order logic� If v � U is the
value for interpreting the term t on S� then �ring � � ��f� x�� t� at state S

transforms S into S � such that the result of interpreting �f� x� is v and all
other locations are not a�ected� An update set Updates�R� S� is a set of up�
dates over the state S� collected from the transition rule R� The update set
is consistent if it does not contain any two updates �� �� such that � � �l� x�
and �� � �l� y� and x �� y� Otherwise� the update set is inconsistent� To �re
an update set over a state S means to �re simultaneously all its updates and
produce the corresponding state S �� Firing an inconsistent update set means
to do nothing� i�e�� means to produce a state S � � S�

The transition relation of ASMs is de�ned by the following transition
rules�

� f�t�� ���� tn� �� t

� R����Rk

� if e then R� else R� endif

� extend U with v R� endimport

� choose v in U satisfying e R endchoose

�

 CHAPTER �� ABSTRACT STATE MACHINES

� var v ranges over U R� endvar

The �rst three kind of rules are called basic rules� respectively� the update
instruction� the block construction and the conditional construction� Their
semantics are given by means of an update set Updates�R� S�� i�e�� to �re R
over a state S �re Updates�R� S�� This update set is inductively de�ned on
the structure of R�

	� if R � f�t�� ���� tn� �� t then Updates�R� S� � f�l� S�t��g�
where l � �f� �S�t��� ���� S�tn���� and S�t� is the result of interpreting t

on S�
�� if R � R����Rk then Updates�R� S� � �k

i��Updates�Ri� S��
�� if R � if e then R� else R� endif� then Updates�R� S� is de�ned as��

Updates�R�� S� if S�e� holds
Updates�R�� S� otherwise�

The last three kind of rules introduce variables� respectively� the extend
construction which produces new fresh elements that are added to the ex�
tended universe� the choose construction which performs non�deterministic
choices from a universe� and the var construction� which allows a simple form
of synchronous parallelism� The variables of these rules must be bound to
some value of a universe belonging to the super�universe� So� the de�nition of
the update set is extended with an environment � which binds the variables
to values� and a choice function � which determines the variable bindings
for extend and choose rules� The function � maps the bound variables to
elements of a special universe called Reserve� which is used to produce new
elements� The update set Updates�R� S� �� �� can be de�ned inductively as
well�

Given an initial state S�� a run is a sequence of states S�� S����� such that
the state Si�� is obtained as the result of �ring the transition relation at Si�

Finally� let us de�ne a distributed ASM� which contains several computa�
tional agents� which execute concurrently a number of single�agent programs
�called modules�� A distributed ASM consists of a �nite indexed set of single�
agent programs �v �modules� and �nitely many agents a such that� for some
module name v� Mod�a� � v� where the function name Mod represents the
relation between modules names and agents� Each module has a correspond�
ing enumerating universe of agents� which can be extended or retracted as
necessary� There is also a nullary function name Self that allows the self�
identi�cation of agents� self is interpreted as a by each agent a�

An agent a makes a move from a given state S if the corresponding
update set of a is �red at S resulting a new state S �� Thus� a move can

�

represented as a pair �S� S ��� Building upon this basic concept of move� a
partially ordered notion of run for distributed ASMs can be de�ned as a
triple �M�A� ��� where�

	� M is a partially ordered set where its elements are agent moves�
�� A is a function that� given a move fromM � returns the agent performing

that move� It is used to impose that the set fm � A�m� � ag is linearly
ordered�

�� � is a function that give an initial segment of M �possibly empty�
assigns to it the corresponding state S�

In order to make the speci�cations more readable we will de�ne a con�
crete syntax which extend the standard notation of ASMs with the notion
of types� functions� and pattern�matching as introduced in ���� We call this
speci�cation language ASM�MG��

Now we will give an example written is ASM�MG while we show the
language constructions� We will specify a very simple programming language
which has only output and assignment statements� In ASM�MG we would
specify the type of the language statement as�

freetype STMT �� �
Assign � STRING � TERM�
Output � TERM

�

The terms of the simple language would be either a constant� or a variable�
or an application� We would specify like the following�

freetype TERM �� �
Con � INT�
Var � STRING�
App � STRING � �TERM�

�

The freetype de�nition introduces a new type name into the speci�cation
and describes its structure� The above free types are the only one in the
example�

An ASM�MG speci�cation is a sequence of de�nitions� Like the freetype
de�nition there are other kinds of de�nitions� The de�nitions the ASM�MG
language supports are�

� Freetype de�nitions� enables the speci�cations of user�de�ned types�
It is possible the de�nition of traditional structured types�

�The name MG is due to the joint work of three federal universities of the Minas Gerais

state� namely UFMG� UFOP� and UFV

 CHAPTER �� ABSTRACT STATE MACHINES

� tuple types� �� or �type �� ���� type n� or type � � ��� �

type n

� derived form for types�

� list types� �type	

� set types� ftypeg

� map types� ftype �
� type �g

� Function de�nitions� enables the de�nition of static� dynamic and de�
rived functions�

� Static functions are used to bind any term to a function name� It
can be parameterized and thus allowing the macro de�nition for
terms�

� Dynamic functions represent the evolving state of the speci�ca�
tion�

� Derived functions are introduced to allow the speci�cation of com�
putable functions in a purely functional style� They do not a�ect
the ASM philosophy in the sense that they are computed in only
one ASM�step�

� Transition de�nitions� provide a kind of ASM rules abstraction� In
every speci�cation there must be a transition named main which
de�nes the begining of the update set calculation�

� Module de�nitions� enables the de�nition of distributed abstract state
machines�

Back to our example� we will de�ne the following function�

dynamic function env �STRING �	 INT
initially finite map
� v �	 ord
v� � ord
�x�� v in � �x�� �y�� �z� � �

This function env � representing the environment on which the programs
of our simple language will be executed� has a special derived form of type
which is called MAP�

Besides the derived form MAP� there are also derived forms representing
set and list types represented by f type g and � type 	� respectively�

Below we de�ne a function representing the output of the programs of our
simple language� Note the type of the function out is a list of integers�

dynamic function out ��INT�
initially ��

�

Next we de�ne a static function de�ned with two parameters� a string
representing a function of the simple language and a list of parameters�

This function introduces the notion of pattern�matching� This notion
is implemented by the case construction� which gets a pattern and tries
to match it sequentially against several other patterns� When a successful
matching is found then the corresponding term is returned�

static function eval�app
f� args� ��
case args of

� x � � case f of
�abs� � abs
x�

endcase �
� x� y � � case f of
��� � x � y �
��� � x � y �
��� � x � y �
�div� � x div y �
�mod� � x mod y

endcase
endcase

Now we de�ne a derived function which is de�ned in a purely functional
style� The function eval term has a parameter t which is matched against a
constructor application pattern� Note that the constructors are the same as
de�ned in the free type Term� Also� note that the function may be recursively
called�

derived function eval�term
t� ��
case t of
Con
x� � x �
App
f� t�list� � eval�app
f� � eval�term
t� t in t�list �� �
Var
v� � env
v�

end

Finally� we have two functions de�nitions working as a macro for calling
the terms constructors�

static function Add
x� y� �� App
���� � x� y ��
static function Mul
x� y� �� App
���� � x� y ��

Now we will de�ne the transition rules that works as an interpreter for
our simple language�

The transition which executes an assignment has a parameter which is a
variable and a term to be assigned� Note that this transition is executed in
only one step� even though the term evaluation is as large as wanted�

The transition which executes an output append the evaluated term to
the dynamic function out�

	� CHAPTER �� ABSTRACT STATE MACHINES

transition ExecuteAssign
v� t� ��
env
v� �� eval�term
t�

transition ExecuteOutput
t� ��
out �� append
out� � eval�term
t� ��

We de�ne a transition for executing a statement� Note that this transi�
tion just matches the parameter stmt against the corresponding statement
constructor and executes the proper transition� Also note that the previous
transitions de�nitions are working just as macros because the execution of
this transition requires just one ASM�step� Indeed� the following transition
also works as a macro because it would be expanded into the main transition
Interpreter�

transition ExecuteStmt
stmt� ��
case stmt of

Assign
v� t� � ExecuteAssign
v� t� �
Output
t� � ExecuteOutput
t�

endcase

Finally� we de�ne the main transition Interpreter� which takes the simple
language program as a dynamic function and iteratively interprets it� At the
end of the simulation the environment and the output will have the expected
values�

transition Interpreter ��
case prog of

stmt �� rest�of�prog �
ExecuteStmt
stmt�
prog �� rest�of�prog

endcase

dynamic function prog
initially �
Assign
�x�� Con
�����
Output
Var
�x����
Assign
�y�� Con
�����
Output
Mul
Var
�x��� Add
Var
�y��� Con
�����

�

For the sake of completeness� let us provide additional syntax for terms�
patterns and modules�

There are the following possibilities for writting terms�

� Special constants� integers� �oats� and strings�
� Variables� an applied occurrence of a variable represented by its iden�

ti�er�

�The de�nition of which transition is the main one is left to the environment on which

the ASM simulator runs

		

� Ordinary terms� provided by function application� The application
may be written in pre�xed or in�xed style depending on the function
de�nition�

� Tuple terms� are written using the tuple constructor written just like
the tuple type de�nition�
Ex� �red� green� blue�

� Conditional terms� are written using an if
then
else syntax� regard�
ing that the alternative clauses are terms�
Ex� if x � � then black else white endif

� Let terms� are written using a let patt �� term ��� in term endlet

syntax�
Ex� let x �� � in x��

� Case terms� are written using a case patt of patt � term ��� otherwise�
term endcase syntax�
Ex� case x of �	 � �� x��xs � length�xs� � �

� Set� list� and map comprehension terms�
Ex� fx
 � � x in ����� with x � �g
Ex� f v
� ord �v�
 ord �x� � v in f x� y� z g g

� List terms�
Ex� ��� �� �	 or �	 �� � �� � �� nil�

� Set enumeration terms�
� Map enumeration terms�

There are the following possibilities for writting patterns�

� Special constants� such as integers� �oats and strings�
� Occurrences of variables�
� Placeholders� written as �
� Ordinary patterns� de�ned by constructor application� The constructor

may be a nullary one� such as� nil� true� ���� It also may be a built�
in or user�de�ned one� or even a in�xed or pre�xed one�

� Tuple patterns� de�ned by the constructor � ��� ��
� List patterns� de�ned by the constructors � ��� 	 or ��� ��

��� �

Finally� modules may be written using the following structure�

module �module name	 �enumerating universe�
�transitions	

endmodule

	� CHAPTER �� ABSTRACT STATE MACHINES

Chapter �

The Interactive ASM Language

A speci�cation is de�ned as a set of unit de�nitions and unit instances� Units
de�nitions are classi�ed as system units and environment units� System units
are those which will be completely speci�ed� whereas environment units will
be partially speci�ed� We use the word environment not only referring to
the external portion of the system� but also referring to some components of
the system that had already been speci�ed and are being reused�

The intention of specifying a system as a set of units is to encapsulate
some portion of the state inside small pieces of speci�cation� This leads
to an isolation of the internal state of a unit� The information contained
in the internal state of a unit only can be communicated to other units by
explicitly specifying a pattern of interaction between the involved units� This
interaction speci�cation does not only specify the information �ow but also
the synchronization restrictions within the interaction�

In the sequel we present the abstract syntax of our proposed language�

A system unit de�nition Us is composed of several parts and it is de�ned
as�

Us ��� unit unit name

function names function names

interaction interaction

rules rules

where�

� function names is a subset of the vocabulary that contain the names
of the functions� It represents� together with the respective interpreta�
tions of the names into the super�universe� a local state alterable only
by the local unit rules and interaction� Each function name may be op�
tionally initialized with an arbitrary value� In order to make the ideas
clear� we will de�ne an abstract data type �ADT� Stack� as we explain

	�

	� CHAPTER �� THE INTERACTIVE ASM LANGUAGE

the parts of a unit� For the Stack unit we may have the following
function names�

function names
max �� ��� � Maximum length of Stack
s � The stack itself
top �� � � Index of the top elem
topelem � The top element
ack � Acknowlegdement of pushing
c � The client of the Stack

� An interaction i is de�ned as�
i ��� internal pub name
� u name

j bu�ered var �

 u name�pub name

j var �
 u name�pub name

j connect u � U�s j connect u � U j connect u

j new u � U
j destroy u � U
j i� � i� j i� �� i�
j i� �� i� j i� �� i� j i� � i�
j i� � i�
j i � l
j waiting�name�
j if guard then i

j extend U with x i endextend

j choose v in U satisfying e i endchoose

j var v ranges over U i endvar
The basic operators for interaction are those that provide input and
output within a unit� They are the
� and �
� used to send a value to
a unit and to receive a value from a unit into a variable� respectively�
The operator �

 denotes a bu�ered input that avoids an inconsistent
update if two or more di�erent inputs to same variable occur in the
same step� Since we expect to de�ne dynamically the communication
topology� we provide the connect operator which binds a unit name to
some unit instance� The operators new and destroy are used to create
and destroy unit instances� Since units are mapped into agents� these
operators update the corresponding enumerating set of agents derived
from a module� In order to address complex interaction patterns that
may exist between units we provide the well�known composition oper�
ators �� �� �di�erent kinds of non�deterministic choice�� ��� ���

� �di�erent kinds of parallel composition�� and � �sequential com�
position�� As we will de�ne soon� one cannot reason about the relative
speed of execution of an atomic interaction compared to an internal
rule of a unit� Thus in order to synchronize the interaction part with

	�

the computation part of a unit we introduce labeled interactions and
the barrier waiting�name�� The label l uniquely identi�es an inter�
action� and denotes how many times the interaction labeled with l has
completely occurred� Its initial state is zero� We also inherit from the
ASM notation the if� extend� choose� and the var rules�
Coming back to our example� the ADT Stack may be seen as a server
and thus it must connect with the Client before performing any infor�
mation exchanging� As we will see� the connect operator used below
waits until there is an interested unit instance requesting the connec�
tion� After the connection� it may receive requests from the Client

instance� The requests guide the sequel of the interaction� and the unit
Stack interacts with its Client by sending to it the element on the top
of the stack �popping it or not� or receiving from it an element to be
pushed onto the stack�

interaction
connect c�
request �� c�
if request � �top� then

topelem �	 c
elseif request � �pop� then

waiting
popped��
topelem �	 c

elseif top � max then
elem �� c�elem�
waiting
pushed��
ack �	 c

endif

� rules is de�ned as an element of ASM RULES� These rules work
by changing the internal state represented by function names� In the
abstract data type Stack we may de�ne the rules as�

rules
if waiting
popped� then

top���
waiting
popped� �� false�

endif
if waiting
pushed� then

top���
s
top��� �� elem�
waiting
pushed� �� false�

endif

Now� let us de�ne an environment unit as a restriction on a system unit�
It shows the public portion of a system unit that can be imported by other
units and can be de�ned as�

ue ��� environment unit unit name

interaction interaction
Each system unit has a corresponding environment unit specifying what

will be exported to other units�

	
 CHAPTER �� THE INTERACTIVE ASM LANGUAGE

Chapter �

Semantics

In this section we specify the IASM language formal semantics� We provide
it in a translational style that maps a syntactic domain corresponding to the
IASM constructions into the original ASM language de�ned by Gurevich�
��

��� Unit De�nition

Unit de�nitions are translated by the D compilation scheme� de�ned as in
Figure ��	� The idea of this compilation scheme is to put together� inside a
module� the rules corresponding to each construction of each unit de�nition�
The target speci�cation of the module will be generated from the unit de�ni�
tion U � This compilation scheme guarantees that each unit instance derived
from this unit de�nition will have its own clock� and thus its execution will be
independent from the other instances� We will also make use of the function
Self which allows an agent to identify itself between other agents� Since a
unit de�nition will correspond to an ASM module� it introduces an enumer�
ating universe of the agents corresponding to unit instances� The elements of
this enumerating universe are the instances names� each of them composed
of the unit instance declaration name labeled with the unit de�nition name�

D � Dmod� IASM CONSTRUCTIONS � ASM RULES
D �� U� � � � Un �� �

Sn
i��Dmod��Ui��

Dmod ��U �� �
module U
I ��U�interaction ��
R �� U�rules ��

end module

Figure ��	� Translation scheme for unit de�nitions

	�

	 CHAPTER �� SEMANTICS

Ustatic ��u � U �� �
��u� �� �� true
Mod
u� �� U
extend U with x name
x� �� �U�u�

Figure ���� Translation scheme for static unit instantiation

and additionally possibly labeled with the instance name from which it has
been instantiated�

��� Internal State

Since an ASM speci�cation has only a global state� the internal state of each
unit instance has to be mapped into the global state�

This can be trivially done by adding an additional element to the tuple
that identi�es a location� This additional element is a term which value
is self� So every internal location of a unit instance f�x�� ���� xn� has to be
replaced by the location f�self� x�� ���� xn��

��� Unit Instantiation

The instantiation of a unit means extending the universe that enumerates
the agents corresponding to the instances of a unit de�nition� Each element
of the enumerating universe is identi�ed by the corresponding unit instance
name� There are two ways of declaring units�

	� Static declarations are those done in the startup de�nition� These dec�
larations actually create the initial unit instances which will live during
the whole execution of the speci�cation� The unit instance name is de�
�ned by the declared instance name and labeled by the unit de�nition
name� The label is added to the left of the instance declaration name
separated by a dot� In Figure ��� we de�ne the translation scheme
Ustatic for static unit declarations �instantiations��

�� Dynamic declarations are those done inside a unit de�nition� and do
not create a unit instance� Instead� it produces a function name that
will be dynamically bound to a unit instance name� either a statically
created� or a dynamically created one� A dynamic unit may be created
and destroyed with the interaction instructions new and destroy� re�
spectively� Because unit instances are agents� creating and destroying

���� INPUT�OUTPUT INTERACTION 	�

Udynamic ��u � U �� � ��u� �� �� true
I ��new u � U �� hole �
Mod
u� �� U�
extend U with x

name
x� �� Self �� �U�u�
endextend�
hole

I ��destroy u � U �� hole �
Mod
u� �� undef�
choose x in U satisfying name
x� � Self �� �U�u�

U
x� �� false�
endchoose�
hole

Figure ���� Translation scheme for dynamic unit instantiation

units means to extend or retract the enumerating universe that contains
the agent names of the speci�ed module�

In Figure ��� we de�ne the translation schemes for dynamic unit dec�
laration and for the interaction instructions new and destroy� In the
translation schemes for new and destroy we introduce an extra parame�
ter hole which means that it is a point where the interaction instruction
has been fully performed and it is the point where many useful con�
text information is to be inserted� Such context information are� for
instance� updates for transferring the control� updates for internal con�
trol of the non�determininistic instruction� We have put a surronding
box in hole just for readability purposes�

��� Input�Output Interaction

There are two possible semantics for receiving a value from another unit� The
name responsible to store the received values may be bu�ered or not� In either
case� the special universe MSG is searched to �nd a message that matches
the required input interaction� If this message exists then the corresponding
updates are done and the used message is discarded from the universe MSG�
For obvious reasons� for each input interaction there must be an output
interaction�

In the case where received values are not bu�ered� the variable is trans�
lated into a function name and if there is a message that matches the input
interaction then the corresponding updates take place� In Figure ��� we
de�ne the translation scheme for the single input�

In the other case� the bu�ered variable will be translated into a universe�

�� CHAPTER �� SEMANTICS

I ��var �� u name�pub name �� hole �
if has message�	u name�pub name� then
choose x in MSG satisfying match msg�x� 	u name�pub name�
var �� cont�x��
MSG�x� �� false�

endchoose�

hole
endif�

Figure ���� Translation scheme for single input

I ��bu�ered var ��� u name�pub name �� hole �
if has message�	u name�pub name� then
choose x in MSG satisfying match msg�x� 	u name�pub name�
extend bu�ered var with y
cont�y� �� cont�x��

end extend�
MSG�x� �� false�

endchoose�

hole
endif�

Figure ���� Translation scheme for bu�ered input

Each time the variable receives a value� the corresponding universe will be
extended with that value�

In order to access the bu�ered values we will assume that a timestamp is
assigned to each value received into a bu�ered variable� This timestamp is
incremented with step one� and if there are many incoming values in the same
step in the same variable� then the corresponding timestamps are assigned
non�deterministically to each value� For example� suppose there is a bu�ered
variable x that is receiving two values� for instance �v	� and �v��� in the
same step� If the current timestamp to be assigned to the incoming value is�
for example� � then the timestamps to be assigned non�deterministically to
�v	� and �v�� will be and �� and the current timestamp will be set to 	��
In Figure ��� we de�ne the translation scheme for the bu�ered input�

The output interaction means that an internal value from the current
unit is sent to another unit� This sending means that the internal universe
MSG is extended with a new message� This universe contains the messages
exchanged between the units� A message carries its target� a label denoting
the source of this value� and a value� In Figure ��
 we de�ne the translation
scheme for the output interaction�

���� UNIT CONNECTIONS �	

I ��internal pub name �� u name �� hole �
extend MSG with x
target�x� �� 	u name�
label�x� �� 	self�internal pub name�
cont�x� �� internal pub name�

endextend�

hole

Figure ��
� Translation scheme for output interaction

��� Unit Connections

As stated before� a unit declaration inside a unit de�nition only produces a
function name� Our intention is that this function name should be further
bound to another unit instance which also has a function name bound to the
former unit instance� This situation indicates an agreement between the two
instances� and it is performed with the operator connect� The arguments
for this operator are� 	� a function name u corresponding to a unit instance�
�� the name U corresponding to the unit de�niton from which the instance
u was derived� and �� a function name s declared inside U that we expect to
be bound to the current unit instance�

There are some possibilities when using connect�

� All arguments are de�ned� Then it must be checked that if there is
another instance that attempted a connection that matches this one�
If there is such attempt� then the connection is successfully performed�
otherwise it is blocked until such attempt occurs�

� Some arguments are unde�ned� This possibility is necessary because
when establishing a connection we may not know in advance which unit
instance will be connected or even from which unit de�nition the unit to
be connected was derived� We may write connect u� U� where u
is unde�ned and we are not interested on which function name inside
U will receive the name of the current instance� Alternatively� we may
want more �exibility and write connect u� where u is unde�ned�
In this case� any unit wanting to connect through the channel u can
match this connection� regarded that it has all arguments de�ned and
matching the channel u�

The semantics of this operator may be given de�ning a universe Connec�
tions that the operator connect can update and search in order to establish
the connection� Each element of this universe is a pair representing the two
connected instances� Each element of the pair is a quadruple �u� U� o� a��

�� CHAPTER �� SEMANTICS

C ��connect u�U�f �� �
if exists x in Connections�

wants
x�u��U���f��self�Mod
self���u�� then
choose x in Connections satisfying

wants
x�u��U���f��self�Mod
self���u��
Connections
x� �� false�

endchoose�
extend Connections with x�
party�
x�� ��
self� Mod
self�� �u�� true��
party�
x�� ��
u� �U�� �f�� true��

endextend�

hole
else
extend Connections with x�
party�
x�� ��
self� Mod
self�� �u�� true��
party�
x�� ��
u� �U�� �f�� false��

endextend�
if exists x in Connections�

connected
x�u��U���f��self�Mod
self���u�� then
choose x in Connections satisfying

connected
x�u��U���f��self�Mod
self���u��
Connections
x� �� false�

endchoose�

hole
endif

endif

Figure ���� Translation scheme for connect u�U�f

where u is the name of the instance involved� U is its corresponding unit
de�nition name� o is the function name whose value is the name of the other
instance belonging to the pair� and a is the awareness that each party has of
the connection�

Figure ��� shows the translation scheme for the fully de�ned connection�
It also can be used for partially de�ned connection� where the names are
provided� but their values are unde�ned� Figure �� shows the translation
scheme for the totally unde�ned connection�

��� Interaction Composition and Runs

Since an IASM speci�cation can be translated into the pure ASM notation�
as a set of modules and agents� the notion of run for interactive ASMs is
the same as that of pure ASMs� But� compared with the pure ASMs� the
composed interaction portion of the speci�cation has a di�erent state tran�
sition granularity� So� the reasoning mechanism of pure ASMs should not be
used for Interactive ASMs� which have a more elaborated notion of move�
Thus� in the sequel� we de�ne a special notion of interaction cycle that is
independent from the notion of move of the internal rules� The latter obeys

���� INTERACTION COMPOSITION AND RUNS ��

C ��connect u �� hole �
if exists x in Connections�

wants
x�undef�undef�undef�self�Mod
self���u�� then
choose x in Connections satisfying

wants
x�undef�undef�undef�self�Mod
self���u��
Connections
x� �� false�
extend Connections with x�
party�
x�� ��
self� Mod
self�� �u�� true��
party�
x�� �� other party
x�self� Mod
self���u���

endextend�
endchoose�

hole
endif

Figure ��� Translation scheme for connect u

the partially�ordered semantics of distributed ASMs�

De�nition � Interaction tree is the abstract syntax tree derived from the
interaction part of a unit de�nition�

De�nition � Interaction cycle of a node of the interaction tree is the result
of executing the moves of the rules corresponding to that node until the end
of the cycle� when another cycle begins� The end of a cycle is de�ned by the
hole point�

De�nition � Sequence� If there is an enabled interaction tree with the fol�
lowing form� �i�� i�� � � � � in� then one and only one interaction ik �	 � k � n�
is enabled at each time and all the sequence is executed in the cycle� regarded
that each ik �nishes its cycle�

De�nition � Cyclic parallelism� If there is an enabled interaction tree with
the following form� �i�jj i�jj � � � jj in� then all interactions ik �	 � k � n�
are enabled and the execution of each ik is cyclic and do not depend on each
other�

De�nition � 	�Move�for�slower parallelism� If there is an enabled interac�
tion tree with the following form� �i�j i�j � � � j in� then all interactions ik
�	 � k � n� are enabled and the execution of each ik is cyclic until every
interaction ik has fully completed at least a cycle�

De�nition � 	�Move�for�all Acyclic Parallelism� If there is an enabled in�
teraction tree with the following form� �i�j� i�j� � � � j� in� then all interactions
ik �	 � k � n� are enabled and the execution of each ik is performed only
once in each cycle of the whole parallel tree� In other words the end of the
cycle is a kind of barrier�

�� CHAPTER �� SEMANTICS

I ��i��

� in�� hole �
if seq
Id
�i������ in��� � � then
I ��i��� hole �� �seq
Id
�i������in��� �� ��

elseif

elseif seq
Id
�i������in��� � n�� then
I ��in���� hole �� �seq
Id
�i������in��� �� n�

elseif seq
Id
�i������in��� � n then
I ��in�� hole �� �seq
Id
�i������in��� �� ��

hole
endif�

Figure ���� The translation scheme for the sequential composition

De�nition � External Non�determinism� If there is an enabled interaction
tree with the following form� �i�� i�� � � � � in�� then one and only one
interaction ik �	 � k � n� will be e�ectively performed on each cycle of the
non�deterministic interaction� and the choice is done by an external randomic
function�

De�nition 	 Internal Non�determinism� If there is an enabled interaction
tree with the following form� �i��� i��� � � � �� in�� where ik �	 � k � n� are
atomic interactions� then one and only one interaction ik will be e�ectively
performed on each cycle of the non�deterministic interaction� and the choice
is done internally by checking which interaction is ready to be performed� If
more than one interaction is actually ready to be performed then the choice
is done by an external randomic function� just like the previous de�nition�

De�nition
 Blocking input� Suppose there is an enabled interaction tree
with the following form� �a � � u�b� i��� where a is a function name� and
u�b is an incoming value from the function name b of the unit u� Then� the
respective input blocks i�� until the input e�ectively occurs�

Proposition � The translation scheme for sequential composition preserves
the corresponding de�nition�

Proof� The function Id by de�nition assures that each sequence has its
own sequence counter� which initial state is alway set to 	� So� in the above
de�nition the �rst guard is always guaranteed to be true� and then the �rst
interaction always takes place �rst�

When the �rst interaction is completed� the sequence counter is set to ��
This is guaranteed by augmenting the hole of the �rst interaction with the
proper update�

���� INTERACTION COMPOSITION AND RUNS ��

I ��i�

 in�� hole �
I ��i��� hole �� ��

I ��in�� hole �� ��

Figure ��	�� The translation scheme for the cyclic parallel composition

I ��i�

 in�� hole �
if par
Id
�i� ��� �in��� � �init� then
done
Id
�i���� �� false�
���
done
Id
�in��� �� false�
par
Id
�i� ��� in��� �� �executing�

elseif par
Id
�i� ��� in��� � �executing� then
if not
done
Id
�i���� and ��� and done
Id
�in���� then
I ��i��� hole �� �done
Id
�i���� �� true�
���
I ��i��� hole �� �done
Id
�in��� �� true�

else
par
Id
�i� ��� in��� �� �init�

hole
endif

endif

Figure ��		� The translation scheme for the 	�move�for�slower parallel com�
position

By induction� regarded that each interaction ik �	 � i � n� eventually
�nishes� then interaction in will be eventually performed and will complete
the cycle by updating the sequence counter with 	�

Proposition � The translation scheme for cyclic parallel composition pre�
serves the corresponding de�nition�

Proof� Since each interaction ik �	 � k � n� is mapped into an independent
rule in the same level� this implies that if one of them is enabled to execute
then all of them is enabled to execute� just like a block of ASM rules� and thus
providing the required independence and parallelism stated in the de�nition�

Proposition � The translation scheme for 	�move�for�slower parallel com�
position preserves the corresponding de�nition�

Proof� As the 	�move�for�all� this kind of parallelism is performed in
two phases� Reagrded that the initial state of par�Id�i� j ��� j in�� is
init� all the interactions ik� �	 � k � n�� are labeled with a boolean
stating that they were not completely performed�

�
 CHAPTER �� SEMANTICS

I ��i� �

 � in�� hole �
if par
Id
�i� � ��� � in��� � �init� then
done
Id
�i���� �� false�
���
done
Id
�in��� �� false�
par
Id
�i� � ��� � in��� �� �executing�

elseif par
Id
�i� � ��� � in��� � �executing� then
if not done
Id
�i���� then
I ��i��� hole �� �done
Id
�i���� �� true�

���
if not done
Id
�in��� then
I ��in�� hole �� �done
Id
�in��� �� true�

if done
Id
�i���� and ��� and done
Id
�in��� then
par
Id
�i� � ��� � in��� �� �init�

endif

Figure ��	�� The translation scheme for the 	�move�for�all parallel composi�
tion

The main phase has two guards that either enables the parallel execu�
tion of all ik� or �nishes the complete parallel interaction cycle� This latter
condition occurs if and only if all ik has been completed� To prove this we
can see that when an ik has been completed the function done�Id�ik�� is
set to true� When the slower ik has been completed then all done�Id�ik���
�	 � k � n�� are set to true and thus causing the end of the whole parallel
interaction cycle� In the other case� the only way to �nish the parallel in�
teraction is to set all done�Id�ik����	 � k � n�� to true� since they were
all initialized with false in the initial phase� These updates are only done
when each ik has been completely performed at least once�

Proposition � The translation scheme for 	�move�for�all parallel composi�
tion preserves the corresponding de�nition�

Proof� The translation scheme imposes two phases for executing this kind
of parallelism� Regarded that the initial state of the function par�Id�i� j�
��� j� in��� is init� always only the �rst guard will be executed� and
in the sequence the second guard will be executed� The body of the second
guard implies that every ik �	 � k � n� will execute� and each of them will
be blocked whenever they �nish� satisfying the parallelism and the 	�move
execution�

Proposition � The translation scheme for external non�deterministic com�
position preserves the corresponding de�nition�

Proof� Let chooserandom be a function that chooses randomically a number
from a list of integers�

���� INTERACTION COMPOSITION AND RUNS ��

I ��i� �

 � in�� hole �
if choosing
Id
�i� �� ��� �� in��� then
choose�
Id
�i��������in��� �� chooserandom
����������n����
choosing
Id
�i� �� ��� �� in��� �� false�

else
if choose
Id
�i� �� ��� �� in��� � � then
I ��i��� hole �� �choosing
Id
�i� �� ��� �� in��� �� true�
endif

elseif ���
elseif choose
Id
�i� �� ��� �� in��� � n then
I ��i��� hole �� �choosing
Id
�i� �� ��� �� in��� �� true�

endif
endif

Figure ��	�� The translation scheme for the external non�deterministic com�
position

This translation scheme is also performed in two phases� Regarded that
the function choosing�Id�i� �� ��� �� in�� is initialized with true�
then one interaction ik� �	 � k � n� will be selected among the others� and
the selection will be placed in the function choose which is identi�ed by the
label of the external non�deterministic interaction�

In the second phase� only the selected interaction will be performed� and
thus� satisfying the de�nition�

Proposition � The translation scheme for internal non�deterministic com�
position preserves the corresponding de�nition�

Proof� This translation is performed in two phases� controled by the
function nondet� Regarded that the initial state of the function nondet is
checking� then in the �rst phase� all interactions ik� �	 � k � n�� will
be checked to see if they can completely �nish a cycle� The checking will be
serialized in order to prevent an inconsistent update of the function possibles
which will contain the number of each interaction that can occur� This
serialization does not contradicts the de�nition ��	�� If there is only one
possible interaction then this will be the interaction to be performed� This is
assured by the required update on the functions chosen and nondet� If there is
more than one possible interaction to be executed then this chosen interaction
will be selected by the same function chooserandom used in the previous
de�nition� thus assuring the required behavior stated in the de�nition� When
the selection is performed by one of the two previous guard� then mandatorily
the execution enters the second phase� In the second phase only the selected
interaction will be executed as assured by the mutual exclusive guards on the
function chosen� The cycle �nishes correctly by putting all control functions

� CHAPTER �� SEMANTICS

I ��i� ��

 �� in�� hole �
if nondet
Id
�i� �� ��� �� in��� � �checking� then
if checking
Id
�i��������in��� � � then
if can occur ��i��� then
possibles
Id
�i� �� ��� �� in��� ��

cons
��possibles
Id
�i� �� ��� �� in�����
endif
checking
Id
�i��������in��� �� ��

elseif ���
elseif checking
Id
�i��������in��� � n then
if can occur ��in�� then
possibles
Id
�i� �� ��� �� in��� ��

cons
n�possibles
Id
�i� �� ��� �� in�����
endif
checking
Id
�i��������in��� �� ��

elseif length
possibles
Id
�i� �� ��� �� in���� � � then
nondet
Id
�i� �� ��� �� in��� �� �executing��
chosen
Id
�i� �� ��� �� in�� ��

car
possibles
Id
�i� �� ��� �� in�����
elseif length
possibles
Id
�i� �� ��� �� in���� 	 � then
nondet
Id
�i� �� ��� �� in��� �� �executing��
chosen
Id
�i� �� ��� �� in�� ��

chooserandom
possibles
Id
�i� �� ��� �� in�����
endif

if nondet
Id
�i� �� ��� �� in��� � �executing� then
if chosen
Id
�i� �� ��� �� in�� � � then
I ��i��� hole ��

�possibles
Id
�i� �� ��� �� in��� �� nil ���
�nondet
Id
�i� �� ��� �� in��� �� �checking���

elseif ���
if chosen
Id
�i� �� ��� �� in�� � n then
I ��in�� hole ��

�possibles
Id
�i� �� ��� �� in��� �� nil ���
�nondet
Id
�i� �� ��� �� in��� �� �checking���

endif
endif

Figure ��	�� The translation scheme for the internal non�deterministic com�
position

���� SYNCHRONIZATION OF RULES AND INTERACTIONS ��

I �� waiting var �� hole �
waiting
self� �var�� �� true�
if not waiting
self� �var�� then

hole

Figure ��	�� The translation scheme for the waiting interaction

�possible� nondet� in the initial state� The function checking was already set
to the initial state in the checking phase�

��	 Synchronization of Rules and Interactions

Unit internal rules are just like ASM rules and its semantics is exactly the
same� But� there is no direct relation on the synchronism between the inter�
action rules and internal rules� In order to guarantee appropriated synchro�
nization when executing these rules� the IASM method provides�

	� A waiting rule used in the interaction section� This rule is represented
by a boolean function name� When executed the rule updates the
function with true and freezes the execution of the current node in a
interaction cycle until the function is updated with false�

Proposition � The translation scheme preserves the condition that
the waiting interaction �nishes a cycle if and only if the corresponding
function waiting is set to false�

Proof� The only way to �nish the interaction is to execute the hole
instructions� But these instructions are only executed if the function
waiting is set to false� Conversely� if this function is set to false�
necessarily the hole instructions will be executed and thus �nishing a
cycle�

�� All interactions may be labeled� for example�

msgrec �� S�msgsend � nb rcvd msgs

The corresponding label denotes an integer value which corresponds to
how many times an interaction has been completed� This value can be
used by the internal rules�

�� CHAPTER �� SEMANTICS

I ��i � l �� hole �
I ��i � l �� hole �� �l
Id
i������ �

Figure ��	
� The translation scheme for the labeled interaction

Proposition 	 The translation scheme for labeled interaction guarantees the
l has the number of times that i was completed� regarded that l is local to the
corresponding unit instance and it is properly initialized with zero�

Proof� By identifying l with the interaction label� we assure that l is local
and unique for the corresponding unit instance� The increment of the func�
tion l is performed in the hole portion of the interaction� which by de�niton
is where the interaction �nishes a cycle� Thus the function l correctly counts
the number of performed cycles�

Chapter �

An Example � The Alternating

Bit Protocol

In this section we show a more elaborated example� the speci�cation of the
Alternating Bit Protocol �	�� The problem consists of transmitting messages
through an unreliable channel� The channel delivers messages in the same
order they were sent� but can occasionally loose some of them�

The speci�cation is composed of three main unit de�nitions� Sender� Re�
ceiver and Channel� In addition� four other units are de�ned as environment
units�

� unit ClientSender � Simulates the behaviour of a client that delivers
messages� the messages are sent to the unit Sender� which sends copies
of them to ensure the correct delivery�

� unit ClientReceiver � Simulates the behaviour of a client that receives
messages from the unit Receiver�

� unit Timer � Sends periodically a message to the unit Sender� at a �xed
rate� to indicate that a new copy of the current message must be sent�
Timer has a behaviour which is similar to that of external functions in
pure ASM�

� unit Loose� Sends messages to the unit Channel non�deterministically�
indicating when a message will be lost� Like Timer� its behaviour is
similar to that of external functions�

�	

��CHAPTER �� AN EXAMPLE 	 THE ALTERNATING BIT PROTOCOL

Sender
Client
cs:

s: Sender

t: Timer Channel

l: Loose
r: Receiver

Receiver
Client

Channel
srchan:

rschan:

cr:

Fig� �� Units and the �ow of messages in the AB Protocol

Figure 	 shows the relationship between these units� Note that two in�
stances of the unit Channel are necessary�

After the unit Sender has performed the connections� it receives from
the client a message which must be delivered to the receiver through an
unreliable channel� Then it sends copies of the message through an output
channel �srchan�� together with a signal bit� This process is repeated until
the unit Sender receives a correct acknowledgement message from the input
channel� Then it waits for a new request from the client�

The timer is used to indicate that the sender has spent a certain amount
of time waiting for the correct acknowledgement signal and must then deliver
a new copy of the message� Note that after the message was sent via srchan�
either the sender receives non�deterministically an acknowledgement bit or a
timeout signal� as we should expect�

unit Sender
function names

timeout� connected �� false�
msg� recvbit�
bit �� ��
next �� true�
srchan �� �srchan�� rschan �� �rschan�� c �� �c��� t �� �t��

interaction
if not connected then

connect srchan� Channel�input� rschan� Channel�output�
c� Client� t� Timer� � Connection

else
if next then

msg �� c�msg�
msg �	 srchan � bit �	 srchan�

recvbit �� rschan�bit �
timeout �� t�timeout��

if not timeout and recvbit � bit then
ack �	 c�
waiting
nextmsg��

else
waiting
samemsg��

endif
rules

if Connection 	 � then
connected �� true�

if waiting
nextmsg� then
bit �� toggle
bit�� next �� true�
waiting
nextmsg� �� false�

endif

��

if waiting
samemsg� then
timeout �� false� next �� false�
waiting
samemsg� �� false�

endif
end unit

After the unit Receiver has performed the connections� it receives a
message from the input channel �srchan� and if it is not a copy of the last
value received� it is sent to the client� It also sends an acknowledgement
signal via an output channel �rschan�� Note that msg is also sent via rschan
in order to correctly match the interaction pattern of Channel�

unit Receiver
function names

connected �� false�
msg� bit�
currbit �� ��
srchan �� �srchan�� rschan �� �rschan�� c �� �c���

interaction
if not connected then

connect srchan� Channel�output� rschan� Channel�input�
c� Client� � Connection

else
msg �� srchan�msg � bit �� srchan�bit�

if bit � currbit then

msg �	 c�
waiting
nextmsg��

endif�

msg �	 rschan � bit �	 rschan��

endif
rules

if Connection 	 � then
connected �� true�

if waiting
nextmsg� then
currbit �� toggle
currbit�� waiting
nextmsg� �� false�

end unit

The unit Channel simulates a channel that delivers the messages in the
order they are sent� but it may occasionally loose some of them� It connects
to the units representing the input and output of the channel and also to
a unit Loose that determines non�deterministically when a message will be
lost� Note that the connection of the input and output will be blocked waiting
the assignment that will be done in the units Sender and Receiver�

unit Channel
function names

input� output� msg� msg�� bit� bit��
loose� Loose�
connected �� false�
queue �� nil�

interaction
if not connected then

connect input� output�
connect loose� Loose� � Connections

endif �

msg� �� input�msg � bit� �� input�bit �
waiting
buffering��

��CHAPTER �� AN EXAMPLE 	 THE ALTERNATING BIT PROTOCOL

if msg �	 undef then

msg �	 output � bit �	 output �
waiting
cleanmsg��

endif�

loosemsg �� loose�loosemsg �
waiting
LoosingInQueue��

�
rules

if Connection 	 � then
connected �� true�

if waiting
buffering� then
queue �� append

msg�� bit��� queue��
waiting
buffering� �� false�

endif
if waiting
cleanmsg� then

msg �� undef� waiting
cleanmsg� �� false�
if waiting
LoosingInQueue� then

queue �� tail
queue�� waiting
LoosingInQueue� �� false�
if msg � undef and queue �	 nil then

msg � first
head
queue��� bit � second
head
queue���
queue �� tail
queue��

endif�
end unit

This protocol has been previously formalized using the ASM method in
���� In that work� the behaviour of the communication channel was not clearly
de�ned� It was necessary to write identical code for both the communication
sender�receiver and receiver�sender�

Now we will specify the environment units ClientSender� ClientReceiver�
Timer� and Loose�

unit ClientSender
function names

connected �� false�
msg �� ��
ack�
s �� �s��

interaction
if not connected then

connect s� Sender� � Connection
else

waiting
preparing�msg��
msg �	 s�
ack �� s�ack�

endif
rules

if Connection 	 � then
connected �� true�

if waiting
preparing�msg��
msg �� msg � ��
waiting
preparing�msg� �� false�

endif
end unit

unit ClientReceiver
function names

connected �� false�
msg �� ��

��

r �� �r��
interaction

if not connected then
connect r� Receiver� � Connection

else
msg �� r�
waiting
processing�msg��

endif
rules

if Connection 	 � then
connected �� true�

if waiting
processing�msg��
out �� cons
msg� out��
waiting
processing�msg� �� false�

endif
end unit

unit Timer
function names

connected �� false� timeout �� true�
TIMEOUTPARAM �� ���� firstclock� lastclock�
mode �� �init�� getting�clock �� true�
s �� �s�� c �� �c�� init�signals �� �� timeouts �� ��

interaction
if not connected then

connect s� Sender� � Connection
init�timeout �� s�init�timeout�
first�clock �� clock�time�
last�clock �� clock�time�

else
if lastclock � firstclock 	 TIMEOUTPARAM then
timeout �	 s � send�timeout

 init�timeout �� s�init�timeout � recv�init�signal�
 ask�clock �	 clock� last�clock �� clock�time�

endif
rules

if Connection 	 � then
connected �� true�

if recv�init�signal 	 init�signals then
init�signals �� init�signals � ��
first�clock �� last�clock�

endif
if timeouts � send�timeout then

timeouts �� timeouts � ��
first�clock �� last�clock�

endif
end unit

environment unit Clock
interaction

if not connected then
connect req�

else
ask�clock �� req�ask�clock� time �	 req

endif
end unit

unit Loose
function names

connected �� false� timeout �� true�

c � init�signals �� �� timeouts �� ��
interaction

if not connected then
connect c� � Connection

else
waiting
a�loose��
loosemsg �	 c

endif
rules

�
CHAPTER �� AN EXAMPLE 	 THE ALTERNATING BIT PROTOCOL

if Connection 	 � then
connected �� true�

if waiting
a�loose� then
if random
� � �loose� then

waiting
a�loose� �� false�
endif

end unit

The startup speci�cation that creates the initial unit instances may be
written as�

specification ABP
rschan� srchan� Channel�
s� Sender� r� Receiver�
t� Timer� l� Loose�
c�� Client� c�� Client�
c� Clock�

end specification

Chapter �

Another Example � Active

Mobile Objects

Let us give a problem to be speci�ed� This will be useful in comparing
this approach with others and in illustrating its reasoning capability� The
following paragraph reproduces verbatim a simpli�ed and eventually modi�ed
version of the problem consisting in managing a virtual program committee
meeting for a conference� The problem was presented as a challenge in ����

A conference is announced� and an electronic submission form is publi�
cized� Each author fetches the form and activate it� Each author �lls an
instance of the form with the required data and attaches a paper� The form
checks that none of the required �elds are left blank and sent the data and
the paper to the program chair� The program chair collects the submission
forms and assign the submissions to the committee members� by instructing
each submission form to generate a review form for each assigned member�
Each assigned member is a reviewer� and may decide to review the paper
directly or send it to another reviewer� The review form keeps track of the
chain of reviewers� Eventually a review is �lled and it �nds its way back to
the program chair� The program chair collects all review forms� The chair
merge all review forms for each paper in a paper report form� Then the chair
declares each report form an accepted paper report form� or a rejected paper
review form� and �nally returns this form to each author� All accepted paper
report forms are required to generate �nal version forms on which the author
attaches the �nal version of the paper and send it back to the program chair�

Now we will give a partial Interactive ASM semantics for this problem�
For the sake of conciseness� we will focus on the interaction section of the
speci�cation and will omit the declaration of the internal state and the the
internal rules of each unit�

unit Author

��

� CHAPTER �� ANOTHER EXAMPLE 	 ACTIVE MOBILE OBJECTS

���
interaction

if
wants�to�submit� then
choose s in Submission

connect s �
wait
submission�ok��
data�paper �	 s�
disconnect s�

end choose
endif

if
waiting�result� then

connect the�chair�
result �� the�chair�result
self��
disconnect the�chair

endif

if
ready�final� then

connect the�chair�
final �	 the�chair�
disconnect the�chair

endif
���
end unit

This unit de�nition models the behavior that the author of an article
must have in order to correctly participate of a call for papers�

unit Submission
���
interaction

connect a� Author�
data�paper �� a�data�paper�
disconnect a�
connect the�chair�
data�paper �	 the�chair�
disconnect the�chair�

���
end unit

The unit de�nition Submission models an agent that interacts with the
author of a paper� and gets all necessary information with an attached paper�
The internal rules should make all the necessary checking�

unit Chair
���
interaction

if
before�deadline� then
connect s� Submission�
data�papers ��� s�data�paper�
disconnect s�

endif

if
exist x in data�papers� then

choose r in Reviewer
connect r �
wait
one�paper��
a�paper �	 r � sent�review�
disconnect r�

endchoose
endif

if
sent�review 	 received�review� then

connect r� Reviewer�

��

review �� r � received�review�
disconnect r

endif

if
result�ok� then

var r in Result
connect author
r� �
r �	 author
r��
disconnect author
r�

endvar
endif

if
receiving�final�versions� then

var a in Author
if
accepted
a� then

connect a �
finals ��� a�final�
disconnect a

endif
endvar

endif
���
end unit

The unit Chair is the more interactive one� It has �ve parallel actions�
each one represented by a guarded rule evaluated depending only on its
internal state�

unit Reviewer
���
interaction

connect the�chair�
a�paper �� the�chair�a�paper�
if
directly�review� then

wait
the�review��
review �	 the�chair

else
choose r in Reviewer

connect r�
firsthistory as history �	 r a�paper �	 r �
disconnect r�

endchoose
endif

connect r�
history� �� r�history a�paper� �� r �
disconnect r�
if
reviewed
a�paper�� then

connect head
history���

tail
history�� as history �	 head
history��
apaper� �	 head
history�� ��
disconnect head
history��

elseif
directly�review� then
wait
the�review���
connect head
history���

tail
history�� as history �	 head
history��
review� �	 head
history�� � �
disconnect head
history��

else
choose r in Reviewer

connect r�
cons
self� history�� as history �	 r a�paper� �	 r
disconnect r�

endchoose

�� CHAPTER �� ANOTHER EXAMPLE 	 ACTIVE MOBILE OBJECTS

���
end unit

The unit Reviewer has an elaborated scheme for creating the dynamic
communication between the reviewers� When passing a paper forward it
adds its identi�cation to the history of the reviewers for that paper� When
passing a paper backward in the history� it removes a reviewer from the list
being sent backward with the review�

At last� we may specify the speci�cation startup to create some initial
unit instances� Other instances must have to be created dynamically by
some Authorization unit� intentionally not speci�ed�

specification startup
the�chair� unit Chair�
committee�member�� unit Reviewer�
���
committee�memberN� unit Reviewer�

end specification

Now� we are going to present two propositions about the previous example
and show their validity�

Proposition
 All papers submitted after the deadline date are not received
by the chair�

Proof� The �rst guard in the unit chair directly guarantees this propo�
sition�

However� as it is� the speci�cation does not treat a noti�cation of this
fact to the author�

Proposition � All submissions received by the chair generates a report
form to the author if� and only if� there is a reviewer that directly reviews the
paper�

Proof�

	� If there is a reviewer that directly reviews the papers then all submis�
sions generates a report form�

We have that all paper received by the chair is sent to a reviewer� This
is guaranteed by the second guard of the unit de�nition Chair� that
checks that if there is a submission that was not sent to any reviewer�
Since this guard is parallel with all the other it will be executed without
being blocked�

In all guards of the unit Reviewer� it can be seen that a received paper is
either reviewed and sent backward in the history� or sent �backward or

�	

forward� to another reviewer� Since� by assumption� there is a reviewer
that directly reviews the paper� the paper will certainly be sent back
through its history when reviewed� In the de�nition the �rst element
of the history is the chair� So� the paper will certainly return to the
chair�

Assuming that the internal behavior of the chair produces the �nal
result when all the reviews of the paper had come back� then by the
fourth guard of the unit Chair� we can guarantee that all results are
sent back to the authors�

�� All submission would have back the result report� only if there is a
reviewer that directly reviews each paper�

Suppose if for a certainly review� there is not a reviewer that directly
reviews it� Then� that review will never be sent to the chair� and
consequently� will not be sent to the author�

Depending on the internal behavior of the chair when preparing the
result� it may happen that none of the authors receives the review�

�� CHAPTER �� ANOTHER EXAMPLE 	 ACTIVE MOBILE OBJECTS

Chapter �

Conclusions

We have presented a proposal to promote the reuse of ASMs speci�cations
while addressing important issues such as communication and concurrency�
The idea of explicitly isolating the interaction between computing units with
di�erent purposes makes clearer their interdependencies� This also provides
a useful mechanism to formalize the environment in which a speci�cation will
work�

The approach was successfully used in the speci�cation of the Alternat�
ing Bit protocol� where we have reused the speci�cation of the unit Channel�
which may be connected di�erently depending on its usage� We have shown
that the explicit message passing mechanism composed with well�known op�
erators provides a powerful and natural speci�cation mechanism�

The dynamic con�guration of the communication topology presented is
an essential feature that may be used to specify mobile systems which are
being increasily used but still lacks more suitable formal approaches�

There are some aspects that must be further studied�

� study of static checking mechanism� e�g�� type systems�

� study of more powerful reuse mechanisms� e�g�� inheritance�

� encoding of procedure and�or function calls and�or method invoca�
tions�

� use of the approach in large scale speci�cations�

��

�� CHAPTER �� CONCLUSIONS

Bibliography

�	� K� A� Bartlett� R� A� Scantlebury� and P� T� Wilkinson� A Note on Reli�
able Full�Duplex transmission over Half�Duplex Links� Communications
of the ACM� 	������
� �
	� May 	�
��

��� G� Berry and G� Boudol� The Chemical Abstract Machine� Theoretical
Computer Science� �
�	���	� ��� 	����

��� L� Cardelli� Abstractions for mobile computation� Position Paper�
http���www� luca�demon�co�uk�Papers�html� May 	���

��� G� D� Castillo� Y� Gurevich� and K� Stroetmann� Typed Abstract State
Machines� Submitted to the Journal of Universal Computer Science�
	���

��� P� Glavan and D� Rosenzweig� Communicating Evolving Algebras� In
E� B!orger� H� Kleine B!uning� G� J!ager� S� Martini� and M� M� Richter�
editors� Computer Science Logic� volume ��� of Lecture Notes in Com�
puter Science� pages 	� �	�� Springer� 	����

�
� Y� Gurevich� Evolving Algebras 	���� Lipari Guide� In E� B!orger� edi�
tor� Speci�cation and Validation Methods� pages � �
� Oxford University
Press� 	����

��� J� Huggins and R� Mani� The evolving algebra interpreter version ����
Manual of the interpreter �http���www�eecs�umich�edu�gasm��

�� W� May� Specifying Complex and Structured Systems with Evolving
Algebras� In TAPSOFT
��� Theory and Practice of Software Develop�
ment� �th International Joint Conference CAAPFASE� number 	�	�
in LNCS� pages ��� ���� Springer� 	����

��� B� Meyer� Object�oriented Software Construction� Prentice Hall� 	����

�	�� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes
�Parts I and II�� Information and Computation� 	���	 ��� 	����

��

�
 BIBLIOGRAPHY

Appendix A

Syntactic Conventions

We have used the following conventions�

� Unit de�nition is the speci�cation of the code of a unit�

� Unit declaration creates a function name or a unit instance�

� Italic letters� ui� ui�interactions denote syntactic elements�

� Typewriter letters� denote reserved words of the original ASM language
and of the constructions proposed here�

� "a � denotes a label that uniquely identi�es the syntactic element a�
i�e�� is the element of the vocabulary without being interpreted�

� �� ��� �� � denotes syntactic elements�

� a �� b� � a �� a � b�

� a
� b� � a �� a
 b�

� has message�origin� ��	 x � MSG� target�x��self
 label�x��origin

� match msg�x� origin� � target�x� � self
 label�x� � origin

� 	� a party is�x� u�� U�� f� b� �

party	�x� � �x� u�� U�� f� b� or
party��x� � �x� u�� U�� f� b�

�� a party is�x� u�� U�� b� �

party	�x� � �x� u�� U�� � b� or
party��x� � �x� u�� U�� � b�

��

� APPENDIX A� SYNTACTIC CONVENTIONS

�� a party is�x� U�� b� �

party	�x� � �x� � U�� � b� or
party��x� � �x� � U�� � b�

�� other party�x� u� U� f� �

if party	�x� � �u� U� f� � then

party��x�

elseif party��x� � �u� U� f� � then

party	�x�

else undef

�� wants�x� u�� U�� f	� u�� U�� f�� �

a party is�x� u�� U�� f	� true� and
�a party is�x� undef� undef� undef� false� or
�a party is�x� u�� U�� f�� false� or
a party is�x� u�� U�� undef� false� or
a party is�x� undef� U�� undef� false� �

� connected�x� u�� U�� f� u�� U�� �
a party is�x� u�� U�� f	� true� and
a party is�x� u�� U�� f�� true�

�� can occur��a�
 u�b�� �

hasmessage�
�u�b�

can occur��a�

 u�b�� �

hasmessage�
�u�b�

can occur��connect u�U�f �� �

exists x in Connections�

wants�x�u�U�f�self�Mod�self��u�

can occur��connect u �� �

exists x in Connections�

wants�x�undef�undef�undef�self�Mod�self�� �

can occur��i�� ���� in�� � false

can occur��i� jj ��� jj in�� � false

can occur��i� j ��� j in�� � false

can occur��i� j� ��� j� in�� � false

can occur��i� � ��� � in�� � false

can occur��i��������in�� � false

can occur�� �� � true

Appendix B

Translating the IASM AB

Protocol

In this section we present the translation of the AB Protocol into the pure
ASM notation�

module Sender
function names

timeout� connected �� false�
msg� recvbit�
bit �� ��
next �� true�
srchan �� �srchan�� rschan �� �rschan�� c �� �c��� t �� �t��

rules
if Connection 	 � then
connected �� true�

if waiting
�nextmsg�� then
bit �� toggle
bit�� next �� true�
waiting
�nextmsg�� �� false�

endif
if waiting
�samemsg�� then
timeout �� false� next �� false�
waiting
�samemsg�� �� false�

endif
if not connected then
if seq� � � then

if exists x in Connections�
wants
x�srchan��Channel���input��self��Sender���srchan��
choose x in Connections satisfying
wants
x� srchan��Channel���input��self��Sender���srchan��

Connections
x� �� false�
endchoose�
extend Connections with x�
party�
x� ��
self� �Sender�� �srchan�� true��
party�
x� ��
srchan� �Channel�� �input�� true��

endextend
seq� �� ��

else
extend Connections with x
party�
x� ��
self� �Sender�� �srchan�� true��
party�
x� ��
srchan� �Channel�� �input��false��

endextend
if exists x in Connections�
connected
x�srchan��Channel���f��self��Sender���srchan�� then

��

�� APPENDIX B� TRANSLATING THE IASM AB PROTOCOL

choose x in Connections satisfying
connected
x�srchan��Channel���f��self��Sender���srchan��

Connections
x� �� false�
endchoose�
seq� �� ��

endif
endif

elseif seq� � � then
if exists x in Connections�
wants
x� rschan��Channel���output��self��Sender���rschan��
choose x in Connections satisfying
wants
x�rschan��Channel���output��self��Sender���rschan��
Connections
x� �� false�

endchoose�
extend Connections with x�
party�
x� ��
self� �Sender�� �rschan�� true��
party�
x� ��
rschan� �Channel�� �output�� true��

endextend
seq� �� ��

else
extend Connections with x
party�
x� ��
self� �Sender�� �rschan�� true��
party�
x� ��
rschan� �Channel�� �output��false��

endextend
if exists x in Connections�
connected
x�rschan��Channel���output��self��Sender���rschan�� then
choose x in Connections satisfying
connected
x�srchan��Channel���output�� self��Sender���rschan��

Connections
x� �� false�
endchoose�
seq� �� ��

endif
endif

elseif seq� � � then
if exists x in Connections�
wants
x� c�� �Client�� �� self� �Sender���c���
choose x in Connections satisfying
wants
x� c�� �Client�� �� self� �Sender��c���
Connections
x� �� false�

endchoose�
extend Connections with x�
party�
x� ��
self� �Sender�� �c��� true��
party�
x� ��
c�� �Client�� �� true��

endextend
seq� �� ��

else
extend Connections with x
party�
x� ��
self� �Sender�� �c��� true��
party�
x� ��
c�� �Client�� �� false��

endextend
if exists x in Connections�
connected
x� c�� �Client�� �� self� �Sender���c��� then
choose x in Connections satisfying
connected
x� c�� �Client�� �� self� �Sender���c���

Connections
x� �� false�
endchoose�
seq� �� ��

endif
endif

elseif seq� � � then
if exists x in Connections�
wants
x� t�� �Timer�� �� self� �Sender���t���
choose x in Connections satisfying

�	

wants
x� t�� �Timer�� �� self� �Sender��t���
Connections
x� �� false�

endchoose�
extend Connections with x�
party�
x� ��
self� �Sender�� �t��� true��
party�
x� ��
t�� �Timer�� �� true��

endextend
seq� �� ��

else
extend Connections with x

party�
x� ��
self� �Sender�� �t��� true��
party�
x� ��
t�� �Timer�� �� false��

endextend
if exists x in Connections�
connected
x� t�� �Timer�� �� self� �Sender���t��� then
choose x in Connections satisfying
connected
x� t�� �Timer�� �� self� �Sender���t���
Connections
x� �� false�

endchoose�
seq� �� ��

endif
endif

endif
else
if seq� � � then

if next then
if has�message
c� �msg�� then

choose x in MSG satisfying match�msg
x� c� �msg��
msg �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
endif

elseif seq� � � then
extend MSG with x
target
x� �� srchan�
label
x� �� self � �msg��
cont
x� �� msg�

endextend
seq� �� ��

elseif seq� � � then
extend MSG with x
target
x� �� rschan�
label
x� �� self � �bit��
cont
x� �� bit�

endextend
seq� �� ��

elseif seq� � � then
if choosing� then
choose� �� chooserandom
����� ������
choosing� �� false�

else
if will�occur
�� choose��

�
�input��rschan��bit���
�input��t��timeout��� then
if has�message
rschan� �bit�� then
choose x in MSG satisfying match�msg
x�rschan��bit��
bit �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��
choosing �� true�

�� APPENDIX B� TRANSLATING THE IASM AB PROTOCOL

endif
elseif will�occur
�� choose��

�
�input��rschan��bit���
�input��t��timeout��� then
if has�message
t� �timeout�� then

choose x in MSG satisfying match�msg
x� t� �timeout��
timeout �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��
choosing �� true�

endif�
endif�

endif
elseif seq� � � then

if not timeout and recvbit � bit
if seq� � � then
extend MSG with x
target
x� �� c�
label
x� �� self � �ack��
cont
x� �� ack�

endextend�
seq� �� ��

elseif seq� � � then
waiting
�nextmsg�� �� true�
if not waiting
�nextmsg�� then

seq� �� ��
seq� �� ��

endif
endif

else
waiting
�samemsg�� �� true�
if not waiting
�nextmsg�� then
seq� �� ��

endif
endif

endif
endif

end unit

unit Receiver
function names

connected �� false�
msg� bit�
currbit �� ��
srchan �� �srchan�� rschan �� �rschan�� c �� �c���

rules
if Connection 	 � then
connected �� true�

if waiting
�nextmsg�� then
currbit �� toggle
currbit�� waiting
�nextmsg�� �� false�

if not connected then
if seq� � � then

if exists x in Connections�
wants
x�srchan��Channel���output��self��Sender���srchan��
choose x in Connections satisfying
wants
x� srchan��Channel���output��self��Sender��srchan��
Connections
x� �� false�

endchoose�
extend Connections with x�
party�
x� ��
self� �Sender�� �srchan�� true��
party�
x� ��
srchan� �Channel�� �output�� true��

endextend
seq� �� ��

else

��

extend Connections with x
party�
x� ��
self� �Sender�� �srchan�� true��
party�
x� ��
srchan� �Channel�� �output��false��

endextend
if exists x in Connections�
connected
x�srchan��Channel���output��self��Sender���srchan�� then

choose x in Connections satisfying
connected
x�srchan��Channel���output��self��Sender���srchan��
Connections
x� �� false�

endchoose�
seq� �� ��

endif
endif

elseif seq� � � then
if exists x in Connections�
wants
x� rschan� �Channel�� �input�� self� �Sender���rschan��
choose x in Connections satisfying
wants
x� rschan� �Channel�� �input�� self� �Sender��rschan��

Connections
x� �� false�
endchoose�
extend Connections with x�
party�
x� ��
self� �Sender�� �srchan�� true��
party�
x� ��
rschan� �Channel�� �input�� true��

endextend
seq� �� ��

else
extend Connections with x
party�
x� ��
self� �Sender�� �srchan�� true��
party�
x� ��
rschan� �Channel�� �input�� false��

endextend
if exists x in Connections�
connected
x� rschan��Channel���input��self��Sender���rschan�� then

choose x in Connections satisfying
connected
x�rschan��Channel���input��self��Sender���rschan��
Connections
x� �� false�

endchoose�
seq� �� ��

endif
endif

elseif seq� � � then
if exists x in Connections�
wants
x� c�� �Client�� �� self� �Sender���c���
choose x in Connections satisfying
wants
x� c�� �Client�� �� self� �Sender��c���

Connections
x� �� false�
endchoose�
extend Connections with x�
party�
x� ��
self� �Sender�� �c��� true��
party�
x� ��
c�� �Client�� �� true��

endextend
seq� �� ��

else
extend Connections with x
party�
x� ��
self� �Sender�� �c��� true��
party�
x� ��
c�� �Client�� �� false��

endextend
if exists x in Connections�
connected
x� c�� �Client�� �� self� �Sender���c��� then
choose x in Connections satisfying
connected
x� c�� �Client�� �� self� �Sender���c���
Connections
x� �� false�

endchoose�
seq� �� ��

�� APPENDIX B� TRANSLATING THE IASM AB PROTOCOL

endif
endif

endif
else
if seq� � � then

if has�message
srchan� �msg�� then
choose x in MSG satisfying match�msg
x� srchan� �msg��
msg �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then

if has�message
srchan� �bit�� then
choose x in MSG satisfying match�msg
x� srchan� �bit��
bit �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then
if not done�par�
�� then
if bit � currbit then
if seq� � � then
extend MSG with x

target
x� �� srchan�
label
x� �� self � �msg��
cont
x� �� msg�

endextend�
seq� �� ��

elseif seq� � � then
waiting
�nextmsg�� �� true�
if not waiting
�nextmsg�� then
seq� �� �
done�par� �� true�

endif
endif

endif
endif
if not done�par�
�� then
if seq� � � then
extend MSG with x
target
x� �� rschan�
label
x� �� self � �msg��
cont
x� �� msg�

endextend�
seq� �� ��

elseif seq� � � then
extend MSG with x
target
x� �� rschan�
label
x� �� self � �bit��
cont
x� �� bit�

endextend�
seq� �� ��
done�par�
�� �� true�

endif
endif
if done�par�
�� and done�par�
�� then
done�par�
�� �� false�
done�par�
�� �� false�
seq� �� ��

��

endif�
endif

endif
endif

end unit

unit Channel
function names

input� output� msg� msg�� bit� bit��
loose� Loose�
connected �� false�
queue �� nil�

rules
if Connection 	 � then

connected �� true�
if waiting
�buffering�� then

queue �� append

msg�� bit��� queue��
waiting
�buffering�� �� false�

endif�
if waiting
�cleanmsg�� then

msg �� undef� waiting
�cleanmsg�� �� false�
if waiting
�LoosingInQueue�� then

queue �� tail
queue�� waiting
�LoosingInQueue�� �� false�
if msg � undef and queue �	 nil then

msg � first
head
queue��� bit � second
head
queue���
queue �� tail
queue��

endif�
if not connected then

if seq� � � then
if exists x in Connections�
wants
x� �� �� �� self� �Channel�� �input����

choose x in Connections satisfying
wants
x� �� �� �� self� �Channel�� �input����

Connections
x� �� false�
extend Connections with x�

party�
x�� ��
self��Channel�� �input�� true��
party�
x�� ��

other�part
x�self��Channel���input���
endextend

endchoose�
seq� �� ��

endif
endif
elseif seq� � � then

if exists x in Connections�
wants
x� �� �� �� self� �Channel�� �output����

choose x in Connections satisfying
wants
x� �� �� �� self� �Channel�� �out����

Connections
x� �� false�
extend Connections with x�

party�
x�� ��
self��Channel���output��true��
party�
x�� ��

other�part
x� self� �Channel�� �output���
endextend

endchoose�
seq� �� ��

endif
elseif seq� � � then

if exists x in Connections�
wants
x� l�� �Loose�� �� self� �Channel���l���

choose x in Connections satisfying
wants
x� l�� �Loose�� �� self� �Channel���l���

Connections
x� �� false�

�
 APPENDIX B� TRANSLATING THE IASM AB PROTOCOL

endchoose�
extend Connections with x�

party�
x�� ��
self� �Channel�� �l��� true��
party�
x�� ��
l�� �Loose�� �� true��

endextend
seq� �� ��

else
extend Connections with x

party�
x� ��
self� �Channel�� �l��� true��
party�
x� ��
l�� �Loose�� �� false��

endextend
if exists x in Connections�
connected
x� l�� �Loose�� �� self� �Channel���l��� then

choose x in Connections satisfying
connected
x� l�� �Loose�� ��self��Loose���l���

Connections
x� �� false�
seq� �� ��

endif
endif

endif
else

if seq� � � then
if has�message
input� �msg�� then

choose x in MSG satisfying match�msg
x�input��msg��
msg� �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then

if has�message
input� �bit�� then
choose x in MSG satisfying match�msg
x�input��bit��

bit� �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then

waiting
�buffering�� �� true�
if
not waiting
�buffering��� then

seq� �� ��
endif

if msg �	 undef then
if seq� � � then

extend MSG with x
target
x� �� output�
label
x� �� self � �msg��
cont
x� �� msg�

endextend�
seq� �� ��

elseif seq� � � then
extend MSG with x

target
x� �� output�
label
x� �� self � �bit��
cont
x� �� bit�

endextend�
seq� �� ��

elseif seq� � � then
waiting
�cleanmsg�� �� true�
if
not waiting
�cleanmsg��� then

seq� �� ��

��

endif

if seq� � � then
if has�message
l�� �loosemsg�� then
choose x in MSG satisfying
match�msg
x�l���loosemsg��

loosemsg �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

elseif seq� � � then
waiting
�LoosingInQueue�� �� true�
if
not waiting
�LoosingInQueue��� then

seq� �� ��
endif

endif
endif

end unit

module ClientSender
function names

connected �� false�
msg �� ��
ack� s �� �s��

rules
if Connection 	 � then

connected �� true�
if waiting
preparing�msg��

msg �� msg � ��
waiting
preparing�msg� �� false�

endif

if not connected then
if exists x in Connections�

wants
x� s� �Sender�� �� self� ���s��
choose x in Connections satisfying

wants
x� s� �Sender�� �� self� ���s��
Connections
x� �� false�

endchoose�
extend Connections with x�

party�
x� ��
self� �ClientSender�� �s�� true��
party�
x� ��
s� �Sender�� �� true��

endextend
else

extend Connections with x
party�
x� ��
self� �ClientSender�� �s�� true��
party�
x� ��
s� �Sender�� �� false��

endextend
if exists x in Connections�
connected
x� s� �Sender�� �� self� �ClientSender���s�� then

choose x in Connections satisfying
connected
x� s� �Sender�� �� self� �ClientSender���s��

Connections
x� �� false�
seq� �� ��

endif
endif

else
if seq� � � then

waiting
�preparing�msg�� �� true�
if not waiting
�preparing�msg�� then

seq� �� ��
endif

elseif seq� � � then
extend MSG with x

target
x� �� s�

� APPENDIX B� TRANSLATING THE IASM AB PROTOCOL

label
x� �� self � �msg��
cont
x� �� msg�

endextend�
seq �� ��

elseif seq� � � then
if has�message
s� �ack�� then

choose x in MSG satisfying match�msg
x� s� �ack��
ack �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
endif

endif
end unit

module ClientReceiver
function names

connected �� false�
msg �� ��
r �� �r��

interaction
if Connection 	 � then

connected �� true�
if waiting
processing�msg��

out �� cons
msg� out��
waiting
processing�msg� �� false�

endif
if not connected then

if exists x in Connections�
wants
x� r� �Receiver�� �� self� ���r��

choose x in Connections satisfying
wants
x� r� �Receiver�� �� self� ���r��

Connections
x� �� false�
endchoose�
extend Connections with x�

party�
x� ��
self� �ClientReceiver�� �r�� true��
party�
x� ��
r� �Receiver�� �� true��

endextend
else

extend Connections with x
party�
x� ��
self� �ClientReceiver�� �r�� true��
party�
x� ��
s� �Receiver�� �� false��

endextend
if exists x in Connections�
connected
x�r��Receiver���� self��ClientReceiver���r�� then

choose x in Connections satisfying
connected
x�r��Receiver����self��ClientReceiver���r��

Connections
x� �� false�
seq� �� ��

endif
endif

else
if seq� � � then

if has�message
r� �msg�� then
choose x in MSG satisfying match�msg
x� r��msg��

msg �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then

waiting
�processing�msg�� �� true�
if not waiting
�processing�msg�� then

��

seq� �� ��
endif

endif
endif

end unit

module Timer
function names

connected �� false� timeout �� true�
TIMEOUTPARAM �� ���� firstclock� lastclock�
mode �� �init�� getting�clock �� true�
s �� �s�� c �� �c�� init�signals �� �� timeouts �� ��

rules
if Connection 	 � then

connected �� true�
if recv�init�signal 	 init�signals then

init�signals �� init�signals � ��
first�clock �� last�clock�

endif
if timeouts � send�timeout then

timeouts �� timeouts � ��
first�clock �� last�clock�

endif
if not connected then

if seq� � � then
if exists x in Connections�
wants
x� �� �� �� self� �Timer�� �s��

choose x in Connections satisfying
wants
x� �� �� �� self� �Timer�� �s��

Connections
x� �� false�
extend Connections with x�

party�
x�� ��
self� �Timer�� �s�� true��
party�
x�� �� other�part
x�self��Timer���s���

endextend
endchoose�
seq� �� ��

endif
elseif seq� � � then

if has�message
s� �init�timeout�� then
choose x in MSG satisfying
match�msg
x� s� �init�timeout��

init�timeout �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then

if has�message
clock� �time�� then
choose x in MSG satisfying match�msg
x�clock��time��

first�clock �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then

if has�message
clock� �time�� then
choose x in MSG satisfying match�msg
x�clock��time��

last�clock �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
endif

else
if lastclock � firstclock 	 TIMEOUTPARAM then

� APPENDIX B� TRANSLATING THE IASM AB PROTOCOL

extend MSG with x
target
x� �� s�
label
x� �� self � �timeout��
cont
x� �� timeout�

endextend�
send�timeout �� send�timeout � ��

endif
if has�message
s� �init�timeout�� then

choose x in MSG satisfying
match�msg
x�s��init�timeout��

init�timeout �� cont
x��
MSG
x� �� false�

endchoose�
recv�init�signal �� recv�init�signal � ��

endif

if seq� � � then
extend MSG with x

target
x� �� clock�
label
x� �� self � �ask�clock��
cont
x� �� ask�clock�

endextend�
seq� �� ��

elseif seq� � � then
if has�message
clock� �time�� then

choose x in MSG satisfying match�msg
x�clock��time��
last�clock �� cont
x��
MSG
x� �� false�

endchoose�
endif

endif
endif

end unit

module Clock
interaction

if not connected then
if exists x in Connections�

wants
x� �� �� �� self� �Clock�� �req��
choose x in Connections satisfying

wants
x� �� �� �� self� �Clock�� �req��
Connections
x� �� false�
extend Connections with x�

party�
x�� ��
self� �Clock�� �req�� true��
party�
x�� �� other�part
x�self��Clock���req���

endextend
endchoose�
seq� �� ��

endif
else

if seq� � � then
if has�message
req� �ask�clock�� then

choose x in MSG satisfying
match�msg
x�r��ask�clock��

ask�clock �� cont
x��
MSG
x� �� false�

endchoose�
seq� �� ��

endif
elseif seq� � � then

extend MSG with x
target
x� �� req�
label
x� �� self � �time��

	

cont
x� �� time�
endextend�

endif
endif

end unit

unit Loose
function names

connected �� false�
c �

rules
if Connection 	 � then

connected �� true�
if waiting
a�loose� then

if random
� � �loose� then
waiting
a�loose� �� false�

endif
if not connected then

if exists x in Connections�
wants
x� �� �� �� self� �Loose�� �c��

choose x in Connections satisfying
wants
x� �� �� �� self� �Loose�� �c��

Connections
x� �� false�
extend Connections with x�

party�
x�� ��
self� �Loose�� �c�� true��
party�
x�� �� other�part
x� self� �Loose�� �c���

endextend
endchoose�

endif
else

if seq� � � then
waiting
�a�loose�� �� true�
if not waiting
�a�loose�� then

seq� �� ��
endif

elseif seq� � � then
extend MSG with x

target
x� �� c�
label
x� �� self � �loosemsg��
cont
x� �� loosemsg�

endextend�
seq �� ��

endif
endif

end unit

