
Universidade Federal de Minas Gerais

Instituto de Ci�encias Exatas

Departamento de Ci�encia da Computa�c�ao

The Revised Report on the Language
SCRIPT for Denotational Semantics

by

Roberto da Silva Bigonha

RT ������

Caixa Postal� ���

���	
	 � Belo Horizonte � MG

february� 	��

Contents

� The Semantics De�nition Language SCRIPT �

	�	 Introduction � 	
	�� Basic Symbols �
	�� SCRIPT Comments �
	�� Syntax Summary �

	���	 SCRIPT Modules �
	���� Project Section �
	���� Exports Section �
	���� Imports Section �
	���� Domains Section �
	���
 Syntax Section �
	���� De�nitions Section �

	���
 Miscellaneous �

� Syntax Speci�cation �

��	 Introduction �
��� Syntax Speci�cation �
��� Domains and Abstract Syntax � 	�
��� Lexical Speci�cation � 	�
��� A Small Example � 	�

� Domains ��

��	 Introduction � 	�
��� Domain Identi�ers � 	�
��� Standard Domains � 	�

����	 Domain of Integers � 	�
����� Domain of Quotations � 	�
����� Domain of Truth Values � 	�
����� Domain of Unde�ned Values � 	�

��� Constant Domains � 	�
��� Variable Declaration � 	�
��
 User De�ned Domains � 	�

��
�	 Union of Domains � 	�

i

ii CONTENTS

��
�� Domain of Tuples � 	�
��
�� Domain of Lists � 	�
��
�� Domain of Continuous Function �	
��
�� Domain of Nodes �	

��� Domain Equivalence ��
��
 Domain Compatibility ��

� Expressions ��

��	 Introduction ��
��� Inquiry Expressions ��
��� Pattern Expressions �

��� Conditional Expressions �

��� LAM�Abstractions ��
��
 Pattern Abstractions ��
��� Case�Expressions �

��
 Let�Expressions ��
��� Updating Functions ��
��	� Function Application �	

��	��	 Sequential Expressions �	
��	��� Parameter Passing �	
��	��� Domain Bound Functions ��
��	��� Overloading of Functions ��

� The Module Structure ��

��	 Introduction ��
��� PROJECT Module ��
��� SYNTAX Module �

��� MODULE Module ��
��� Example ��
��
 Name Con�ict Resolution ��

� Object�Oriented Programming in SCRIPT ��

�	 Introduction ��

�� Class and Objects ��

�� Inheritance ��

�� Polymorphism ��

�� Data Encapsulation �

�
 Virtual Functions �

�� Dynamic Binding �

�
 A Polymorphic Stack �

Chapter �

The Semantics De�nition Language

SCRIPT

��� Introduction

SCRIPT is a functional language aimed to provide a well�suited notation for conveying
denotational semantic descriptions of programming languages in a structured fashion� To
that end� issues such as description modularization� structural type equivalence� control of
visibility� encapsulation� information hiding� inheritance and dynamic binding have been
incorporated in the language�s structure�

SCRIPT is a special purpose object oriented computer�processable language so that
denotational semantic descriptions can be e�ectively executed and debugged with the help
of computers�

Mosses� SSL and DSL notations��� �� 	�� have been taken as SCRIPT �s starting point
in the sense that many of its features have been adopted� notably grammar and abstract
syntax speci�cation notation� tuples� lists� parse tree nodes� patterns� CASE and LET
notations� Other features such as list comprehension came from widely known functional
languages Miranda�	
� and ML�	��

A SCRIPT program is formed by three kinds of modules� There is a special module
called PROJECT� which basically describes the environment in which SCRIPT programs
are processed� The environment includes the iden�cation of the main function of a formal
de�nition� the input and output �les associated with the main function domain� and the
modules that compose an entire formal de�nition� There can exist only one PROJECT

module per de�nition�

Another distinguised module is the SYNTAX module� which speci�es the concrete and
abstract syntax of a language� The syntactical elements of a language� whose syntax is
de�ned by sections SYNTAX and LEXIS of this kind of module� serve to generated translators
to render programs in the de�ned language into a ��calculus notation for abstract syntax�
There can exist only one SYNTAX modules per de�nition�

The third type of modules� simply referred to as MODULE� serves to encapsulate domain

	

� CHAPTER �� THE SEMANTICS DEFINITION LANGUAGE SCRIPT

and function de�nitions� These modules consist of the following optional sections�

� EXPORTS� identi�es the entities exported by the module�

� IMPORTS� speci�es the entities imported by the module�

� DOMAINS� declares variables and de�nes domains�

� DEFINITIONS� de�nes functions and other values�

Each SCRIPT module �PROJECT� SYNTAX or MODULE� can be separately compiled
into an enriched version of ��calculus� and ultimately linked together to form a machine
processable denotational de�nition�

��� Basic Symbols

The reserved keywords of SCRIPT are�

AND AUG CASE CAT CONC COMPONENTS

DEF DIV DOMAINS EL END EQ

EXPORTS EXT FF FOR GE

GT HEAD IMPORTS IN INFILES IS

LAM LE LET LEXIS LT

MINUS MODULE MULT N NE

NOT NUMBER OR OUT OUTFILE PRE

PLUS PROJECT Q QUOTE REM RENAMES

SIZE SYNTAX T TAIL THIS TRUTH

TT UNIT VAL

The special symbols are�

� � � � � � � � � 	
 � �
 � � � � � � � � � �

��� SCRIPT Comments

Comments in SCRIPT descriptions start either with the symbol ��� or with ����� and
end with the next line�feed or form�feed ASCII characters�

The pair of symbols ���� always iniciates a comment regardless where it occurs� This
rules precludes the use of adjacent dashes within identi�ers� although single dashes are
allowed�

���� SYNTAX SUMMARY �

��� Syntax Summary

����� SCRIPT Modules

script ��� module

module ��� �PROJECT� project�ide pro�section� �END� project�ide

� �SYNTAX� syntax�ide syn�section �END� syntax�ide

� �MODULE� module�ide mod�section� �END� module�ide

project�ide ��� proper�noun

pro�section ��� imports � domains � infiles � outfile � components

syntax�ide ��� proper�noun

syn�section ��� syntax domains lexis

module�ide ��� proper�noun

mod�section ��� exports � imports � domains � definitions

����� Project Section

infiles ��� �INFILES� file�defn

outfile ��� �OUTFILE� file�defn

file�defn ��� domain�ide ��� filename

filename ��� quotation

components ��� �COMPONENTS� filename
����

����� Exports Section

exports ��� �EXPORTS� exported�item
����

exported�item ��� closed�domain � open�domain � var�ide

� domain�ide ��� var�ide

closed�domain ��� domain�ide

� CHAPTER �� THE SEMANTICS DEFINITION LANGUAGE SCRIPT

open�domain ��� open�sign domain�ide

open�sign ��� ���

����� Imports Section

imports ��� �IMPORTS� window

window ��� module�ide ��� imported�item
���� ���

imported�item ��� item � new�item �RENAMES� item

item ��� closed�domain � open�domain � var�ide

new�item ��� domain�ide � var�ide

����	 Domains Section

domains ��� �DOMAINS� dom�decl
��
�

dom�decl ��� meta�var
���� ��� domain�ide ��� dom�exp

� meta�var
���� ��� domain�ide

� meta�var
���� ��� ��� dom�exp

� domain�ide ��� dom�exp

meta�var ��� common�noun � domain�ide ��� fun�ide

domain�ide ��� proper�noun � builtin�dom

var�ide ��� common�noun digit� prime� rep�op�

builtin�dom ��� �Q� � �T� � �N�

dom�exp ��� dom�a
����

dom�a ��� dom�b ��	� dom�a � dom�b

dom�b ��� dom�of�tuple � dom�of�node � dom�of�list

� domain�ide � quotation

dom�of�tuple ��� basic�tuple � dom�of�tuple �EXT� basic�tuple

basic�tuple ��� ��� field����� ��� � tuple�ide

���� SYNTAX SUMMARY �

tuple�ide ��� domain�ide

field ��� field�ide ��� dom�exp � field�ide � dom�exp

field�ide ��� common�noun digit� prime� rep�op�

dom�of�node ��� ��� dom�c� ���

dom�c ��� domain�ide rep�op� � quotation

dom�of�list ��� dom�b rep�op

����
 Syntax Section

syntax ��� prod�range
��
�

prod�range ��� production � range

production ��� nonterminal ����� alternative
����

range ��� nonterminal ����� spec
����

� nonterminal ����� spec
����

lexis ��� �LEXIS� unit�def prod�range
��
�

unit�def ��� �UNIT� ����� nonterminal
����

alternative ��� element� ��� exp�b � element�

element ��� symbol sep�op terminal � symbol rep�op � symbol

symbol ��� nonterminal � terminal

nonterminal ��� common�noun

terminal ��� quotation

sep�op ��� ���� � �
��

spec ��� terminal � one�char�str ���� one�char�str

 CHAPTER �� THE SEMANTICS DEFINITION LANGUAGE SCRIPT

one�char�str ��� quotation

����� De�nitions Section

definitions ��� �DEFINITIONS� def�binding�

def�binding ��� �DEF� definition

definition ��� lhs ��� exp

lhs ��� pattern�exp

� fun�head

� fun�head pattern�exp

� fun�head pattern�exp
 ��� dom�exp

fun�head ��� fun�ide � domain�ide ��� fun�ide

fun�ide ��� common�noun digit� prime�

pattern�exp ��� pattern�exp pat�di�op pattern�a � pattern�a

pattern�a ��� pat�mon�op pattern�a � pattern�b

pattern�b ��� ��� pattern�exp����� ��� � ��� pattern�c� ��� � ��� �	�

� pattern�c

pattern�c ��� var�ide � var�ide ��� dom�b � literal�const

pat�di�op ��� �PRE� � �CAT�

pat�mon�op ��� �NUMBER� � �QUOTE� � �TRUTH� � �VAL�

exp ��� �LAM� pattern�exp ��� exp

� let�binding
 �IN� exp

� exp�a ��	� exp else�symbol exp

� exp�a updating�exp

� exp�a seq�op exp

� exp�a

let�binding ��� �LET� definition

else�symbol ��� �ELSE� � ���

���� SYNTAX SUMMARY �

exp�a ��� exp�b �IS� pattern�exp � exp�b

exp�b ��� exp�b di�op exp�c � exp�c

exp�c ��� mon�op exp�c � exp�d

exp�d ��� exp�d exp�e � exp�e

exp�e ��� case�exp � tuple�exp � list�exp � node�exp � exp�f

case�exp ��� �CASE� exp�a clause
 �END�

clause ��� ��� pattern�exp
���� ��	� exp

list�exp ��� ��� exp����� �	� � ��� exp�b ���� exp�b �	�

� ��� exp ��� qualifier
���� �	�

qualifier ��� generator � generator ���� filter

generator ��� pattern�exp ���� source�exp

source�exp ��� exp

filter ��� exp

tuple�exp ��� ��� exp����� ���

node�exp ��� ��� exp�g� ���

exp�f ��� exp�g � father�fun � field�qualif

exp�g ��� literal�const � variable

variable ��� var�ide � �THIS�

father�fun� ��� fun�ide ���

field�qualif ��� object�exp ��� field�ide
����

object�exp ��� variable � ��� exp ���

updating�exp ��� ��� binding�pair
���� ��� � ��� exp ���

 CHAPTER �� THE SEMANTICS DEFINITION LANGUAGE SCRIPT

binding�pair ��� exp ��� exp

seq�op ��� �
� � ���

����� Miscellaneous

uppercase ��� �A� �� �Z�

lowercase ��� �a� �� �z�

anycase ��� lowercase � uppercase � ���

proper�noun ��� uppercase anycase�

common�noun ��� lowercase anycase�

digit ��� ��� �� ���

prime ��� ���

rep�op ��� ��� � �
�

di�op ��� �AND� � �OR� � �EQ� � �NE� � �LT� � �GT�

� �LE� � �GE� � �PLUS� � �MULT� � �DIV� � �REM�

� �CAT� � �AUG� � �PRE� � �EL�

mon�op ��� �NOT� � �NUMBER� � �QUOTE� � �TRUTH� � �CONC�

� �SIZE� � �VAL� � �NEG� � �OUT� � �HEAD�

� �TAIL�

literal�const ��� number � quotation � �TT� � �FF� � � ���

number ��� digit
 � ��� digit

quotation ��� ���� quotation�ch� ����

quotation�ch ��� char�� � special�char

char�� ��� ����

special�char ��� ��b� � ���� � ��ddd� � ��r� � ��f� � ��t�

� ��n� � ���� � ����

Chapter �

Syntax Speci�cation

��� Introduction

The purpose of the syntax speci�cation module is to provide a notation for specifying con�
crete syntax of a programming programming language and for indicating how the abstract
syntax parse tree for programs in the language can be derived from a given concrete syntax�
The syntax module is composed of three sections named SYNTAX� DOMAINS and LEXIS�

��� Syntax Speci�cation

The SYNTAX section consists of a set of production rules of a context free grammar� Each
production has a nonterminal symbol to the left of ������ and a list of alternatives� sepa�
rated by ���� to the right�

The �rst production occuring in the SYNTAX section de�nes the grammar starting sym�
bol� Nonterminal symbols of the grammar are formed from lower�case letters and dashes� A
terrminal symbol of the grammar is a quotation� which consists of a sequence of characters
written in quotes ����

A list of repeated terminal or nonterminal symbols can be speci�ed as an iterator� which
can written as�

� x� � zero or more occurences of grammar symbol x�
� x
 � one or more occurences of grammar symbol x�
� x
�t � zero or more occurences of grammar symbol x� separated by terminal t�
� x
�t � one more occurences of grammar symbol x� separated by terminal t�

A production alternative de�nes a possibly empty sequence of terminals� nonterminals
or iterators� For example� the classical grammar for expression can be speci�ed as�

exp ��� exp �
� term

� term

term ��� term ��� factor

�

	� CHAPTER �� SYNTAX SPECIFICATION

� factor

factor ��� ide � constant � ��� exp ���

There is also a special kind of production rules called range� whose syntax is borrowed
from �	��� Ranges are production rules whose alternatives can only be a single terminal
symbol or an interval of ASCII characters� The value produced is always the speci�ed ter�
minal symbol recognized as a quotation� Ranges are distinguised from normal production
rules by the use of the symbols ����� or ����� to separate the production sides instead of
������ The ����� symbol de�nes the left hand side as the set of terminal speci�ed in the
alternatives and the ����� symbol de�nes it as the complement of the speci�ed set�

In the example

digit ��� ��� �� ���

comment�char ��� �
�

the range de�ned by digit above is equivalent to�

digit ��� ��� � ��� � ��� � ��� � ��� � � � � �!� � �"� � �#� � ���

and comment�char is anything but a semicolon�

��� Domains and Abstract Syntax

From the concrete syntax speci�cation� the SCRIPT compiler generates parse�tables�
scanner routines and ultimately produces a compiler that translates programs in the speci�
�ed language into abstract syntax tree code� Normallly� the abstract syntax tree is genera�
ted during the program parsing by creating nodes corresponding to productions involved in
the recognition process� Unless speci�ed otherwise� nodes are constructed from the values
associated with each grammar symbols occurring in the production alternative� The value
associated with terminal symbols is the terminal itself� i�e�� a quotation� The value asso�
ciated with nonterminal is the value produced when the nonterminal was reduced by the
parser� The label of each node is the concatenation of the domain names of the grammar
symbols occuring in the corresponding production alternative� The domain of terminal is
the quotation itself� The domain of noterminals can be inferred by default� by capitalizing
its �rst letter� or it is explicitly declared in a DOMAINS section� The resulting node becomes
the value associated with the nonterminal on the left hand side of the production rule�

However� if a di�erent value is desired� a value�expression can be attached to the pro�
duction alternative� In this case� the value produced is that of the attached expression�
which� in principle� can be an expression of any type� A value�expression is any valid
SCRIPT expression whose operands are terminal or nonterminal symbols occurring in
the corresponding production altenative� The value of each operand is that of the va�
lue expression implictly or explicitly associated with it� Repeated nonterminals should
be referenced in the same order they appear in the production alternative so as to avoid
ambiguity�

���� DOMAINS AND ABSTRACT SYNTAX 		

This facility for producing abstract syntax tree allows the following type of transfor�
mations�

	� Elimination of precedence information present in concrete syntax speci�cations by
an appropriate domain speci�cation�

�� Placement of constructs with similar semantic properties in a single syntactic domain�
while making sure that domains with di�erent semantic roles are distinct�

�� Elimination of production rules which lose their semantic signi�cance after the ope�
rations described in items above are performed� These are� in general� productions
that would only yield extra �chain�reduction� nodes in the parse tree�

�� Elimination and addition of delimiters �terminal symbols� to simplify and unify the
structure of constructs�

�� Change of the order of occurrence of the constituents of constructs� For example�
if a�b� �ab and ab� are di�erent representations of the same expression� it might
be desirable to reorder the components of some of them in order to have just one
abstract form� Operations of this type are useful to reduce the number of semantic
equations�

For example� given the production rule�

exp ��� exp �
� factor � factor

where exp and factor are in the domain Exp� the resulting abstract syntax production
would be�

Exp � � Exp �
� Exp � � � Exp �

Nodes which correspond to alternatives that contain only one nonterminal symbol�
such as �Exp� above� can be eliminated by making that nonterminal symbol itself the
corresponding value�expression� as in�

exp ��� exp �
� factor

� factor � exp

It is also possible to delete or add terminal symbols to abstract syntax alternatives even
if they do not exist in the concrete speci�cation� The example that follows illustrates this
system capability� Suppose we have the following productions and value�expressions�

SYNTAX

s�exp ��� s�exp s�exp�seg � � ��� s�exp ��� s�exp�seg ��� �

func ��� �label� ��� ide �
� func ��� � � �label� ide �
� func �

and the domain speci�cation

DOMAINS

s�exp� s�exp�seg � S

func � F

ide � Ide

	� CHAPTER �� SYNTAX SPECIFICATION

The resulting abstract syntax is�

S � � ��� S ��� S ��� �

F � � �label� Ide �
� F�

��� Lexical Speci�cation

The LEXIS section of a syntax module always starts with a �xed production rule of the
form�

unit�def ��� �UNIT� ����� nonterminal
����

where each production alternative speci�es the units which are to be recognized by a parser
associated with LEXIS� The left part of this production rule is always the keyword UNIT�
whereas the right part is as usual� except that the attached value�expressions must be
tuples� each denoting the token value to be returned by the generated scanner�

All quotations ocurring in the SYNTAX section cause an implicit addition of a suitable
alternative to the de�nition of UNIT� so all terminal cited in the grammar can be pro�
perly recognized� This automatic inclusion is not performed if the quotation is marked by
keyword OUT�

��� A Small Example

SYNTAX MiniL

prog ��� �program� body �end�

body ��� �read� id �
� cmd
��
� �
� �write� exp

� ��read� id cmd
 �write� exp�

cmd ��� id ���� exp � cmds

� �while� exp �do� cmds �end�

cmds ��� cmd
��
� � cmd

exp ��� �ID� id � �suc� exp � �NM� num

LEXIS

UNIT ��� id � �OUT �ID�� id�

� num � �OUT �NM�� num�

id ��� letter
 � QUOTE letter

letter ��� �a� �� �z�

num ��� digit
 � NUMBER digit

digit ��� ��� �� ���

END MiniL

Chapter �

Domains

��� Introduction

SCRIPT domains are complete partial orders with a minimal element bottom �		� 	�� 	��
	�� 	�� 	
� 	�� 	�� ���� Domains have properties to guarantee that solutions of possibly re�
�exive domain equations always exist up to isomorphism� The special value bottom� which
is not directly representable in SCRIPT y� serves to model the semantics of nontermina�
tion� Every domain also contains a special unde�ned value� which is represented as ����
and is used to indicate the value of semantically non sensical expressions�

��� Domain Identi�ers

A domain name consists of a sequence of one or more letters� possibly containing embed�
ded hyphens ������ and that always starts with a capital letter� e�g�� Store� Command�

Environment� Domain names denote built�in standard domains or user de�ned domains�

��� Standard Domains

Domains N� Q� T and � are standard� and thus directly available in every semantic de�
�nition� and each has a number of pre�de�ned operations� In these operations� if any of
the operands is unde�ned ��� or bottom� the result of the operation is unde�ned or bottom
respectively� otherwise it denotes the expected value�

����� Domain of Integers

N is the �at domain �	
� of integer numbers� The de�ned operations on members n� and
n� of N are listed below�

� n� PLUS n� � add
� n� MINUS n� � subtract

	�

	� CHAPTER �� DOMAINS

� n� MULT n� � multiply
� n� DIV n� � divide
� n� REM n� � remainder
� NEG n� � change sign
� n� LT n� � less
� n� LE n� � less or equal
� n� GT n� � greater
� n� GE n� � greater or equal
� n� EQ n� � compare equal
� n� NE n� � compare not equal

Constants in domain N are the integer decimal numbers in the range ��#�"!#�����"!"�
Negative numbers are represented as usual� e�g� ������

����� Domain of Quotations

Q is the �at domain of quotations or strings� If q� q� and q� are in domain Q� and q� in
domain Q� of list of quotations� the following operations are de�ned�

� q� LT q� � less in lexographic order
� q� LE q� � less or equal
� q� GT q� � greater
� q� GE q� � greater or equal
� q� EQ q� � compare equal
� q� NE q� � compare not equal
� q� CAT q� � the quotation formed by the concatenation of quotations q� and q��
� QUOTE q� � the quotation whose characters are the concatenation of the elements of

list q�� For instance� the expression QUOTE ��This�� � is�� � �� �it�	 denotes
quotation �This is it��

� NUMBER q� � the decimal number whose digits are the components of q�� which must
have at least one component� Otherwise it is the value unde�ned�

� TRUTH q� � the value TT if q� is ��T���T�	� the value FF if q� is ��F���F�	� otherwise
it is unde�ned�

The allowed constants in domain Q are strings or quotations� which are sequences of
ASCII characters enclosed in quotes ���� e�g�� �This is a quotation���

Special characters are entered in quotations as shown below�

Name Coded as Name Coded as Name Coded as

backspace �b carriage return �r newlines �n

backslash �� form feed �f null character ��

bit pattern �ddd� horizontal tab �t quote ��

For example�
�She said� ��This is a quotation���

���� CONSTANT DOMAINS 	�

denotes the quoting of
She said� �This is a quotation��

����� Domain of Truth Values

T is the �at domain of truth�values� If t� and t� are expressions in the domain T of
truth�values� then the following operations are valid�

� t� AND t� � logical and
� t� OR t� � logical inclusive or
� NOT t� � logical negation
� t� EQ t� � compare equal
� t� NE t� � compare not equal

The constants in domain T are TT and FF� for true and false� respectively�

����� Domain of Unde�ned Values

The �at domain of unde�ned values is represented by the symbol �� Any SCRIPT opera�
tor can be applied to unde�ned value �� the result is always unde�ned� Functions can also
be applied to �� but the result depends on the evaluation of the function�s body� because
SCRIPT implements the lazy mechanism for parameter passing ���
�� Any function can
also return the unde�ned value�

��� Constant Domains

All quotations are in domain Q� However� for technical reasons� any quotation occurring in
places where a domain is expected is considered to represent the domain whose only proper
non�bottom element is the quotation itself� The name of this domain is the quotation itself�
For instance�

DOMAINS

Mode � �int�

The string �int� when occurring in domain expressions denotes a domain containing
only the quotation �int��

��� Variable Declaration

An identi�er denoting a variable� i�e�� a function� a �eld name or other values� consists
of a sequence of one or more letters� possibly containing embedded hyphens ������ and
that always starts with a lower�case letter� Variable identi�ers may also be �decorated�
�su�xed� by sequence of decimal digits and or primes� and optionally ended by a sequence

	
 CHAPTER �� DOMAINS

of ��� and or �
� signs to suggest that they are lists� The following are valid SCRIPT
variables� r�value� r�value�� r�value�� r�value��� r�value�� r�value����

Variable declarations serve the purpose of associating undecorated variables with their
domains� and� if necessary� to provide denotations for new user de�ned domains� A decla�
ration has the following general format�

variable names � domain name � domain expression

whose parts may be omitted in a particular de�nition as long as at least two of them are
present� The delimiters ����������
�� must be always present so that the declared elements
can be easily identi�ed by the compiler� For example� the following variable declarations
illustrate of the possible cases�

DOMAINS

a�b�c � A � N �	 N

d�f�g �� �f��N� a�� b�Q�

B � �N� �	 N

x�y�z � �A�

Variables a� b and c above are in domain A� which is the domain of functions from N

to N� Variables d� f and g are tuples of three components of type N� A� and Q� B is de�ned
to be the domain of functions from tuples �N� to N� And �nally� variables x� y and z are
one component tuples containing a function from N to N�

All variables must have its type known before they are used� However� not all variables
need be explicitly declared� Moreover� decorated variables can not be explicitly declared in
a domain section� Their domains are implicitly the domains of their undecorated versions�
On the other hand� in the context of function or parameter declaration� decorated variable
that represents a formal parameter may be declared�

Unless a variable is explicitly declared� SCRIPT adopted the following convention�

� Any undecorated variable is assumed to be in the domain whose name is that of the
variable with the �rst letter capitalized�

� Any variable decorated with primes� decimal digits is implicitly in the same domain
as its corresponding undecorated version� For example� undeclared variables s� s�

and s� are by default in the domain S�
� if a is in domain A� then the occurrences of a
 and a� are interpreted as member of
A
 and A� respectively�

These conventions are intended to contribute to description compactness and conve�
nience of writing� Since they are very simple and uniform� no loss of readability is expected�

Variables may be declared in a DOMAINS sections or at the binding points� For instance�

DEF f � n � � Q � ���

DEF f n� � Q � ���

declares two functions� both named f� one� in the domain �N� �	 Q� maps tuples whose
single component is in N to Q� and the other is in the domain N �	 Q� The domains of the
function arguments are used to resolve the name overloading�

���� USER DEFINED DOMAINS 	�

��� User De�ned Domains

There exists a variety of domain operators so that the user can create domains expressions
denoting more complex domains to model syntactic or semantic properties of programming
languages�

Domain expressions normally occur in DOMAINS sections as the denotations of new
domains� but they can also be attached to any variable name occurring in binding context
in order to provide their domains locally� A domain expression may be a domain name� a
quotation� which is assumed to denote a domain whose only proper element is that constant�
or a combination of simpler domain expressions and domain operators� Particularly� a
domain expression may denote union of domains� domain of tuples� domain of lists� domain
of nodes or domain of functions�

In the following � assume that d� d�� � � � � dn are arbitrary domain expressions� D�� � � � � Dn

are domain identi�ers or quotations� q is a quotation and a�� � � � � an are variable identi�ers�
The de�nition of a new domain may appear in any order� In fact� a domain expression

may even contains names of domains which are not de�ned in the module scope� This
should not cause any problem or error unless the unde�ned domains are e�ectively used in
an expression in the module�

After processing each block of domain declarations �domain clauses�� all domain de�ni�
tions in the current module should be re�checked to remove any dependency on unde�ned
domains which have been de�ned in the block�

��
�� Union of Domains

The domain expression d� � � � � � dn represents the union of the domains denoted by
expressions d�� d�� � � � � dn�

SCRIPT uses plain union ��� as opposed to separated sum ��� of D� Scott �	��� This
approach relieves the user of having to cope with projections and injections between a sum
and its summands throughout denotational descriptions� So the domain of values need not
to be carried at run�time� Note� however� that to ascertain from which operand of a union
a given value come� it is necessary that the operands are distinguishable by the enquiry
operation IS� which will be de�ned later�

Alternatively� a de�nition of a union can be unfolded into a sequence of simpler de��
nition with the same left hand side� Distinct de�nitions of the same domain introduce a
union de�nition� Both styles lead to equivalente domain de�nitions�

��
�� Domain of Tuples

The domain expression �a� � d�� � � � � an � dn� represents the domain of n�tuples whose i�th
component is in the domain denoted by di� and can be selected by �eld identi�er ai� for
	 �� i �� n� This is the cartesian product of domains� For any component� either its
�eld name or its corresponding �eld domain may be omitted� If the domain of a �eld is not
speci�ed� the default domain is assumed� The domain denoted by the expression above is

	
 CHAPTER �� DOMAINS

�d�

�
� � � � � d�

n�� where each d�

i� for 	 � i � n� is either the domain di explicitly speci�ed or
assumed by default from the name of the �eld ai�

Hierarchy of Domains

Domains of tuples are extensible in the sense that a tuple domain can be de�ned as an
extension of another domain of tuples� No domains other than tuple domains are extensible�
and thus classi�ed as non�extensible�

The expression d� EXT d� represents the domain of tuples extended from the domain of
tuples d�� i�e�� it denotes a domain of tuples whose elements are the concatenation of the
elements of tuples in d� followed by the elements of tuples in d�� The heading components
of the extended tuple have the same �eld names as those of its base tuple� and �eld names
cannot be repeated�

Indeed� an operation d� EXT d�� where d� and d� are domains of tuples� de�nes the
relation is�a between d� and d�� i�e�� operator EXT creates hierarchies of domains of tuples�
Alternatively� it is possible to create a domain of extended tuples directly� that is� a given
domain of members of some hierarchy� just by listing all their domain components� In the
example below� domains A�elem� B�elem and C�elem are valid extensions of Stk�elem�

Given the domain declaration A � B EXT c� where B is a domain name and c denotes
a domain of tuples� and A is not a union domain� then A is de�ned to be a direct extension

of domain B� and B is a direct base of A� Thus� a domain A is de�ned to be an extension of
a domain B if

	� A and B are the same domain identi�er or
�� A is a direct extension of an extension of B�
�� The domains of the �elds of B are the equivalent to domains of the heading �elds of

A� in the same order� The names of the �elds are irrelevant�

Conversely� a domain B is a base of a domain A if A is an extension of B�
There are two operations de�ned on tuples� �eld selection and tuple construction�

Field Selection

Selection of �elds of tuples is expressed via the dot notation t�f� where t is a tuple expres�
sion and f is one of its �eld names�

Tuple Construction

Tuples can be constructed by explicitly enumerating its components by means of the nota�
tion �e�� � � � � en� where expressions ei� for 	 � i � n� de�ne the values of the components�
Note that pairs of parentheses are always an operator to build tuples� and so they must be
used consciously�

A new tuple can also be created from another by rede�ning some of its �elds� This kind
of tuple is called updating tuple and is of the form t�f� � v�� � � � � fn � vn �� where t and

���� USER DEFINED DOMAINS 	�

vi are expressions� fi �eld names� for 	 � i � n� This operation creates a new tuple which
has the same components of tuple resulting from the evaluation of expression t� except
that the components identi�ed by �elds fi contains the values of vi�

It is also possible to create tuples by means of the binary operator CAT� which concate�
nates two tuples to construct bigger one�

DOMAINS

Stk � Stk�elem�

Stk�elem � �a � N�

A�elem � Stk�elem EXT �b � N�

B�elem � A�elem EXT �c � N� d � N�

C�elem � �N� N� N� N�

DEFINITIONS

DEF stk� � �	

DEF stk�elem� ����

DEF push�stk��stk�elem� � Stk � stk�elem PRE stk

DEF mark�stk�elem��n� � Stk�elem � stk�elem�a�n�

DEF teste � Stk �

LET a�elem� � stk�elem� CAT ���

LET a�elem� � mark�a�elem�������

LET b�elem� � �������������

LET c�elem� � �������������

LET stk� � push�stk���a�elem��

LET stk� � push�stk���b�elem��

LET stk� � push�stk���c�elem��

IN stk�

Tuple a�elem� has all the elements of stk�elem� followed to a element with value ��
Domain Stk is the domain of �nite lists of components whose base type is Stk�elem� Note
that the formal parameter of functions push and mark can correspond to any extension of
Stk�elem� which makes these functions truly polymorphic �
�� Note that the expression
stk�elem�a�n� denotes a value constructed from that currently bound to stk�elem�

��
�� Domain of Lists

Expressions of the form d
 denotes domains of �nite non�empty lists whose components
are in d� d� is the domain of possibly empty �nite list whose components are in d� An
instance of a list is denoted as � a�� a�� � � � � an �� where each ai � d� for 	 � i � n�

�� CHAPTER �� DOMAINS

Assume that e� e�� � � � � en are arbitrary SCRIPT expressions� and x a variable name�
Lists can be built up and manipulated by means of the following operations� creation�
indexing� length� concatenation and augmentation�

List Creation

The operations to create new lists are� list enumeration� list range� list updating and list
comprehension�

List enumeration is an operation to create lists by enumerating their components by
means of the notation � e�� � � � � en	� where all expressions ei� for 	 � i � n are in the same
domain� The domain of the list is the domain of the elements su�x by ���� The empty list
is denoted as �	� The exacty domain of the empty list depends on the context it occurs�

List range is an operation to create lists of integer values or lists of character values
via interval speci�cation of the form e���e�� where e� and e� are integer expressions� The
interval speci�cation denotes a list containing the sequence of all values in a given range�
For instance� ������ represents the list ���������	�

List comprehension is another notation to built lists� It employs a syntax adapted from
conventional mathematics for describing sets� Its syntax is

�e � p� �� s� �� f� � � � � � pn �� sn ��fn	

where e is a valid expression and� for 	 � i � n� pi is a pattern�expression �see section
����� si a list expression called source list� and fi are optional logical expressions called
�lters� The identi�ers occurring in pi are successively bound to elements drawn from the
corresponding source list and may be used in e� sk and fk� for k � i�

Terms of the form pi �� si are called generators� A list comprehension may contain an
arbitrary number of generators and �lters�

The components of the list comprehension are computed as follows�

	� Component values are drawn in the order they occur on the source list of each
generator�

�� Values produced by each generator are matched against the corresponding pattern�
If all values match� identi�ers encountered in the patterns are properly bound to
parts of the drawn values �see section �����

�� Then all �lters are evaluated in the scope of the identi�ers bound in the above step�
�� If all �lters succeed� i�e�� they all evaluate to TT� the component e is computed and

inserted in the resulting list�

List updating is an operation to create new lists from another by rede�ning some of its
elements� An updating list of the form

e�i� � v�� � � � � in � vn�

where e is a list expression� vj are expressions� ij are integer expressions whose values
satisfy the condition ij � SIZE e� for 	 � j � n� denotes a new list� which has the same
elements of list e� but with the values at the positions designated by ij containing the
values of vj� If any ij � SIZE e� the resulting list is the unde�ned value�

���� USER DEFINED DOMAINS �	

List Length

The operation SIZE e� gives the number of components of list e!�

List Indexing

The elements of a list can be retrieved through indexing operation of the form e� EL k�
where k is an integer expression� This operation produces the value of the k�th component
of list e�� or has the unde�ned value � if the value denoted by k is greater than SIZE e�
or less than 	�

List Concatenation

Binary concatenation of lists is of the form e�� CAT e��� where e� and e� are lists in the
same domain� The result of this operation is a list whose components are those of e��
followed by those of e���

Unary concatenation of lists is of the form CONC e�� where e�� is a list of lists� The
result is a list formed by concatenating �CAT� the lists that are the components of e � �� If
e�� is in domain A��� the resulting list is in domain A��

List Augmentation

The operation e PRE e�� where the value of e is in the same domain as the elements of e��
produces a new list whose head ��rst component� is e and whose remaining components
�its tail� are those of e��

Similarly� e� AUG e is the list whose components are those of e� appended with the
value denoted by e�

List Decomposition

The unary operations HEAD e� and TAIL e� return the �rst and the remaining elements of
a list e�� respectively�

��
�� Domain of Continuous Function

The domain expression d� �� d� denotes the domain of continuous functions �	�� 	
�
from d� to d�� The operator ���� has precedence over ��� and associates to the right� for
instance� d� �� d� �� d� is equivalent to d� �� A� where is A is de�ned as d� �� d��

��
�	 Domain of Nodes

A domain expression of the form �D� � � �Dn� represents the domain of tree nodes� which
consist of a label and a tuple of emanating branches�

The operator �� � � � �� requires Di� for 	 � i � n� to be either quotation or domain
identi�er possibly followed by a sequence of ��s or
�s�

�� CHAPTER �� DOMAINS

The label serves to distinguish nodes and is implicitly de�ned by the quotation�
QUOTE �q�� ���� qn	�

where each qi� for 	 � i � n� is the name of the domains occurring in the same order in
�D��� � �� Dn�� Quotations in domain expressions denotes constant domains�

The tuple of branches emanating from each node is formed with values in the non�
quotation domains speci�ed in �D� � � �Dn�� A tree node can be viewed as a labeled

tuple with no �eld names�
Members of the domain �D� � � �Dn� are represented as �e� � � � en�� where e�� � � � � en are

expressions in the domains D�� � � � � Dn� respectively�

��� Domain Equivalence

In SCRIPT � types are synonym to domains� The type discipline is such that everything
concerned with types is conducted at compile time so that once the type checker has
accepted a SCRIPT de�nition� objects do not have to carry their types at run time� All
new domains must always be explicitly declared in a DOMAINS section of some module� The
type discipline of SCRIPT is based on structural equivalence���� which is de�ned as
follows�

Two domains A and B are equivalent if and only if at least one of the following applies�

	� A and B are identical domain names�

�� A and B are distinct domain names� each being the recursive reference to a re�e�
xive domain de�nition occurring in exactly the same corresponding position in their
domain structures�

�� A and B are the same constant domain of a single quotation�

�� A and B are the domain � of unde�ned values�

�� A and B are distinct domain names whose visible de�nitions are� respectively� the
longest chains A � A� � A� � ��� � An� and B � B� � B� � ��� � Bm� where Ai� for
	 � i � n� Bj� for 	 � j � m� are domain names� and An and Bm are the �rst and
only repeated names in their respective chains�

� B is a domain expression and A is a domain name� whose visible de�nition is such
that A � d or A � A� � A� � ��� � An � d� where Ai� for 	 � i � n� are domain
names� and domain expression d is equivalent to domain expression B�

�� A is a domain expression and B is a domain name whose visible de�nition is such
that B � d or B � B� � B� � ��� � Bn � d� where Bi� for 	 � i � n� are domain
names� and domain expression A is equivalent to domain expression d�

� A and B are domains of lists� A is of the form a�� B is of the form b�� and a is
equivalent to b�

���� DOMAIN COMPATIBILITY ��

�� A and B are domains of lists� A is of the form a
� B is of the form b
� and a is
equivalent to b�

	�� A and B are both the polymorphic domain of empty lists�

		� A and B are domains of tuples� A is of the form �a�� � � � � an�� B is of the form
�b�� � � � � bn�� and for 	 � i � n� ai is equivalent to bi� Field names are not relevant
to determine domain equivalence� Bound functions are rightly considered tuples
components�

	�� A and B are unions of domains� A is of the form a� � a� � � � � �an� B is of the form
b� � b� � � � � �bn� and for 	 � i � n� ai is equivalent to bi�

	�� A and B are domains of nodes whose labels are identical�

	�� A and B are domains of continuous functions� A is of the form a� �	 a�� B is of the
form b� �	 b�� a� is equivalent to b�� and a� is equivalent to b��

��	 Domain Compatibility

The type checking discipline requires that variables can only occur in contexts where their
domains are compatible to the domains expected for those contexts�

The notion of domain compatibility in SCRIPT merges the concepts of structural
equivalence de�ned above and type inclusion �
� found in many imperative programming
languages�

A domain A is compatible to a domain B if and only one of the following applies�

	� A and B are identical domain names�

�� A and B are distinct domain names� each being the recursive reference to a re�e�
xive domain de�nition occurring in exactly the same corresponding position in their
domain structure�

�� B is a domain expression� A is a domain name whose visible de�nition is such that
A � d or A � A� � A� � ��� � An � d� where Ai� for 	 � i � n� are domain names�
and domain expression d is compatible to domain expression B�

�� A and B are distinct domain names whose visible de�nitions are� respectively� the
longest chains A � A� � A� � ��� � An� and B � B� � B� � ��� � Bm� where Ai� for
	 � i � n� Bj� for 	 � j � m� are domain names� An and Bm are the �rst and only
repeated names in their respecive chains�

�� A is a domain expression and B is a domain name whose visible de�nition is such
that B � d or B � B� � B� � ��� � Bn � d� where Bi� for 	 � i � n� are domain
names� and domain expression A is compatible to domain expression d�

�� CHAPTER �� DOMAINS

� A and B are domains of lists� A is of the form a
� B is of the form b� or b
 and a is
compatible to b�

�� A and B are domains of lists� A is of the form a�� B is of the form b� and a is
compatible to b�

� A is the polymorphic domain of empty list and B is a domain of lists of any kind of
elements�

�� A and B are domains of tuples� A has been de�ned as an extension of some another
domain of tuple C� which is of the form �c�� � � � � cn�� where ci� for 	 � i � n� denotes
the domains of the C�s components which include bound functions� B is of the form
�b�� � � � � bn�� where bi� for 	 � i � n� is the domain of the B�s components� and each
ci is compatible to its corresponding bi� for � � i � n� The names of the tuple �elds
are not considered for the purpose of determining compatibility of domains�

	�� A is a tuple domain of the form �A��� and A� is compatible to B�

		� A is domain expression� B is a union of domains of the form b� � � � � � bn� and A is
compatible to some bi� for 	 � i � n�

	�� A and B are unions of domains� A is of the form a� � a� � � � � �an� B is of the form
b� � b� � � � � �bm� n � m� and aj� for 	 � j � m� is compatible to bi� for 	 � i � n�

	�� A and B are domains of nodes� whose labels are identical�

	�� A and B are domains of continuous functions� A is of the form a� �	 a�� B is of the
form b� �	 b�� and b� is compatible to a�� a� is compatible to b��

	�� A is a constant domain of one quotation and B is the built�in domain Q�

	
� A is the domain � of unde�ned values�

From the above de�nitions of domains equivalence and compatibility follows that if
domains A and B are equivalent then A is compatible to B� and vice�versa�

Chapter �

Expressions

��� Introduction

SCRIPT expressions may be literal constants� variables� integer expressions� quotation
expressions� logical expressions� list expressions� tuple expressions� node expressions� pat�
tern expressions� inquiry expressions� conditional expressions� case�expressions� lam�ab�
stractions� pattern�abstractions� let�expressions� functional applications or any well�formed
combination of simpler expressions and operators�

Literal constants are members of the standard domains N� Q� T and ��
Variables are used to denote members of domains� Those which denote lists are usually�

but not necessarily� su�xed by sequences of ��s or
�s� For instance� x� may denote a �nite
tuple of arbitrary size� whereas x
 represents a non�empty �nite tuple� Further information
about lists represented by either x� or x
 are provided by the associated domain declaration
of x�

Integer expressions are built upon the operators NUMBER� PLUS� MINUS� MULT� DIV�

REM� NEG and SIZE� Quotation expressions involve the operators CAT� CONC and QUOTE�
Logical expressions use the operators TRUTH� LT� LE� GT� GE� EQ� NE� NOT� AND and
OR� Tuple expressions are expressions whose results are tuples�

Every expression enclosed in parentheses is a tuple� However� parentheses may still
be used to group terms of a formula� because all operators or functions that require a
parameter of type� say A� accepts parameters of type �A� � which is automatically coerced
to A� List expressions are expressions whose results are lists� The list operators are� HEAD�
TAIL� CAT� PRE� SIZE� EL and CONC�

A node expression is of the form � e� � � � en �� where ei� for 	 � i � n� are expression of
any type�

��� Inquiry Expressions

Expressions of the form e� EQ e� are used to test whether or not two expressions denote
the same value� This expression evaluates TT if e� and e� have the same non�functional

��

�
 CHAPTER �� EXPRESSIONS

value� FF if e� and e� are functional values or denote distinct values� and bottom if either
e� or e�� or both are bottom� The negation of e� EQ e� is written as e� NE e��

The operators EQ and NE only allow to test values denoted by expressions� However�
in many cases it is desirable to investigate the structure of a value rather than the value
itself� For example� sometimes it is important to ascertain whether the value denoted by
an expression is a tuple or a node� To that end� SCRIPT makes available the inquiry
operator IS and the associated pattern capabilities�	���

The operation e IS p performs a pattern�matching operation in order to check whether
expression e has the particular �form� or structure described by pattern p� In essence� if
the value denoted by e can be structured according to the rules dictated by p� then the
result of the expression above is TT� Otherwise� it is FF� It also is FF if e is unde�ned� The
result is bottom� if e denotes bottom�

��� Pattern Expressions

A pattern�expression can be the unde�ned value � �which matches any type of value�� an
identi�er �which is generally treated as � in the operation IS�� a literal constant �which
matches itself� or a combination of simpler pattern�expressions and pattern construction
operators� Notice that because pattern � matches anything to test for the unde�ned value
itself� the operator EQ must be used instead of IS�

If p� p�� � � � � pn are pattern�expressions� then new patterns can be built up as follows�

	� �p�� � � � � pn� � to match tuples with n components�
�� p� � to match lists with zero or more components�
�� p
 � to match lists at least one component�
�� � 	 � to match empty lists�
�� p� PRE p�� � to match lists with at least one component�

� t� CAT t� � to match tuples that can be split into two tuples whose domains are those

of t� and t�� respectively�
�� �p� � � � pn� � to match nodes� Pattern p�� � � � � pn are required to be identi�ers or literal

constants from which the node label can be determined� A matching occurs if the
value being tested is a node with the same label�

� NUMBER p
 � to match numbers�
�� TRUTH p
 � to match truth�values�
	�� QUOTE p� � to match quotations�

��� Conditional Expressions

Conditional expressions are of the form t�	 e��e�� where t is an expression which evaluates
to TT� FF� � or bottom� and e� and e� are arbitrary expressions� The expression above is
equivalent to e� if t denotes TT� equivalent to e� if t stands for FF� equivalent to � if t
evaluates to �� and equivalent to bottom if t represents bottom�

���� LAM�ABSTRACTIONS ��

��� LAM
Abstractions

Anonymous non�recursive functions are speci�ed by the operation LAM x�e� Usually� x
is an identi�er or a tuple of identi�ers� and expression e is an arbitrary expression� The
operator LAM binds x in the scope of the expression e� and denotes the function whose type
is A �	 B� if x�A and e�B�

Anonymous recursive functions are de�ned via the �xed point operation Y�LAM x � e��
where Y is the Paradoxical Combinator ��� de�ned as

Y � LAM �LAM b� a�b�b����LAM b� a�b�b����
Expressions de�ning functions as above are called �LAM�abstractions��

��� Pattern Abstractions

Pattern�abstraction is a generalization of the notation for LAM�abstractions� The basic
idea is to allow patterns to occur in binding contexts� such as in LAM p�e� where p is a
pattern�expression�

The pattern�abstraction�s binding mechanism provides a powerful mean of extracting
components of a value� If� for example� e is a SCRIPT �expression such that e IS �x��x�	

is equivalent to TT� then x� and x� will be bound to the �rst and second components of tuple
e� respectively� in the scope of expression e� in �LAM �x��x�	 � e���e�� If e IS �x��x�	

denotes FF� then the value of this function application is �� Notice that occurrences of x�
and x� in the inquiry operation IS above are treated as �� but their occurrences in the
pattern�abstraction are not� In fact� they get bound to the corresponding components of
e�

Another illustration is the following pattern�abstraction application�
�LAM �x� x�� � e� �� e� �

which binds x� and x� to the immediate subtrees of e� in the scope of e�� if e� IS �x� x��

is equivalent to TT�
In summary� the application of the pattern�abstraction LAM p�e� to argument a� where

p is a pattern� e and a are expressions� produces the following result�

	� if the evaluation of e e�ectively needs the value of at least one of the identi�ers
occurring in p then�

� if a IS p� the identi�ers in p are bound to corresponding values in the structure
of a� and then the body e is evaluated�

� if a IS p produces FF� the result of the function application is ��

�� if no identi�ers in p is needed to evaluate e� the patterm�matching is not performed�

If p� p�� � � � � pn are pattern�expressions� x� x� and x
 are identi�ers� and the pattern
matching operation a IS p produces TT� then the bindings produced by the application of
the pattern�abstraction �LAM p�e��a� are recursively de�ned as follows�

	� if p is a literal constant or the empty list symbol ��	�� no bindings result�

�
 CHAPTER �� EXPRESSIONS

�� if p is identi�er possibly decorated by ��s and
�s� then that identi�er is bound to a�

�� if p is of the form �p�� � � � � pn�� then the identi�ers in pi� for 	 � i � n� are properly
bound to the corresponding components of a�

�� if p is of the form p� PRE p�� then the identi�ers in p� are properly bound to the �rst
element of the list a� and the identi�ers in p� to the tail of a�

�� if p is of the form �p� � � � pn�� then the identi�ers in pi� for 	 � i � n� are bound to
the corresponding parts of node a�

� if p is of the form NUMBER x
� then x
 is bound to a list of quotations containing the
decimal digits of number a�

�� if p is of the form TRUTH x
� then x
 is bound to the list of quotations either
��T���T�	 or ��F���F�	 depending on the value of a�

� if p is of the form QUOTE x�� then x� is bound to the list of quotations containing
the characters of the quotation a�

A �recursive� pattern�abstraction is de�ned via Y�LAM p�e�� with the restriction that
the value e IS p must be always �manifestly� TT �	���

In conjunction with LAM and IS� SCRIPT also provides the monadic operator VAL
makes the enclosing LAM or IS strict� i�e�� if the value of the pattern in front of a VAL is
bottom then the enclosing LAM or IS also stands for bottom�

��� Case
Expressions

The CASE construct provides a mechanism to investigate the structure or �form� of a value�
not the value� denoted by an expression according to a number of patterns and to produce
as a result the expression which is associated with the �rst pattern that corresponds to the
given value structure� The case�expression is of the form�

CASE e

�p� �	 e�
���

�pn �	 en
END

where e� e�� � � � � en are ordinary expressions and p�� � � � � pn are patterns� The entire cons�
truct is equivalent to the following conditional expression�

e IS p� �	 �LAM p��e���e��

���
e IS pn �	 �LAM pn�en��e�� �

In essence� the structure of the value denoted by e is inquired in accordance with
patterns p�� � � � � pn� Then the �rst pattern� say pi� that corresponds to the structure of e is

���� LET�EXPRESSIONS ��

used to decompose e via a pattern�abstraction whose body is the corresponding expression
ei� and whose formal parameter is pattern pi�

Note that the evaluation of e� the pattern�matchings and corresponding bindings are
carried out before the evaluation of any of the case clauses� The case pattern�matching is
too strict but it gives a consistent rules for how case expressions are evaluated�

��	 Let
Expressions

Large expressions can be broken into small pieces by means of let�expressions� which as�
sociate names with expressions and allow the use of these names in scope of a given
expression�

Expressions of the form LET p � e� IN e� where p is an identi�er� is the general form for
de�ning non�functional values� but it can also de�ne de�sugared functions� In this case�
the de�nition p � e� may be deemed as a mechanism for giving a name to an expression e

so that p can be used as an abbreviation for e� in the scope of the de�nition� When p is a
more complicated pattern� the de�nition p � e� provides a mechanism to implicitly check
the structure of e�� and to decompose its value according to the structure depicted by p�
For instance� if x� IS �� PRE ��� is TT then the de�nition x� PRE x�� � x� associates
the name x� with the head of list x�� and x�� with the tail of x� throughout the de�nition�s
scope�

The general form of a let�expression is�
LET a� � e� LET a� � e� � � � LET ai � ei � � � LET an � en IN e

which de�nes ai� for 	 � i � n� whose scope are the expressions ei and e� Each ai mentioned
above may occur in the form of pattern binding or function de�nition�

In case of pattern binding� each ai must be a pattern expression� The value of expression
e� which occurs in the corresponding IN�clause� is evaluated in the scope of the bindings
of the identi�ers in each pattern ai to the corresponding structures of ei�

Pattern bindings are used to decompose values into their components according to their
structure� The expression

LET p� � e� LET p� � e� � � � LET pi � ei � � � LET pn � en IN e

is equivalent to the following pattern�abstraction�

� Non�recursive let�
�LAM �p�� � � �� pn � � e �� e�� � � � � en ��

� recursive let�
�LAM �p�� � � �� pn � � e �� Y�LAM�p�� � � �� pn � � � e�� � � � � en ����

The above equivalence relation requires that pattern�matching in let�expressions to be
lazy� This means that the patterm conformance checking and the correspondig bindings of
the identi�ers in patterns pi� for 	 � i � n� are performed only if needed in the evaluation
of expression e�

In case of function de�nition� each ai is a function header of the form
f�p��d�� � � � �pn� dn� � d

�� CHAPTER �� EXPRESSIONS

where f is the function head �usually an identi�er�� p�� � � � � pn are pattern�expressions�
d� d�� � � � � dn are optional domain expressions� Function de�nitions are used to introduce
a named pattern�abstraction whose formal parameters are patterns to be matched and
bound to the corresponding parts of the actual parameters� and whose bodies are speci�ed
after the corresponding � sign� In other words� the expression

LET f�p��d�� � � � �pn� dn� � d � e

is tantamount to
LET f � LAM p� � LAM p� � � � � LAM pn � e�

The function head f may be a function identi�er� a term of the form D�g or g�� where
D is a domain name and g if a function identi�er� which is said to be bound to D� The
symbol � has to do with polymorphism and dynamic binding of functions� It indicates a
reference to the previous rede�nition of a domain bound function�

Non�curried functions are speci�ed as in
LET f�p��d�� � � � �pn� dn� � d � e�

Notice that because tuples of patterns are perfectly good patterns� one may write
LET �e�

�
� � � � �e�

n	 � �e�� � � � �en	 IN e

in place of a list of de�nitions of the form
LET e�

�
� e� � � � LET e�

n � en IN e�
A sequence of let�clauses of the form

LET f� � e� LET f� � e� � � � LET fi � ei � � � LET fn � en IN e

where each fi� for 	 � i � n is a function designator� may also be used to introduce
collections of mutually recursive de�nitions� The syntax makes no distinction between
recursive and non�recursive functions�

A let�expression of the above form is equivalent to
�LAM �f��� � ��fn��e��e��� � ��en�

if none of the fi� for 	 � i � n� is recursive� otherwise it is equivalent to�
�LAM �f��� � ��fn��e� �Y�LAM�f��� � ��fn���e�� � � ��en����

In a non�recursive de�nition
LET x � �e in e�

the domain of expression e� must be compatible to the domain of x� Whereas� in a recursive
de�nition

LET x � �e in e�
the domain of expression e� must be equivalent to the domain of x�

In general� actual parameters must be compatible to their corresponding formal para�
meters�

��� Updating Functions

It is quite common in denotational semantic descriptions to de�ne certain functions in a
stepwise fashion� For instance� Initially� a function is de�ned to be unde�ned ����� or
another constant for all values of its argument� Then� the elements of this function are
gradually �updated� for certain values of the argument as the de�nition progresses� Note

���	� FUNCTION APPLICATION �	

that the term �updating function� is just an abuse of notation� A new value is always
produced as expected in the functional paradigm� Consider� for example� the domain S

of stores commonly used in standard denotational semantic descriptions ���� Stores are
frequently modelled as�

S � Loc �	 Sv�
where Loc is the domain of locations and Sv that of storable values� Initially� the store is
assumed empty and a function s�S is de�ned as follows to re�ect that fact�

s loc � �unused��
where �unused� is a special value in the domain Sv� Later� when the value denoted by a
given expression e is to be associated with a given location� say a�Loc� in the mapping s�
function s is �updated� to s�a�e� such that for any x� Loc�

sfa � eg�x� �

�
e if x � a

s�x� otherwise
In SCRIPT � an updating function consist of an expression� which must possess func�

tional type� followed by a sequence of one or more �updatings� as in�
ffx� � e�� � � �� xn � engfgg

where e�� � � � �en are arbitrary expressions in the domain A� x�� � � �� xn are expressions de�
noting members of B� and f� g have type A �	 B� The meaning of the �updating� function
above is given by�

LAM x� g�x� NE � �	 g�x�� x EQ x� �	 e�� � � �� x EQ xn �	 en�f�x�

���� Function Application

������ Sequential Expressions

Sequential expressions are combinations of SCRIPT expressions via the so�called sequen�
tial operators� which provide functional compositions in the way they are commonly used
in denotational semantic descriptions�

The expression f g e� where g and f are expressions denoting functions and e is an
arbitrary expression� is construed as �f�g���e��

It is often the case that the association of operators in the opposite way would be
much more convenient� In particular� expressions of the form f�g�e�� are so common in
denotational semantic descriptions that it is convenient to write them as f
g
e in order
to avoid excess of parentheses� The scope of the operator
 extends until the end of the
expression�

Traditional functional compositions are written as f � g so that f � g �e� is construed
as f�g�e���

������ Parameter Passing

SCRIPT is a pure� non�strict �or lazy� functional language so the evaluation of function
arguments is delayed until they are needed� This means that the evaluation of the function�s

�� CHAPTER �� EXPRESSIONS

body is initiated before the evaluation of the arguments� Note that in pattern�abstraction�
the pattern�matching mechanism and the associated binding process are also delayed until
the variables in the pattern are needed in the abstraction�s body�

The domain of each actual parameter must be compatible to the domain of the corres�
ponding formal parameter� Even in the case of tuple parameters� the binding mechanism
always preserves the value of the actual parameter� So� if a tuple value is bound to a for�
mal parameter whose domain is a base of that of the actual parameter� its whole value is
delivered to the the function� although only its base part is accesible� Any further binding
to the value passed still preserves the value originally passed� In the example below�

DOMAINS

A � �x � N� y � N�

B � A EXT �z � N�

DEFINITIONS

DEF f�a� � A � a�x���

DEF g�b� � B � ��� LET a� � f�b� ���

the de�nition a� � f�b� binds the value of the ��element tuple b to formal parameter
a� which is a ��element tuple� Function f returns a new ��element tuple constructed by
�updating� value bound to a� Then� the de�ntion a� � f�b� binds a� to a ��element tuple
whose x component has value ��

������ Domain Bound Functions

Functions can be associated with �or bound to� a given domain of tuples� For example�
the function push below is de�ned to be bound to a domain named Stk�

DEF Stk�push�elem� � Stk �

LET stk� � elem PRE THIS IN stk�

The application of push must always be associated with a variable �or object� in the
domain Stk or in any extension of it� In the body of push� keyword THIS denotes the value
of the currently associated object� The domain of the variable THIS is the domain of the
object associated to each call�

A function that is bound to a domain of tuples� say A� may be rede�ned and rebound
to any extension of A� In this case� the domains of the function in all of its rede�nitions
must be equivalent�

Function rede�nitions form a hierarchical chain in accordance with the extension rela�
tion of the associated domains� and the valid rede�nition is the lowest one in the hierarchy�

Within the body of a domain bound function f� the previous rede�nition of the function
in the hierarchy� that is� the de�nition bound by its direct base domain� can be referenced
via the notation f�� In the example below� the function call b�f����� computes the value
of body of B�f� which uses f� to activate function A�f�

���	� FUNCTION APPLICATION ��

DOMAINS

B � A EXT �N�N�

DEFINITIONS

DEF A�f�x� � ���

DEF B�f�x� � ��� f��x� ���

DEF ��� b�f�x� ���

For other domains than that of tuples are non�extensible� their bound functions can
never be rede�ned� The same holds for non�extended domains�

Except for super call notation f�� all domain bound functions references must be ex�
plicitly quali�ed by an object� including THIS object�

As a especial case� simple variables can be interpreted as zero�argument functions� and
so can also be bound to domains�

������ Overloading of Functions

Function may have the identical names in the same scope� that is� names of functions
can be overloaded� The declared domains of the arguments should be enough to resolve
ambiguities�

The overloading resolution procedure that identi�es the function being called in a func�
tional application of the form f a� � � � an� where ai is in domain Ai� follows the steps�

	� from the function designator f� determine the set C of candidate functions� If f
denotes a call to domain bound functions� only the functions bound to the indicated
domain are considered� otherwise all functions with the same name in the scope
should be entered in the candidate set�

�� for each actual parameter ai� for 	 � i � n� eliminate from C functions which have
a corresponding formal parameter pi in domain Pi such that Ai is not compatible to
Pi� Note that only the �rst n formal parameters of f are considered in this process�

�� if cardinality of C is greater than 	� perform the following steps�

�a� assign to each function in C the number of nominal�matchings occuring between
the domains of the arguments and those of the corresponding parameters� A
nominal�matching occurs when both domains are identical domain names�

�b� keep in C only the functions to which the greatest nominal�matching number
has been assigned�

�� if C is empty� the called function has not been declared in the calling scope� If
cardinality of C is greater than 	� the function calling is ambigous�

For example� considered the following function de�nitions�

DOMAINS

A � N

�� CHAPTER �� EXPRESSIONS

B � Q

C � N

D � Q

DEFINITIONS

DEF f a b � a �� �

DEF f n b � n �� �

DEF f q n � q �� �

Then�

� f a� refers to function 	�
� f n� refers to function ��
� f q� refers to function ��
� f c� is ambiguous� functions 	 and � are canditates�
� f d� refers to ��

Chapter �

The Module Structure

��� Introduction

A complete formal de�nition in SCRIPT consists of a main module along with zero
or more �secondary� external modules which may either be compiled together with the
main module or extracted from a library of already compiled modules� The main module
is the one which contains the main function de�ned to model the meaning of an entire
denotational semantic de�nition�

The basic function of a module is to allow related entities� such as domains and func�
tions� to be grouped and then used by other modules� It provides a mechanism whereby
details of certain domain and function de�nitions can be hidden from the user of the
module� while making available a selected group of domains and functions for outside use�

There are three kinds of modules namely PROJECT� SYNTAX and MODULE�

��� PROJECT Module

The PROJECT module serve to de�ne parameters and the environment in which the formal
de�nition is to be evaluated�

This module may import only one function� which is undertood as the main function
of the formal de�nition� In the example below� the main function is elab�prog� which is
imported from module Program� de�ned to be the main function� The necessary domains
can be imported freely�

For the sake of clarity� the signature of the main function may be rede�ned in the
DOMAINS section of the PROJECT module provided that the new signature is equivalent to
the old one� In the example below� Prog�tree and Input�data have been introduced only
to emphasize to nature of the function arguments�

The INFILES and OUTFILES sections de�nes the association between �les and the do�
mains of argumentos of the the main function� This association is necessary to establish
where the input arguments of the main function can be found� and where its result must

��

�
 CHAPTER �� THE MODULE STRUCTURE

be recorded� The identi�cation of each �le is written within quotes ���� and it must obey
the rules of the local operating system� where is SCRIPT language is implemented�

The COMPONENTS section de�nes the �les that contain the various modules that comprise
the formal de�nition�

PROJECT MiniL

IMPORTS

Program�elab�prog� Prog� A�

DOMAINS

elab�prog �� Prog�tree �	 Input�data �	 A

Prog�tree � �Prog�

Input�data � �N�

INFILES

Prog�tree � �name of the input file for �prog��

Input�data � �name for the input file for �n��

OUTFILE

A � �name of the file in which the result of elab�prog�

COMPONENTS

�Minil�lds�� �Program�lds�� �Env�lds�� �Command�lds�� �Expression�lds�

END Minil

��� SYNTAX Module

The SYNTAX module normally contains three sections�

� SYNTAX� de�nes the concrete and abstract syntaxes�
� LEXIS� de�nes the structure of lexical symbols�
� DOMAINS� speci�es domains of non�terminal symbols�

The following example de�nes the grammar of a simple language�

SYNTAX MiniL

prog ��� �begin� dcls stmts �end�

dcls ��� dcl

dcl ��� �int� id
���� �
� � �int id
�

stmts ��� stmt�

stmt ��� id ���� exp

� �if� exp �then� stmts �fi�

���� MODULE MODULE ��

� �while� exp �do� stmts �end�

LEXIS

UNIT ��� id � ��ID�� id	

� numeral � ��NM�� numeral	

id ��� letter
 � QUOTE letter

numeral ��� digit
 � NUMBER digit

letter ��� �a� �� �z�

digit ��� ��� �� ���

DOMAINS

dcls� dcl � Dcl

stmt� stmts � Stmt

END MiniL

��� MODULE Module

Modules of type MODULE serve to encapsulate the de�nition of domains and functions and
to establish the interface of comunication between modules� Each module is composed of
three type of sections� namely�

� EXPORTS section� de�nes the entities exported by the module and their degree of
encapsulation�

� IMPORTS section� lists the names of the entities imported to the modules along
with their degree of visibility�

� DOMAINS section� declares domains� variables and functions�

� DEFINITIONS section� de�nes functions and other values�

A module is therefore a mechanism for explicit control of visibility� Every entity�

declared in a module is private to the module� unless it is explicitly exported� The export
list of a module de�nes its interface window with other modules in the semantic de�nition�
Only domains and variables that are e�ectively de�ned in the module or imported to it
from other modules can be exported� Conversely� the only identi�ers visible in a module
are those de�ned inside it or diretly imported to it�

Both exportation and importation of entities between modules can be closed or open�
which are attibutes to specify the visibility degree of the exported information�

A closed exportation imposes on the exported entities the highest degree of information
hiding with respect to their internal structures� A closed exportation may only correspond
to closed importation� In this situation� when a domain identi�er is imported� only its
domain name and its extensibility property become available in the importing module�

�An entity is a variable� a domain or a function�

�
 CHAPTER �� THE MODULE STRUCTURE

Thus the de�nition details of all closed exported domains remain encapsulated and hidden
in the corresponding exporting module� but exported domains of tuple may be extended
freely�

Thus� no further access� from the importing modules� is allowed to the domain de�ni�
tion�

When a variable is imported� only its name and domains signature� de�ned at the
de�nition of the variable� are revealed at the importation point� The domain signature�
or simply signature� of a variable is the domain expression directly associated with the
variable� without unfolding the denotation of the domain occurring in this expression�
All domains names mentioned in the signature of a variable must also have be explicitly
imported if any reference to them is desired�

For example� consider the following de�nitions of modules M	 and M��

MODULE M�

EXPORTS

A� B� C� a� d� f� g

DOMAINS

A � B �	 C

B � �Q�N	

C � N

D � B �	 C

d �� �A�C	

F � �Q�N	

DEFINITIONS

DEF a � LAM b� ��� �� signature of a is A

DEF d � ��� �� signature of d is �A�C	

DEF f�b� � C � ��� �� signature of f is B �	 C

DEF g�b�F� � C � ��� �� signature of g is F �	 C

END M�

MODULE M�

IMPORTS

M��B� C� a� d� f� g�

����

END M�

In module M� the domain names B� C and identi�ers a� d� f and g are available and
no knowledge regarding the de�nitions of B and C is allowed� The visible signatures of the
imported variables are�

a � A

���� EXAMPLE ��

d � �A�C	

f � B �	 C

g � F �	 C

Although imported variables a� d and g cannot be e�ectivelly used anywhere within
M�� because domains A and F were not imported along� On the other hand� function f can
be used freely� but the de�nitions of imported B and C is not locally available� Note that
in the scope of M	� the domains of f and g are structurally equivalent� but they cannot be
considered so in the the scope of M��

On the other hand� an open exportation gives the importing modules the oportunity
to decide the degree of information hiding which is more convenient to its aplication� An
open exportation does not reveal the entire structure of the exported entities� for example�
the open exportation of a domain B autorizes access only to the �rst level of the domain
denotation of A� The internal structure of any domain occurring in this denotation is
remain completely encapsulated in the exporting modules� unless their open exportation
and importation are explicitly speci�ed too�

Open exportation or importation is indicated para the ��� sign in front of the entity
name� In the example below� A is exported closed� B is exported open� C is imported closed
and D is imported open from module M��

MODULE M

EXPORTS A� �B

IMPORTS M��C� �D�

���

END M

Closed and open re�exportation of entities are fres allowed� but the the visibility degree
of these entities can only be decreased� never increased�

��� Example

Now the denotation de�nition of the toy language MiniL whose PROJECT and SYNTAX

modules have been de�ned above is presented�

MODULE Program

EXPORTS elab�prog

IMPORTS

Env�State� A� �Ec� �Cc� state�� V� is�N� to�A�

Command�Cmd� elab�cmds�

Expression�Exp� elab�exp� Id� elab�id�

DOMAINS

Prog � ��program� Body �end�

Body � ��read� Id Cmd
 �write� Exp�

�� CHAPTER �� THE MODULE STRUCTURE

k � Ec
 c � Cc

DEFINITIONS

elab�prog �prog� �i�N� � A �

LET ��program� body �end�� � prog

LET ��read� id cmd
 �write� exp� � body

LET k � LAM v � is�N�v� �	

to�A�v�� to�A��Error��

LET c � LAM s� elab�exp�exp� k s

LET s � state��set�i�elab�id�id��

IN elab�cmds�cmd
��c��s�

END Program

Note that the continuation domains EC and Cc� which are de�ned in module Env below�
are exported and imported opened in order to make the details of their internal struc�
ture known inside module Program so the continuation functions k and c above can be
de�ned locally as it is usual in standard denotational semantics� If opened exportation
were not allowed� it would be very inconvenient to work with continuation semantics� The
module Env encapsulates everything concerned to the environment in which the semantics
is modelled�

MODULE Env

EXPORTS

State� state�� State�get� State�set� A�

to�A� �Cc� �Ec� V� inc� is�N� is�undef

DOMAINS

State � Id �	 V

V � �N� � ��undefined��

Cc � State �	 A

Ec � V �	 A

A � N � �Error�

DEFINITIONS

DEF is�N�v� � T � v IS �n�

DEF is�undef �v� � T � v IS ��undefined��

DEF inc��n�� � V � � n PLUS � �

DEF to�A �Error� � A � �Error�

DEF to�A v � A � LET �n� � v IN n

DEF state��id�Q� � V � ��undefined��

DEF State�get�id�Q�� V � this�id�

DEF State�set�n�id�Q� � State � this�id�n�

END env

The semantics of MiniL commands is de�ned as�

MODULE Command

���� EXAMPLE �	

EXPORTS

Cmd� elab�cmds

IMPORTS

Expression�Exp� elab�exp� Id� elab�id�

Env��Ec� �Cc� V� State� state�� A�

is�N� to�A� to�N�

DOMAINS

Cmd � �Id ���� Exp� � �Cmd
� � ��while� Exp �do� Cmd
�

DOMAINS

c � Cc
 k � Ec
 s � State

DEFINITIONS

DEF elab�cmds�cmd���c��s� � A �

CASE cmd�

��	 �	 s

�cmd� PRE cmd�� �	

LET c� � LAM s� elab�cmds�cmd����c��s�

IN elab�cmd�cmd���c���s�

END

DEF elab�cmd�cmd��c� �s� � A �

CASE cmd

��id ���� exp� �	

LET q � elab�id�id�

LET k � LAM v� is�N�v� �	

c �s�q�v��� to�A��Error��

IN elab�exp�exp��k��s�

��cmd
� �	 elab�cmds�cmd
��c��s�

���while� exp �do� cmd
� �	

LET c� � LAM s� � elab�cmd��c��s��

LET k � LAM v �

is�N�v� �	 to�N�v� EQ � �	

c�s�� elab�cmds�cmd
��c���s��

to�A��Error��

IN elab�exp�exp��k��s�

END

END Command

The semantics of MiniL expressions is de�ned as�

�� CHAPTER �� THE MODULE STRUCTURE

MODULE Expression

EXPORTS

Exp� Id� elab�exp� elab�id

IMPORTS

Env��Ec� V� State� state�� A� is�N� to�A� to�N�

DOMAINS

Exp � ����� � �Id� � ��suc� Exp�

Id � ��ID�� q�

k � Ec

s � State

DEFINITIONS

DEF elab�id�id� � Q �

LET ��ID�� q� � id IN q

DEF elab�exp�exp��k��s� � A �

CASE exp

������ �	 k�to�V����

��id� �	

LET q � elab�id�id�

LET v � s�get�q�

IN is�undef�v� �	 to�A��Error��� k�v�

���suc� exp� �	

LET k� � LAM v � is�N�v� �	 k�inc�v���

to�A��Error��

IN elab�exp�exp��k���s�

END

END Expression

��� Name Con
ict Resolution

Name con�icts may arise when a module imports from two or more other modules� These
con�icts are resolved by means of the RENAMES clause� which provides a local name for an
imported entity� The example below shows the use of the clause�

MODULE A

export x

���� NAME CONFLICT RESOLUTION ��

���

END A

MODULE B

export x

���

END A

MODULE C

import A�x�

import B�y renames�

�� x is the x from A

�� y is the x from B

���

END A

�� CHAPTER �� THE MODULE STRUCTURE

Chapter �

Object�Oriented Programming in

SCRIPT

��� Introduction

SCRIPT is considered an object�oriented language for denotational speci�cation because
it features the basic concepts of classes� objects� type inheritance� data encapsulation�
information hiding� polymorphism� virtual functions and dynamic binding�

��� Class and Objects

The SCRIPT analogous to the classes of imperative object�oriented programming langua�
ges is the tuples� The module mechanism permits the encapsulation of domain de�nition
and means to provide a well speci�ed interface� Since domain of tuples implements classes�
tuples as objects�

��� Inheritance

The device to extend tuples is in fact a mechanism to achieve inheritance� Any extended
tuple is a descendent of its base tuple� Analogous to class inheritance� tuple extension is a
mean to create a hierarchy of tuple types� An extended tuple domain heirs the structure
of its base tuple along with all functions bound to the base domain�

��� Polymorphism

The allowed forms of polymorphism are overloading and inclusion�
Polymorphism of overloading occurs when more than one function receives the same

name in the same scope� The types of the arguments must permit unambigous resolution of
the name overloading� A set of functions with equal name may be viewed as a polymorphic

��

�
 CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN SCRIPT

function that can be applied to arguments of number of di�erent types� according to each
function de�nition�

Polymorphism of inclusion is connected to the domain extension capability of tuples�
Every function that has an argument of a tuple type also accepts arguments in domains
which are extensions of that type� The extension relation between two domains of tuples
is an is�a relation� This means that a tuple in an extended domain is always an instance
of tuple in the corresponding base domain�

��� Data Encapsulation

Module is the mechanism to encapsulate data and exercise information hiding� The ex�
port import facility of the language allows tight control of visibility and information hiding
as required to achieve high degree of modularization�

��� Virtual Functions

Functions can be associated with or bound to domains� These functions are equivalent to
the virtual functions of object�oriented imperative programming languages�

If the domain to which the function is bound is a tuple� then every application of
this function must be quali�ed by an object whose domain is the bound domain or in an
extension of it�

A domain bound function may be rede�ned in any extension of the associated domain�
The rede�ned function is avaliable from that point it was de�ned downward in the domain
hierarchy� By de�nition� if a function is bound to a tuple domain� then it is said to be
bound to all its descendent� unless it is rede�ned�

��� Dynamic Binding

The conjunction of the concepts of polymorphism and virtual functions gives rise to dyna�
mic binding of functions� Whenever the object that quali�es the call of a domain bound
function is a formal parameter of type tuple� the function to be activated is the one cur�
rently bound to the domain of the current value of the actual parameter� whose type can
be any extension of the domain of the formal parameter�

��	 A Polymorphic Stack

Lists serve to model the concept of a stack whose operations are push� pop� top and empty�
The following module� named Stack� de�nes the encapsulated domain Stk� the stack� the
type of the stack element� and associated stack operations� Note that the elements of the
stack have type Stk�elem which is an empty tuple� A client module of Stack may freely

���� A POLYMORPHIC STACK ��

extend Stk�elem to incorporate the type of information that actualy must go to the stack�
Functions push and pop should handle the polymorphic elements of the stack properly�

MODULE Stack

EXPORTS

Stk� stk�� Stk�elem� stk�elem�� Stk�push� Stk�pop� Stk�top� Stk�empty

DOMAINS

Stk � Stk�elem�

Stk�elem � ��

DEFINITIONS

DEF stk� � �	

DEF stk�elem� � ��

DEF Stk�push�stk�elem� � Stk � stk�elem PRE THIS

DEF Stk�top � Stk�elem �

THIS�empty �	 �� LET stk�elem PRE stk� � THIS IN stk�elem

DEF Stk�pop � Stk � LET stk�elem PRE stk� � THIS IN stk�

DEF Stk�empty � T � �SIZE THIS� EQ �

END Stack

Note that because the stack may have elements of di�erents types in the domain hie�
rarchy that start with Stk�elem� it is wise to bind the value returned by function pop to a
variable in the highest domain in the hierarchy and then explicitly test its form via a case
construct�

MODULE User

IMPORTS

Stack�Stk� stk�� Stk�elem� stk�elem��

DOMAINS

A�elem � Stk�elem EXT �elem � N�

B�elem � Stk�elem EXT �elem� � Q� elem�� T�

X � �N � �Q�T��

DEFINITIONS

�
 CHAPTER �� OBJECT�ORIENTED PROGRAMMING IN SCRIPT

DEF test � X �

LET a�elem� � stk�elem� CAT ���

LET stk� � stk��push�a�elem��

LET b�elem� � stk�elem� CAT ��A�� TT�

LET stk� � stk��push�b�elem��

�����������������

LET a�elem � stk��top

LET stk� � stk��pop

IN CASE a�elem

�stk�elem CAT �elem� �	 elem

�stk�elem CAT �elem�� elem�� �	 �elem��elem��

END

END User

Bibliography

�	� Lennart Augustsson and Thomas Johnsson� Lazy ML user�s manual� Technical report�
Chalmers University� Goteborg� Sweden� 	���� Department of Computer Science�

��� D�M� Berry and R� L� Schwartz� Type equivalence in strongly typed languages� One
more look� ACM SIGPLAN NOTICES� 	����� 	����

��� Roberto S� Bigonha� A Denotational Semantics Implementation System� PhD thesis�
University of California� Los Angeles� 	�
	� ��
 pages�

��� Richard Bird and Philip Wadler� Introduction to Funcional Programming� Prentice
Hall International Series in Computer Science� 	�

�

��� W�H� Burge� Recursive Programming Techniques� �� Reading� Mass� 	����

�
� Luca Cardelli and Peter Wegner� On undertanding types� data abstraction� and poly�
morphism� ACM Computing Surveys� 	�������	"���� 	�
��

��� M�J�C� Gordon� The Denotational Description of Programming Languages � An In�

troduction� Springer�Verlag� New York � Heiberg � Berlin� 	����

�
� S�L�P� Jones� The Implementation of Functional Programming Languages� Prentice
Hall International Series in Computer Science� Englewood Cli�s� 	�
��

��� P� D� Mosses� Mathematical Semantics and Compiler Generation� PhD thesis� Oxford
University Computing Lab� 	���� Programming Research Group�

�	�� P� D� Mosses� SIS � A compiler�generator system using denotational semantics� Te�
chnical report� University of Aarhus� Denmark� 	��
�

�		� Peter D� Mosses� Denotational semantics� In Lectures Notes of the State of the Art

Seminar on Formal Description of Programming Concepts � IFIP TC� WG ���� Rio
de Janeiro� Brazil� April 	�
��

�	�� Schmidt� Denotational Semantics� A Methodology for Language Development� Allyn
# Bacon� 	�

�

�	�� D� Scott� Outline of a mathematical theory of computation� In Proceedings of the �th

Princeton Conference on Information Sciences and Systems� 	����

��

�� BIBLIOGRAPHY

�	�� D� Scott and C� Strachey� Toward a mathematical semantics for computer langua�
ges� In Proceedings Symposium on Computers and Automata� Polytechnic Institute of
Brooklyn� 	��	�

�	�� D� Scott and C� Strachey� Toward a mathematical semantics for computer langua�
ges� Tech� mon� prg�
� Oxford University Computing Lab� Polytechnic Institute of
Brooklyn� 	��	�

�	
� J�E� Stoy� Foundations of mathematical semantics� Lecture Notes in Computer

Science� Springer�Verlag� 	����

�	�� R�D� Tennent� A denotational de�nition of the programming language PASCAL�
Technical memo� Oxford University Computing Lab� 	��
� Programming Research
Group�

�	
� David Turner� An overview of miranda� ACM SIGPLAN NOTICES� �	�	���	�
"	

�
	�

�

�	�� David A� Watt� Programming Languages Syntax and Semantics� Prentice Hall Inter�
national Series in Computer Science� New York� 	��	�

���� G� Winskel� Semantics of Programming Languages� MIT Press� 	����

