An ASM-Based Approach for Mobile Systems

Marcelo de Almeida Maia! and Roberto da Silva Bigonha?

! Departamento de Computacio, Universidade Federal de Ouro Preto

Campus Morro do Cruzeiro, 35400-000 Ouro Preto MG, Brazil
URL: www.dcc.ufmg.br/“marcmaia
email: marcmaia@dcc.ufmg.br
Phone: +55 31 499-5881 - Fax: +55 31 499-5858

2 Departamento de Ciéncia da Computacao, Universidade Federal de Minas Gerais,
Av. Antoénio Carlos, 6627, 31270-010 Belo Horizonte MG, Brazil
URL: www.dcc.ufmg.br/"bigonha

Abstract. In this work we present the use of a novel language based
on Gurevich Abstract State Machines[7] to specify active mobile objects
semantics. We focus on the mobility support based on the explicit in-
teraction abstraction between units of specification. The mobility is ex-
pressed by changing the communication topology dynamically. We pro-
vide the formal semantics of the new approach and show how the pro-
posed method provides an adequate way to reason about a specification
based on mobile objects.

Keywords: mobility, formal semantics, reasoning, ASM

1 Introduction

The nineties have been marked by a great explosion in the use of the Internet.
The Wide World Web is accessible everywhere in the world, and this situation
causes a substantial impact on how people use computers. Tools for developing
the corresponding new generation of programs have been evolving to address
problems such as mobility, security, fault-tolerance and many others. But such
class of tools still lacks solid mathematical foundations that would help assessing
the final product behavior. Because of the inherent difficulty of these issues, i.e.
mobility and concurrency, the use of mathematical formalism to help the system-
atic development of correct new generation applications is even more imperative
than for the classical applications.

The methodology for producing ASM specifications provides a vertical ab-
straction mechanism, in the sense that the ground model (the model resulted
from converting the informal specification into the method language) is succes-
sively refined until considered adequate. However, it still does lack some kind
of horizontal abstraction for composing existent specifications. In the context of
ASM, there is already some work in the direction of providing them with some

kind of horizontal abstraction. Glavan and Rosenzweig developed a theory of
concurrency [6] that enables the encoding of some traditional calculus, such as
the m—calculus[11] and the Chemical Abstract Machine [2]. However, Glavan’s
work does not explicitly address the problem of mobility and it does not support
encapsulation and information hiding mechanisms, issues which will be directly
treated in this work. May [10] has developed a work with similar aims as ours,
and although it provides some form of encapsulation and information hiding,
the usual modularization concepts must be further added to the model. The
mobility issue is not considered either.

In order to address these issues, we have proposed in [9] new abstraction
mechanisms in the context of ASM, namely the Interactive Abstract State Ma-
chines (IASM). Our approach provides special constructions for explicit defini-
tion of how different pieces of specification interact with each other, so as to
free the user from the burden of providing the whole low-level specification of
the communication topology and the message interchanging between different
specifications. In [8] we have shown how the mechanisms proposed in [9] would
address the mobility issue. The present work provides a revised semantics of the
novel constructions in a style similar to the Lipari Guide[7], and we also provide
a more detailed reasoning of our case study.

The remainder of this paper is structured as follows. In the Section 2, we set
the context on which we will be interested. In Section 3, we give the semantics
of our extended language of ITASM. In Section 4, we show the adequacy of this
new approach by means of a case study. And finally, in Section 5, we summarize
our conclusions.

2 Active Mobile Objects

The World-Wide-Web has originated a new model of computation that previ-
ous methods of specification seems not to address satisfactorily. Here we will
not try to define exactly what are all the necessary abstraction mechanisms to
support this new model of computation. Instead, we propose an abstract frame-
work on which important features of mobile systems may be reasoned about.
This framework eventually may be extended to support other features related
to mobile systems. We hope to demonstrate the ease of use provided by the new
specification framework.

Perhaps, the main work that has influenced researches on formal semantics
for mobile systems is w-calculus[11], where the channels of communication can be
transmitted over other channels, so that a process can dynamically acquire new
channels. The transmission of a channel over another channel gives the recipient
the ability to communicate on that channel. It is becoming a common approach,
the addition of discrete locations to a process calculus and consider failure of
those locations[1][5]. The work described in [5] has added a notion of named
locations, and a notion of distributed failure; locations form a tree, and subtrees
can migrate from one part of the tree to another, therefore becoming subject to
different observable failure patterns. Cardelli and Gordon, in a recent work[4],

argues for a more explicit notion of movement across boundaries, defining the
ambient calculus.

Instead, our approach for mobility is based on the dynamic construction of
distributed active daemons and on the dynamic configuration of the communi-
cation topology between them. Our solution is entirely distributed, in the sense
that all global information may only be inferred by input/output interactions
with the environment. The location issue is addressed by local state information.
Barriers to mobility are addressed by pairwise commitment between interacting
units. Another difference of our approach is that it is not based on process alge-
bra. Instead, we use an operational approach to formalize our ideas.

3 Interactive Abstract State Machines

In this section we present the Interactive Abstract State Machines (IASM) lan-
guage and its formal semantics. This extension is heavily based on the multi-
agent ASM!. Instead of using the established terminology of ASM, such as,
modules and agents, we prefer to introduce other related names, respectively,
unit definitions and unit instances. All basic concepts such as static algebras,
vocabularies, terms, universes, appropriate states, Fun notation, update sets,

basic rules and import rules should be borrowed from [7].
An TASM specification SPEC is a triple (CUD, V, M), where:

— CUD is a collection of unit definitions UD,
— V is the vocabulary of the whole specification.
— M is the main specification,

A unit definition UD is a quintuple (N°, N1, TS, IR, ZIC) where:

— N9V is a static nullary function name corresponding to the name of the unit
definition. Different unit definition names are interpreted as different ele-
ments, as suggested by multi-agent ASM semantics.

— N is a universe name, i.e., a unary relation name. The corresponding uni-
verse contains all unit instances derived from UD. We adopt the convention
of overloading this name, so we can use the same name for the unit definition
name and for the corresponding universe.

— IS8 defines the internal vocabulary Fun(UD) of UD.

— IR is the declaration of the interaction rule which guides the interaction of
the respective unit instances with their environment. This rule establishes
how communication between unit instances can occur. It does not only de-
fine the information interchanging but also the synchronization restrictions
imposed between the units.

— ZC is the declaration of the internal computation rule which updates the
local state of the instance. The internal rules of a unit definition have the
same syntax as those of the pure ASM model. They can refer only to the
respective instance view of the state, i.e., references to the vocabulary of
other units are forbidden (as we will see in the definition of V).

! Distributed Ealgebras in the Lipari Guide.

The vocabulary V = Fun(SPEC) of the whole specification is defined as:

|cUD| |cUD|
(U FunUD)*t5Yu(U LabUD;) 5)u
=1 i=1

Fun(M) U _Messages U _Connections U Auz+ {Def} — {Self}
where:

— Fun(UD;)*%° is the internal vocabulary of the unit definition i, where
each function declared in UD; has its arity incremented by 1, and the extra
argument is the function Self. This assures that each instance has its local
state. Note that equal function names in different unit definitions are in fact
the same name in V, but can coexist securely because their interpretations
for each unit instance are disjoint.

— Lab(UD;)*9¢ is the collection of function names defined by the labels oc-
curring in UD;, such that Fun(UD;)t5e N Lab(UD;)T5¢F = (. There are
two kinds of labels:

1. channel labels: a channel label c occurs in input, output and connection
rules. It defines a nullary static function name ¢ which is interpreted as
a quotation of itself, i.e., "c". Obviously, we suppose "c"€ X, where X
is the superuniverse.

2. counting labels: a counting label c occurs in labeled interaction rules and
defines a unary function name c, which is defined only in the argument
Self. In the initial state of SPEC, all these functions are interpreted as
0 in Self argument.

— Fun(M) is the global vocabulary, i.e., the collection of nullary function
names whose values are the static instances, and the collection of unit defi-
nition names and their respective universe names.

— _Messages is an auxiliary universe name which, in the same sense of the
ASM universe Reserve, is forbidden to be mentioned by any rule. It will be
manipulated by the input and output interaction rules.

— _Connections is another auxiliary universe name which is also forbidden to
be mentioned by any rule. It will be manipulated by the connection interac-
tion rule.

— Auz is the collection of auxiliary functions names used to control the in-
teraction rules. We adopt the convention that the first character of all the
private functions names in Aux is the underscore "_", but, for the sake of
conciseness, we do not explicitly show how these function names are used
internally, since this could be straightforwardly induced. The public function
names will be introduced as needed.

— Def is the function which maps each unit instance u to its corresponding
unit definition name U, such that, Def (u)=U.

— Self has the same role as in pure ASM.

The main specification M defines the initial state of SPEC, and is a pair
(CSUT, CSC), where:

extend Ui with x
Def (x) := Ui;
ui := x;

Fig. 1. Static instantiation rule

— CSUT is a collection of static unit instance declarations of the type u:U,
where u is a nullary function name whose value is supposed to be an instance
of the unit definition U.

Formally, let Gf, be the state resulted after firing the following update set on

any V-state G, with superuniverse X, such that, G | (Vz € X)U(x)=false:
CSUT
| U | Updates(SInst;, G), where SInst; = ui:Ui has the same update set of
t};e 1rule defined in Figure 1. Note that the first occurrence of Ui in rule refers
to universe Ui, whereas the second occurrence refers to the unit definition
name.

— CSC is a collection of static connections ul <-> u2, where ul and u2 are
static unit instances names in CSUZ. Formally, if CSC =) then the initial
state of SPEC is G}y. Otherwise, let ¢z be a function name in Fun(ul)t9¢f
and c; be a function name in Fun(u2)t9¢/ such that, V u,<->up € CSC, in
the state Gy, ¢; must be updated with the u,, and ¢; must be updated with
uy. Note that the vocabulary of u, and u, must have the required function
names in order to each u, <-> u; be a valid connection. Besides this, we
require that these function be uniquely identified by assigning to them their
corresponding signatures in terms of universe names.

The V-state G is a state of SPEC if it satisfies the restrictions imposed by UD,
VY and M. An element u is a unit instance at G, if there is a unit definition name
U, such that, G = Def (u)=U and U(u)=true. Let ZRy and ZCy be the interac-
tion and internal computation rules of the unit definition U, respectively, and ++
be the concatenation of rules. The corresponding program of uis Prog(u) = IRy
++ ZCy. The vocabulary Fun(u) of u is Fun(Z/{D;}S&lf). View,(G) is the reduct
of the V-state G of to vocabulary Fun(u)™% U Fun(M) U _Messages U
_Connections U Auz + {Def} — {Self} expanded with Self, which is inter-
preted as u.

The execution of the whole specification is based on the execution of each
unit instance, which is defined by their interaction and computation rules. A
unit instance u can make a move at G by firing Prog(u) at View,(G), and
changing G accordingly. Even if Fun(ui)t5¢ N Fun(us)t5f # 0, neither u;
or us cannot modify the state defined by the other, since this restriction is
imposed by construction of V (recall the introduction of an extra argument in
Fun(UDy),1 < i <n).In order to perform a move of a instance u, fire:

Updates(u,G) = Updates(Prog(u), View,(G)) =
Updates(IRu, View,(G)) U Updates(ZCy, View, (Q)).

t=c=t -> 1

f(tt) <- u.c

connect c=u:U.s in ¢
new u:U | destroy u

tli | i34] il
waiting(name)

if guard then {

Fig. 2. Interaction Rule

A run of SPEC is defined exactly in the same way of partially ordered runs
of multi-agent ASM, so we will omit the definition here. We can reuse the same
definition because the difference between multi-agent ASM and Interactive ASM
runs is in the definition of move, and the definition of a partially ordered run
does not rely on how a move is defined.

In order to complete the semantic description of Interactive ASM we need
to define how the update set of an instance move is computed. In the following
sections we define how to compute the update set of the interaction and inter-
nal rules. We have adopted an indented writing style, avoiding the use of the
delimiters endif, endconnection. Interaction rules are defined as in Figure 2.

3.1 I/O Rules

Let Out = c=t -> u be output rule, where t is a term, c is the label of the out-
put channel, and u is a term representing the target unit instance. If t is a nullary
function name we may omit c and assume c=t. The update set Updates(Out, Q)
is defined as Updates(Ryut, G) where R, is defined in Figure 3.

Let In = £(tt) <- u.c be an input rule , where f is a function name, tt is
a tuple of terms whose length equals the arity of £, u is a term representing the
source unit instance and c is the label of the channel in the source unit instance.
The update set Updates(In,G) is defined as Updates(R;pn,G) where Ry, is de-
fined in Figure 4. Note that both input and output rules update the auxiliary
universe _Messages in order to proceed with the interaction. An element of this
universe has three attributes: the target instance (target) which will receive
the message, the unit instance which has sent the message (source), a label
indicating the source channel from where the message has been sent (label),
and the contents of the message (value).

3.2 Topology Configuration Rules

Let Conn = connect c=u:U.s in i be a connection rule, where c is a label
defining the point of the connection inside the current instance, u is a term rep-
resenting the instance to be connected, U is the unit definition name from whose
definition u was derived, s is a function name such that, s € Fun(u), and when

extend _Messages with x
target(x) := u;
source(x) := Self;
label(x):= c;
value(x) :=t;

Fig. 3. Output Rule Ry for t:c => u

if (3 m € Messages)
target(m) = Self A source(m) = u A label(m)= c then
choose m in Messages satisfying
target(m) = Self A source(m) = u A label(m)= c
f(tt) := value(m);
Messages(m) := false;

Fig. 4. Input Rule R;,, for £(tt) <- u.c

the connection is completely performed s is supposed to be updated with the cur-
rent instance. If u is a nullary function name, we may omit c and assume c=u. We
may also omit U and s, and assume that their corresponding value is undef. The
connection rule mainly updates the auxiliary universe _-C'onnections, whose ele-
ments are unordered? pairs of quintuples: ((u1,c1, Uy 01,a1), (u2,c2,Us 02, a2)),
where u; are the unit instances of the connection, ¢; are the labels defining the
point, of connection inside the current instance, U; are the corresponding unit
definition names, o; are labels defining the point of connection in the other in-
stance, such that, when the connection is performed ¢; = 02 and ¢ = 01, and a;
represent each instance awareness of the connection, for i € {1,2}. The connec-
tion rule is performed in three stages, what means that it takes at least three
moves to be completely performed, since the stages need to be performed in
sequence.

1. In the first stage a connection with the other instance must be established.
There are three cases to be considered here:

(a) The connection rule defines which is the unit instance u to be connected
to, and that instance u had already attempted the connection. Formally,
this means that u is defined, and _Connections((partyi, partys))= true,
where party; = (u, c, U, £, true), partys =(v, k, V, x, false), v = Self
or v = undef, k = f or k = undef, V = Def (Self) or V = undef, and x
= c or ¢ = undef. If any of the values v, k, V, and z are interpreted as
undef, this means that the instance u does not require the corresponding
restriction connected, i.e., any value for v, k, V', and x should satisfy.
In this first case Updates(Conn,G) for the first stage is the same as the
one defined by rule (a) in Figure 5.

*ie., ((u1,c1,U1,01,a1), (us, ca,Us,02,02)) = ((u2, c2, Uz, 09,a2), (u1,¢1,U1,01,a1))

(b) The connection rule defines which is the unit instance to be connected,
and that unit had not attempted the connection yet. Formally, this
means that u is defined, and _Connections ((party;,partys))=Ffalse,
where partyl and party, are the same as above. In this case, there are
two stages to be performed in sequence, so these two stages takes at least
two moves to be performed:

i. The current unit instance has to warn the other instance that it is
attempting a connection. Formally, this means that the update set
Updates(Conn, G) for the first sub-stage of the first stage is the same
as the one defined by rule (b) in Figure 5.

ii. The current unit instance waits until the other instance notifies that
it is aware of the connection. Formally, the current instance checks
if the other instance had updated _Connections, either with the in-
dication that it is aware of the connection, just like the rule (a) or
(c) in Figure 5, or with rule (b) in Figure 5, and in this case it is
necessary to fire rule (a) in Figure 5 to indicate that the current in-
stance is aware of the connect. When the above has been performed,
the private control functions in the sub-vocabulary Auz are properly
updated to release the sequence.

(¢) The connection rule does not define a specific unit instance to be con-
nected. In this case the only action the current instance Self can perform
is to check if there is any instance trying a connection such that Self
could satisfy. Formally, the current instance checks whether there is an el-
ement in _Connections, such that, either party, or party, equals (a, b, A,
o0, false), where a=Self or a=undef, b=s or b=undef, A=Def (Self)
or A=undef, o=u or o=undef. If there is such element, let the other
connect point be £k = v : V.f in a rule where the current instance must
notify the other instance, that it has properly accepted the connection.
Formally, this means that the update set used to establish the connection
is the same as defined by rule (¢) in Figure 5. Note that the undefined u
is properly updated with the other instance.

2. In the second stage the interaction i is performed. By induction, the update
set on this stage is Updates(i, G).

3. In the last stage the current unit instance must disconnect from the other
instance. Formally, this means that the element x that represented the con-
nection must be discarded, and if the function u was undefined before the
connection, it must continue undefined after the connection. Note that if x
has already been discarded by the other instance, Connections is not up-
dated. So the update set in this stage equals ({Update((-Connections(z),
false), G)} W) U({Update((u, undef),G)}), where s; W sy means either
$1 or Sz, but not both.

Let Alloc = new u:U be an allocation rule, where u is the identification of
the new instance, U is the unit definition from where u is derived. Formally,
the update set Updates(Alloc, G) = Updates(Raiioc, G), where Ruj,. rule is the

choose x in _Connections satisfying
value(x) = (partyi,partys) with
_Connections(x) := false;
extend _Connections with x
value(x) :=((u,c,U,f,true), (Self,f,Def (Self),c,true));

(a)
extend _Connections with x
value(x) :=((u,c,U,f,false), (Self,f,Def (Self),c,true));
(b)
choose x in _Connections satisfying
value(x) = ((v,k,V,f,false), (Self,f,Def(Self),k,true)) with
_Connections(x) := false;
extend _Connections with x
value(x) :=((v,k,V,f,true), (Self,f,Def (Self) ,k,true));

' (©)

Fig. 5. Connection Rule

same as the rule in Figure 1, substituting u and U for ui and Ui, respectively.
This rule provides the dynamic instantiation of a unit.

Let Dealloc = destroy u be a deallocation rule, where u is the identification
of instance to be discarded. Formally, the update set Updates(Dealloc, G) =
Updates(Racalioc, G), where Rgeqiioc rule isU(u) := false; Def(u) := undef.

3.3 Control Rules

Let Par =iy | i2 be a parallel rule, where iy, i5 are interaction rules. By induction
on i1 and is, we define Updates(Par, G) = Updates(i1, G) UUpdates(iz, G). The
operator | may be omitted, if desired.

Let Seq = i1 ;; is be a sequential rule, where i1, i> are interaction rules. By
induction on iy and i, let Updates(Seq, G) = Updates(ii,G) & Updates(iz, G).
There are some more semantics embedded in the sequential rule. Let u be any
unit instance. Let SM = my, ..., m,, for some finite r, be a initial valid sequence
of moves performed by unit u. Let SSM = mseq1, . - ., Mseqr be a subsequence of
SM, such that, the rule Seq =iy ;; 2 is ready to be fired on, and only on, each
Mseqi (1 < @ < seqr). Suppose m; = Mgeqm, and Mm; = Mseqn, for some i,j €
{1,...,r}, and for some seqm, seqn € {seql,...,seqr}. If i < j then seqm <
seqn, but not necessarily m; 1 = Mgegm+1. By induction on seql, ..., seqr, the
update set Updates(Seq, @) is calculated as Updates(i1, G) on mseq1. Suppose
on move Mgeq; (1 <4 < seqr), Updates(Seq,G) is calculated as Updates(i1, G).
Then, on move msgeqi+1, Updates(Seq, G) is calculated as:

Updates(iz, G) if i; has been completely performed
Updates(i1, G) otherwise.

Alternatively, if on mgseqi, Updates(Seq, @) is calculated as Updates(iz, G),
ile.:

Updates(iy, Q) if io has been completely performed
Updates(iz, G) otherwise.

An interaction i will be completely performed in a move m, if and only if:

1 is an input rule and there is a message in _Messages satisfying the input
condition, and thus enabling the update of the target function on move m.
— 4 is a connection rule the disconnection occurs on move m.

— 4 is a synchronization rule and the corresponding waiting function is up-
dated to false by the internal computation rules on move m.

1 is any other rule to be performed on move m.

Note: The necessity or not of the sequential rule may be a point for con-
troversy, because pure ASM avoid this notation in favor of more logical trans-
parency. We argue for the need of the sequential rule because it makes the
interaction rule of a unit definition clear, in the sense that in the interaction rule
it is forbidden explicit update rules. Otherwise, the conceptual transparency of
the interaction rule would be lost, if updates were allowed.

Let Cond = if g then i; else iy be a conditional rule, where iy, is are
interaction rules. By induction on i; and i2, we define Updates(Cond,G) =
Updates(i1, G) W Updates(ia, G). If the guard g is evaluated to true on state G
the update set is Updates(i1, G), otherwise it is Updates(iz, G).

Let Sync = waiting(name)be a synchronization rule, where name is a nullary
function name, and waiting is a unary public function name in Auz. The func-
tion name must be used only as argument for the waiting function. Different
function names used as arguments for the waiting function are interpreted as dif-
ferent elements. When the waiting rule is performed, the waiting function is
updated to true and the waiting rule is completely performed when the internal
computation rules update the waiting function to false.

Let Lab = ¢ : label be a labeled rule, where i is a interaction rule and
label is a nullary public function name in Auz. By induction, the update set
Updates(Lab,G) is Updates(i, G) U ({Update((label, label + 1),G)} W). The
update that increments the value of label has to be fired in the same move that
i is completely performed.

3.4 Internal Computation Rules

The internal computation rules have the same syntax and the same meaning of
pure ASM rules. The only restriction is that rules can mention only function
names in Vjycqar, where Vioeqr is a subset of V equals Fun(u)*s‘”f U Auxpupiic +
{Def} + {Self}, where Auzpyupi;c is the subset of Auz which contains the public
functions names.

4 A Case Study: The Program Committee Problem

Let us give a problem to be specified. This will be useful when comparing this
approach with others and for illustrating its reasoning capability. Following the

A conference is announced, and an electronic submission form is publicized. Each
author fetches the form and activates it. Each author fills an instance of the form
with the required data and attaches a paper. The form checks that none of the
required fields are left blank and sends the data and the paper to the program chair.
The program chair collects the submission forms and assigns the submissions to
the committee members, by instructing each submission form to generate a review
form for each assigned member. Each assigned member is a reviewer, and may
decide to review the paper directly or to send it to another reviewer. The review
form keeps track of the chain of reviewers. Eventually, a review s filled and it finds
its way back to the program chair. The program chair collects all review forms.
The chair merges all review forms for each paper in a paper report form. Then the
chair declares each report form an accepted paper report form, or a rejected paper
review form, and finally returns this form to each author. All accepted paper report
forms are required to generate final version forms on which the author attaches
the final version of the paper and sends it back to the program chair.

Fig. 6. Problem Specification

traditional ASM philosophy we do not plan to introduce a logical calculus to
prove properties about the specification. Instead, we make rigorous, mathemat-
ical reasoning but without an associated formal system.

The Figure 6 reproduces verbatim a simplified and modified version of the
problem consisting in managing a virtual program committee meeting for a con-
ference. The problem was presented as a challenge in [3].

Now we will give a partial Interactive ASM semantics for this problem. We
will focus on the interaction section of the specification and will intentionally
omit the declaration of the internal state and the the internal rules of each
unit, for the sake of conciseness and to show how the relative independence of
the interaction rules from the internal computation rules provides an adequate
mechanism for modular reasoning.

In Figure 7, we present the unit definition Author which models the behavior
an author must have in order to correctly participate of a call for papers. It has
the following three parallel actions:

1. Whenever there is a paper ready to be submitted, the nullary function
wants_to_submit (supposed to be initiated with false) will be set to true
by an internal computation rule and the first action will be enabled. This
action requires a connection with any instance derived from Submission, and
then: i) performs an output of the paper and respective data, which are sup-
posed to be consistently updated by the internal computation rules; i7) and
performs an input from the Submission instance indicating if the paper was
properly received.

2. Whenever an author gets a response from a Submission instance, it inter-
nally either decides to re-send the paper, or to stay waiting the result of
the submitted, or even to send another paper. All these actions should be

unit Author

interaction .
if (wants_to_submit) then
connect s : Submission.a in
ata_paper -> s;;
response <- s.response : responses
if (waiting_result) then
connect the_chair: Chair.author_result
) result <- the_chair.result
if (ready_final) then
connect the_chair: Chair.author_final
final -> the_chair

Fig. 7. Unit Author

unit Submission
"' interaction .
connect a: Author.s in
data_paper <- a.data_paper;;
waiting(checking_data);;
if (data-ok) then
response="0k” -> a

connect the_chair: Chair.s in
data_paper -> the_chair;;

else -
response="fail” -> a

Fig. 8. Unit Submission

specified by the internal rules. In the case of waiting the result of the sub-
mission, all we know is that the function waiting result should be set to
true by the internal computation rules. Whenever this occurs, the second
action will be waiting a connection from the unit the_chair, which is a static
instantiated one. Note that the function the_chair declared inside the unit
Author is presumably initiated with the static instance the_chair declared
in the main specification defined in the sequel. Whenever the connection is
performed, the action will be waiting the result to be sent from the_chair.

3. The third action is similar to the previous one: whenever an author gets the
result it decides internally to send the final version, and so on.

The unit definition Submission acts as an intermediary between an author
and the chair. It models an agent that interacts with the author of a paper, get-
ting all necessary information with an attached paper. The internal rules should
make all the necessary checking, including the one that prevents papers being
submitted after the deadline. An agent instantiated from Submission performs
the following action:

1. It requests a connection with an author. Note that if there is not any au-
thor wanting a connection, nothing is done. Then i) it receives the paper

unit Chair
interaction
if (accepting_submissions) then
connect s: Submission.the_chair in
ata_paper <- s.data_paper ;;
waiting(store_paper)
if (data_papers <> nil) then
waiting(one_paper);; waiting(a_reviewer);;
connect reviewer : Reviewer.the_chair_paper in
a_paper —-> reviewer : sent_reviews
if (sent_reviews > received_reviews) then

connect r: Reviewer.the_chair_review in
) review <- r.the_review : received_reviews
if (result_ok) and (not all_notified) then

waiting(a_result);;
connect author_result: Author.the_chair in
) _ result -> author_result
if (receiving_final_versions) then
connect author_final: Author.the_chair in
nal <- author_final.final

Fig.9. Unit Chair

and respective data from the author, 7) waits until the data is checked,
and i) sends a response to the respective author. If the data is valid, the
agent requests a connection with the chair. Then, 7) it sends the paper and
respective data to the chair.

The unit Chair has five parallel actions, each one represented by a guarded
rule evaluated depending only on its internal state.

1. The first action is enabled by an internal function which is presumably initi-
ated with true. It requires a connection with a Submission instance, possibly
attempting a connection, and if there is such one, it receives a paper and
the respective data, and then it waits until the internal computation rules
store the received paper and its respective data into an internal function
data papers which represents a buffer that contains all papers that still
need to be sent to reviewers.

2. The second action checks if the buffer for papers is not empty and then waits
an internal selection of a pair paper/reviewer and dispatches the respective
paper. Note that the channel that will receive the paper in the unit Review
is the_chair_paper.

3. The third action action checks if still there are any papers that were not
sent back by the reviewers. This checking is made easily, because we have
labels counting the sent and received papers, respectively, sent_reviews and
received reviews. Note that the channel that will send the paper in the
unit Review is the_chair review.

4. The fourth action waits an internal processing of the results (represented by
the guard result_ok) and will be enabled only if there is any author that
was not notified (represented by the not all notified).

5. Finally the last action connects to authors wanting to send the final version
of the paper and receives the respective version.

The unit Reviewer has an elaborated scheme for creating the dynamic com-
munication between reviewers. An agent instantiated from the unit Reviewer
has basically two parallel interaction tasks:

1. Tt gets a paper from the chair and, either directly reviews the paper, or sends
it to another reviewer together with a blank review form.
Note that it is opened two connections to the same Chair instance. This
is necessary because the_chair can be connected in the same step with
two different reviewers: one that receives a paper for review and other that
returns a reviewed paper. In order to solve this situation the_chair connects
to different function names in unit Reviewer, namely the_chair_paper and
the _chair review. Whenever a paper is sent from a reviewer to another, it
is managed a list of reviewers which forwarded the paper and the respective
review. The static function firsthistory is internally defined to be a list
with only two elements: [self, the_chair]. Note how the use of labels that
makes the input/output matching possible.

2. The agent receives a paper from another reviewer and if the paper is already

reviewed, the agent either passes the paper back to the chair, or passes it
to the appropriate reviewer. If the paper is not reviewed, the agent either
directly reviews the paper and passes it to the appropriate reviewer or just
sends the paper to another reviewer. Note that when passing a paper forward,
the agent adds its identification to the history of the reviewers for that paper.
When passing a paper backward in the history, it removes a reviewer from
the list being sent backward with the review.
One of the new features in this action is the use of terms in the connect and
output rules. Note that the function name other is crucially used by other
connect rules when passing a paper forward or backward. After receiving
a paper from another reviewer, the current one redirects the paper and re-
spective review through three possible rules. Note that while redirecting the
paper, the history is also being handled.

At last, in Figure 11, we specify the startup specification creating some initial
unit instances. Other instances must have to be created dynamically by some
Awuthorization unit, intentionally not specified. Now, we are going to present some
propositions about the previous example and show their validity to illustrate the
reasoning mechanism.

Consider the following assumptions about the initial state and the internal
computation rules:

— (Author;): The function wants_to_submit equals true whenever there is a
paper ready to be submitted.

unit Reviewer
" interaction
if (receiving_from_the_chair) then
connect the_chair_paper: Chair.reviewer in
a_paper <- the_chair_paper.a_paper endconnect ;;
if (directly_review) then
waiting(the_review);;
connect the_chair_review: Chair.r in
the_review -> the_chair_review
else)
waiting(a_reviewerl);;
connect r=rl: Reviewer.other in
history=firsthistory -> r |
a_paper ->r |
. o review=blank -> r
if (receiving_from_others) then

connect other: Reviewer.r in
history2 <- other.history |

a_paper2 <- other.a_paper |
review2 <- other.review endconnect ;;
if (review2 <> blank) and
head(history2) = the_chair_review) then

connect the_chair_review: Chair.r in
) ~ thereview=review2 -> the_chair
elseif (review2 <> blank or directly review) then

if (directly_review) then
wait(the_review2) ;;

connect r=head(history2) : Review.other in
history=tail(history2) -> head(history2) |
a_paper=a_paper2 —> head(history?2) |
review=review2 -> head(history2)

else
waiting(a_reviewer2);;
connect r=r2: Reviewer.other in
history=cons(Self, history2) -> r |
a_paper=a_paper2 —>r |
review=review2 -> r

Fig. 10. Unit Reviewer

main specification
the_chair: Chair;
committee_memberl: Reviewer;

committee_memberN: Reviewer;
secretaryl: Submission;

secretaryN: Submission;
end specification

Fig. 11. Startup Specification

1. Author=-connect s: Submission.a,
Submission=>connect a: Author.s

2. Author=>connect the_chair: Chair.author_result,
Chair=connect author_result: Author.the_chair

3. Author=>connect the_chair: Chair.author_final,
Chair=>connect author_final: Author.the_ cha1r

4. Submission=>connect the_chair: Chair.s,
Chair=connect s: Submission.the_chair

5. Chair=>connect reviewer: Reviewer.the_chair_ paper,
Reviewer=-connect the_chair_paper: Chair.reviewer

6. Chair=-connect r: Reviewer.the_chair_review,
Reviewer=-connect the_chair_review: Chair.r

7. Reviewer=-connect r=rl: Reviewer.other,
Reviewer=>connect other: Reviewer.r

8. Reviewer=>connect r=head(history2): Reviewer.other,
Reviewer=>connect other: Reviewer.r

9. Reviewer=>connect r=r2: Reviewer.other,
Reviewer=-connect other: Reviewer.r

Fig. 12. Valid Connections

— (Author,): Initial state: the_chair(self) = the_chair and s(self) =
such that x€ Submission.

— (Submissiony): Initial state: the_chair (self) = the_chair and a(self) =
undef.

— (Chairy): Initial state: r(self) = undef, author final(self) = undef,
s(self) = undef.

— (Chairy): The internal computation rules update adequately the functions
occurring in the guards, so as to correctly perform the conditional rules.

— (Chairs): The internal computation rules update adequately: 7) the function
a_paper with a paper to be sent to reviewer, i) reviewer with the selected
reviewer of a paper and iii) the function author result with the author
which has to receive a result.

— (Chairyg): The same result is not sent back to the author more than once, by
assuming the internal computation rules produce just one result per submis-
sion.

— (Reviewery): Initial state: other(self) = undef, the_chair paper(self)
= the_chair, the_chair _review(self) = the_chair.

— (Reviewers): The internal computation rules update adequately the functions
occurring in the guards, so as to correctly perform the conditional rules.

— (Reviewers): The internal computation rules update adequately the functions
r1 and r2 with other selected reviewers for a paper.

Proposition 1. All connections in Figure 12 will be completely performed when
necessary.

Proof Sketch:

1. Let & be an instance of Author, and y be an instance of Submission.
By Author;, the connect rule of Author will be executed when neces-
sary. The case for the connect rule in the first stage is case (b) because,

by Authory, the function s is defined and, by Submission;, no instance

of Submission could have updated _Connect, since function a is unde-

fined. The connect rule of y is always readily to be performed since it is

a top-level rule. By Submission;, the case for the connect rule of y for

the first stage is (c) since the function a is undefined. So, on a first step

z extends _Connections with ((y,"s", Submission, "a", false), (x,

"a", Author, "s", true)), and stays waiting for the awareness of y. On

a second step, y fires the update set (c) of Figure 5, because there is above

element insert by x is the required element. Finally, on a third step z is

realesed and the two connection are aware and the inner interaction rule can
be performed.

2. Let = be an author which is selected by the_chair to receive the result. In
this connection, the_chair is defined in x, and author_result is defined
in the_chair, by Authory and Chairs, respectively. So, the cases for both
connection rules are either cases (a) or (b) of the first stage. There are two
possibilities:

(a) Both instances update _Connections with rule (b) of Figure 5 in the
same move. Note that in this case there will be two equal elements in
Connections, but there is no problem since when disconnecting, each
instance removes an element. On a second step, both instances will fire
rule (a) to indicate that they are aware of the connection.

(b) One instance updates _Connections in advance with rule (b). On a sec-
ond step, the other instance enters the case (a) of the connect semantics
and fires rule (a) of Figure 5. On a third step, the instance which was
waiting completes the connection.

3. Let z be an instance of Author. Not that the_chair is the only instance of
Chair. The case for the connection rule of z is case (b) because, by Author,,
the function the_chair is defined and, by Chairy, no instance of Chair
could have updated _Connect, since function author_final is undefined. By
Chairsy, the connect rule of y will be to be performed. By Chairy, the case
for the connect rule of the_chair for the first stage is (¢) since the function
author_result is undefined. The steps are the same as item 1.

. Similar to item 3.

. Similar to item 2.

. Similar to item 3.

. Similar to item 3. Note that r is defined and other is undefined.

. Similar to item 7.

. Similar to item 7.0

© 00~ O O i~

Proposition 2. All papers received by the chair are sent to a reviewer.

Proof Sketch: This is guaranteed by the second guard of the unit definition
Chair, that dispatches any submission that has not been sent to any reviewer.
Since this guard is executed in parallel with all the others, it will be executed
without being blocked. By Chairs, it will be selected a pair paper/reviewer. The
connection with the appropriate reviewer in the channel the_chair_paper is
guaranteed by Proposition 1.00

Proposition 3. The chair waits for the devolution of all papers sent to review-
ers.

Proof Sketch: This can be easily checked with the counters for the number
of sent papers and the number of received papers. Whenever sent _reviews be
greater than received reviews, the_chair will be waiting a connection with a
reviewer.[]

Proposition 4. All reviewed papers certainly reaches back the chair.

Proof Sketch: Let the_chair, ry,...,r, be the instances which have received
a paper p and let r,, be the reviewer of p. When r; receives p from the_chair, it
sends the history [ry, the_chair] to r.. By induction on i, when r; receives p
the history is [r;—1,...,71, the_chair]. If { = n then r, reviews p and sends the
history [r;_s,...,r1, the_chair] to r;_1. Again, by induction on i, the review
will reach the_chair. Since, by Proposition 1, all connections will be performed,
then all input/output rules will also be performed to enable the flow of the
review.[]

Proposition 5. All submissions received by the chair generate a report form to
the author if, and only if, there is a reviewer that directly reviews the paper.

Proof Sketch:

1. If, for each paper, there is a direct reviewer for it, then all submissions
generates a report form. We have that all the papers received by the chair
are sent to a reviewer by Proposition 2.

If the paper is already reviewed there are two possibilities: i) The chair is
the head of the history list (the_chair review is assumed to be initiated
with the static instance the_chair). Since the connection is guaranteed by
Proposition 1 the review reaches the chair. #5) The chair is not the head of
the history list. It is assumed that since a reviewer instance has the function
receiving from_others set to true, it will not change this function, and so
the head of the history list will forever be enabled to be connected. Since
the connection is guaranteed, the history list is guaranteed to be consumed
until head evaluates to the_chair, because by definition first element of the
history is the_chair.

If the paper is not reviewed there are two possibilities: 7) The reviewer di-
rectly reviews the paper and send it back through the history list. The review
will certainly reaches the chair, and this is guaranteed in the same way of
the previous item. i) The reviewer does not review the paper. But, by as-
sumption, there will be a reviewer that directly reviews the paper. So, by
the previous item, the paper will certainly be sent back through its history
when reviewed.

Finally, assuming that the internal behavior of the_chair produces the final
result when all the reviews of the paper had come back, then by the fourth
guard of the unit Chair, we can guarantee that all results are sent back to
the authors, since the connection will be eventually established.

2. All submissions would have back the result report, only if there is a reviewer
that directly reviews each paper.
Suppose if, for a certainly review, there is not a reviewer that directly reviews
it. Then, that review will never be sent to the chair, and consequently, will
not be sent to the author.
Depending on the internal behavior of the chair when preparing the result, it
may happen that none of the authors receives the review, but this situation
has to be addressed elsewhere.[]

There are many issues that have not been addressed in the above specification,
such as, timing constraints and failures. But this is just a problem of refining
the specification. In [9] we have modeled an unreliable channel using additional
unit definitions.

5 Conclusions

The simple, yet powerful language presented is suitable for producing clear mo-
bile ASM specifications. The idea of explicitly isolating the interaction between
computing units with different purposes makes clear their interdependencies,
and provides an independent mechanism to reason about the agent interactions.
This can be seen in this paper since we have not specified the internal computa-
tion rules in our case study, and we still have reasoned about the specification,
making independent assumptions about the internal rules.

The explicit interaction for connecting agents, even with a simple meaning,
has several usages: binds internal names dynamically, provides dynamic commu-
nication topology useful for specifying a wide spectrum of concurrent programs,
and resembles Web connections. The application migration is not modeled by a
code movement, but only by an update on the connection.

We have shown the reasoning capability of the method for a simplified exam-
ple, but the high modularization degree and the emphasis given to the interaction
part make us believe that the method will scale up to bigger specifications. Since
the proof has not an associated mechanized deduction, it is subject to errors,
but the chances of correctness of this specification is much higher than totally
informal ones.

There are still some aspects that must be further studied:

1. from the software engineering point of view, issues such as refinement and
reutilization;
2. from the Web usage point of view, failure and security issues.

We expect the above item to be modeled without any major adaptation in
the present approach.

References

1. R. Amadio. An asynchronous model of locality, failure, and process mobility. In
Proceedings of COORDINATION 97, volume 1282 of Lecture Notes in Computer
Science. Springer Verlag, 1997.

10.

11.

G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer
Science, 96(1):217-248, 1992.

L. Cardelli. Abstractions for mobile computation. to appear as a chapter in Secure
Internet Programming, available from http://www.luca.demon.co.uk, 1999.

L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Foundations of
Software Science and Computational Structures, volume 1378 of Lecture Notes in
Computer Science, pages 140-155. Springer Verlag, 1998.

C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mo-
bile agents. In Proc. 7th International Conference on Concurrency Theory CON-
CUR 96, pages 406-421, 1996.

P. Glavan and D. Rosenzweig. Communicating Evolving Algebras. In E. Borger,
H. Kleine Biining, G. Jager, S. Martini, and M. M. Richter, editors, Computer
Science Logic, volume 702 of Lecture Notes in Computer Science, pages 182-215.
Springer, 1993.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

M. Maia and R. Bigonha. Interaction-based semantics for mobile objects. Tech-
nical Report LP 002/99, Universidade Federal de Minas Gerais, Programming
Languages Laboratory, Brazil, 1999. submitted to III Brazilian Symposium on
Programming Languages.

M. Maia, V. Iorio, and R. Bigonha. Interacting Abstract State Machines. In
Proceedings of the 28th Annual Conference of the German Society of Computer
Science, 1998.

W. May. Specifying Complex and Structured Systems with Evolving Algebras.
In TAPSOFT’97: Theory and Practice of Software Development, 7th International
Joint Conference CAAP/FASE, number 1214 in LNCS, pages 535-549. Springer,
1997.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and
IT). Information and Computation, 100:1-77, 1992.

