
An ASM�Based Approach for Mobile Systems

Marcelo de Almeida Maia� and Roberto da Silva Bigonha�

� Departamento de Computa�c�ao� Universidade Federal de Ouro Preto
Campus Morro do Cruzeiro� ��������� Ouro Preto MG� Brazil

URL� www�dcc�ufmg�br��marcmaia
email� marcmaia	dcc
ufmg
br

Phone� ��� �� ������ � Fax� ��� �� ������

� Departamento de Ci�encia da Computa�c�ao� Universidade Federal de Minas Gerais�
Av
 Ant�onio Carlos� ����� ��������� Belo Horizonte MG� Brazil

URL� www�dcc�ufmg�br��bigonha

Abstract� In this work we present the use of a novel language based
on Gurevich Abstract State Machines��� to specify active mobile objects
semantics
 We focus on the mobility support based on the explicit in�
teraction abstraction between units of speci�cation
 The mobility is ex�
pressed by changing the communication topology dynamically
 We pro�
vide the formal semantics of the new approach and show how the pro�
posed method provides an adequate way to reason about a speci�cation
based on mobile objects


Keywords� mobility� formal semantics� reasoning� ASM

� Introduction

The nineties have been marked by a great explosion in the use of the Internet�
The Wide World Web is accessible everywhere in the world� and this situation
causes a substantial impact on how people use computers� Tools for developing
the corresponding new generation of programs have been evolving to address
problems such as mobility� security� fault�tolerance and many others� But such
class of tools still lacks solid mathematical foundations that would help assessing
the �nal product behavior� Because of the inherent di�culty of these issues� i�e�
mobility and concurrency� the use of mathematical formalism to help the system�
atic development of correct new generation applications is even more imperative
than for the classical applications�

The methodology for producing ASM speci�cations provides a vertical ab�
straction mechanism� in the sense that the ground model �the model resulted
from converting the informal speci�cation into the method language� is succes�
sively re�ned until considered adequate� However� it still does lack some kind
of horizontal abstraction for composing existent speci�cations� In the context of
ASM� there is already some work in the direction of providing them with some



kind of horizontal abstraction� Glavan and Rosenzweig developed a theory of
concurrency ��	 that enables the encoding of some traditional calculus� such as
the ��calculus�

	 and the Chemical Abstract Machine ��	� However� Glavan�s
work does not explicitly address the problem of mobility and it does not support
encapsulation and information hiding mechanisms� issues which will be directly
treated in this work� May �
	 has developed a work with similar aims as ours�
and although it provides some form of encapsulation and information hiding�
the usual modularization concepts must be further added to the model� The
mobility issue is not considered either�

In order to address these issues� we have proposed in ��	 new abstraction
mechanisms in the context of ASM� namely the Interactive Abstract State Ma�
chines �IASM�� Our approach provides special constructions for explicit de�ni�
tion of how di�erent pieces of speci�cation interact with each other� so as to
free the user from the burden of providing the whole low�level speci�cation of
the communication topology and the message interchanging between di�erent
speci�cations� In ��	 we have shown how the mechanisms proposed in ��	 would
address the mobility issue� The present work provides a revised semantics of the
novel constructions in a style similar to the Lipari Guide��	� and we also provide
a more detailed reasoning of our case study�

The remainder of this paper is structured as follows� In the Section �� we set
the context on which we will be interested� In Section �� we give the semantics
of our extended language of IASM� In Section �� we show the adequacy of this
new approach by means of a case study� And �nally� in Section �� we summarize
our conclusions�

� Active Mobile Objects

The World�Wide�Web has originated a new model of computation that previ�
ous methods of speci�cation seems not to address satisfactorily� Here we will
not try to de�ne exactly what are all the necessary abstraction mechanisms to
support this new model of computation� Instead� we propose an abstract frame�
work on which important features of mobile systems may be reasoned about�
This framework eventually may be extended to support other features related
to mobile systems� We hope to demonstrate the ease of use provided by the new
speci�cation framework�

Perhaps� the main work that has in�uenced researches on formal semantics
for mobile systems is ��calculus�

	� where the channels of communication can be
transmitted over other channels� so that a process can dynamically acquire new
channels� The transmission of a channel over another channel gives the recipient
the ability to communicate on that channel� It is becoming a common approach�
the addition of discrete locations to a process calculus and consider failure of
those locations�
	��	� The work described in ��	 has added a notion of named
locations� and a notion of distributed failure� locations form a tree� and subtrees
can migrate from one part of the tree to another� therefore becoming subject to
di�erent observable failure patterns� Cardelli and Gordon� in a recent work��	�



argues for a more explicit notion of movement across boundaries� de�ning the
ambient calculus�

Instead� our approach for mobility is based on the dynamic construction of
distributed active daemons and on the dynamic con�guration of the communi�
cation topology between them� Our solution is entirely distributed� in the sense
that all global information may only be inferred by input�output interactions
with the environment� The location issue is addressed by local state information�
Barriers to mobility are addressed by pairwise commitment between interacting
units� Another di�erence of our approach is that it is not based on process alge�
bra� Instead� we use an operational approach to formalize our ideas�

� Interactive Abstract State Machines

In this section we present the Interactive Abstract State Machines �IASM� lan�
guage and its formal semantics� This extension is heavily based on the multi�
agent ASM�� Instead of using the established terminology of ASM� such as�
modules and agents� we prefer to introduce other related names� respectively�
unit de�nitions and unit instances� All basic concepts such as static algebras�
vocabularies� terms� universes� appropriate states� Fun notation� update sets�
basic rules and import rules should be borrowed from ��	�

An IASM speci�cation SPEC is a triple �CUD� V � M�� where�

� CUD is a collection of unit de�nitions UD�
� V is the vocabulary of the whole speci�cation�
� M is the main speci�cation�

A unit de�nition UD is a quintuple �N �� N �� IS � IR� IC� where�

� N � is a static nullary function name corresponding to the name of the unit
de�nition� Di�erent unit de�nition names are interpreted as di�erent ele�
ments� as suggested by multi�agent ASM semantics�

� N � is a universe name� i�e�� a unary relation name� The corresponding uni�
verse contains all unit instances derived from UD� We adopt the convention
of overloading this name� so we can use the same name for the unit de�nition
name and for the corresponding universe�

� IS de�nes the internal vocabulary Fun�UD� of UD�
� IR is the declaration of the interaction rule which guides the interaction of
the respective unit instances with their environment� This rule establishes
how communication between unit instances can occur� It does not only de�
�ne the information interchanging but also the synchronization restrictions
imposed between the units�

� IC is the declaration of the internal computation rule which updates the
local state of the instance� The internal rules of a unit de�nition have the
same syntax as those of the pure ASM model� They can refer only to the
respective instance view of the state� i�e�� references to the vocabulary of
other units are forbidden �as we will see in the de�nition of V��

� Distributed Ealgebras in the Lipari Guide




The vocabulary V � Fun�SPEC� of the whole speci�cation is de�ned as�

�
jCUDjS
i��

Fun�UDi�
�Self � � �

jCUDjS
i��

Lab�UDi�
�Self ��

Fun�M� � Messages � Connections � Aux� fDefg � fSelfg

where�

� Fun�UDi�
�Self is the internal vocabulary of the unit de�nition i� where

each function declared in UDi has its arity incremented by 
� and the extra
argument is the function Self� This assures that each instance has its local
state� Note that equal function names in di�erent unit de�nitions are in fact
the same name in V � but can coexist securely because their interpretations
for each unit instance are disjoint�

� Lab�UDi�
�Self is the collection of function names de�ned by the labels oc�

curring in UDi� such that Fun�UDi�
�Self� Lab�UDi�

�Self � �� There are
two kinds of labels�

� channel labels� a channel label c occurs in input� output and connection

rules� It de�nes a nullary static function name c which is interpreted as
a quotation of itself� i�e�� �c�� Obviously� we suppose �c�� X � where X
is the superuniverse�

�� counting labels� a counting label c occurs in labeled interaction rules and
de�nes a unary function name c� which is de�ned only in the argument
Self� In the initial state of SPEC� all these functions are interpreted as
 in Self argument�

� Fun�M� is the global vocabulary� i�e�� the collection of nullary function
names whose values are the static instances� and the collection of unit de��
nition names and their respective universe names�

� Messages is an auxiliary universe name which� in the same sense of the
ASM universe Reserve� is forbidden to be mentioned by any rule� It will be
manipulated by the input and output interaction rules�

� Connections is another auxiliary universe name which is also forbidden to
be mentioned by any rule� It will be manipulated by the connection interac�
tion rule�

� Aux is the collection of auxiliary functions names used to control the in�
teraction rules� We adopt the convention that the �rst character of all the
private functions names in Aux is the underscore � �� but� for the sake of
conciseness� we do not explicitly show how these function names are used
internally� since this could be straightforwardly induced� The public function
names will be introduced as needed�

� Def is the function which maps each unit instance u to its corresponding
unit de�nition name U� such that� Def�u��U�

� Self has the same role as in pure ASM�

The main speci�cation M de�nes the initial state of SPEC� and is a pair
�CSUI � CSC�� where�



extend Ui with x

Def�x��� Ui�

ui �� x�

Fig� �� Static instantiation rule

� CSUI is a collection of static unit instance declarations of the type u�U�
where u is a nullary function name whose value is supposed to be an instance
of the unit de�nition U �
Formally� let G�

� be the state resulted after �ring the following update set on
any V�state G� with superuniverse X � such that� G j� ��x � X�U�x��false�
jCSUIjS
i��

Updates�SInsti� G�� where SInsti � ui�Ui has the same update set of

the rule de�ned in Figure 
� Note that the �rst occurrence of Ui in rule refers
to universe Ui� whereas the second occurrence refers to the unit de�nition
name�

� CSC is a collection of static connections u� ��� u	� where u� and u	 are
static unit instances names in CSUI� Formally� if CSC � � then the initial
state of SPEC is G�

�� Otherwise� let c� be a function name in Fun�u���Self

and c� be a function name in Fun�u	��Self � such that� � ua���ub � CSC� in
the state G�

�� c� must be updated with the ua� and c� must be updated with
ub� Note that the vocabulary of ua and ub must have the required function
names in order to each ua ��� ub be a valid connection� Besides this� we
require that these function be uniquely identi�ed by assigning to them their
corresponding signatures in terms of universe names�

The V�stateG is a state of SPEC if it satis�es the restrictions imposed by UD�
V andM� An element u is a unit instance at G� if there is a unit de�nition name
U � such that� G j� Def�u��U and U�u��true� Let IRU and ICU be the interac�
tion and internal computation rules of the unit de�nition U � respectively� and 



be the concatenation of rules� The corresponding program of u is Prog�u� � IRU



 ICU � The vocabulary Fun�u� of u is Fun�UD�Self
U �� V iewu�G� is the reduct

of the V�state G of to vocabulary Fun�u��Self � Fun�M� � Messages �
Connections � Aux � fDefg � fSelfg expanded with Self� which is inter�
preted as u�

The execution of the whole speci�cation is based on the execution of each
unit instance� which is de�ned by their interaction and computation rules� A
unit instance u can make a move at G by �ring Prog�u� at V iewu�G�� and
changing G accordingly� Even if Fun�u��

�Self � Fun�u��
�Self �� �� neither u�

or u� cannot modify the state de�ned by the other� since this restriction is
imposed by construction of V �recall the introduction of an extra argument in
Fun�UDi�� 
 � i � n�� In order to perform a move of a instance u� �re�

Updates�u�G� � Updates�Prog�u�� V iewu�G�� �
Updates�IRU � V iewu�G�� � Updates�ICU � V iewu�G���



i ��� c�t �� u

j f�tt� �� u�c

j connect c�u�U�s in i

j new u�U j destroy u

j i 	 i j i � � i j i � l

j waiting�name�
j if guard then i

Fig� �� Interaction Rule

A run of SPEC is de�ned exactly in the same way of partially ordered runs
of multi�agent ASM� so we will omit the de�nition here� We can reuse the same
de�nition because the di�erence between multi�agent ASM and Interactive ASM
runs is in the de�nition of move� and the de�nition of a partially ordered run
does not rely on how a move is de�ned�

In order to complete the semantic description of Interactive ASM we need
to de�ne how the update set of an instance move is computed� In the following
sections we de�ne how to compute the update set of the interaction and inter�
nal rules� We have adopted an indented writing style� avoiding the use of the
delimiters endif� endconnection� Interaction rules are de�ned as in Figure ��

��� I�O Rules

Let Out � c�t �� u be output rule� where t is a term� c is the label of the out�
put channel� and u is a term representing the target unit instance� If t is a nullary
function name we may omit c and assume c�t� The update set Updates�Out�G�
is de�ned as Updates�Rout� G� where Rout is de�ned in Figure ��

Let In � f�tt� �� u�c be an input rule � where f is a function name� tt is
a tuple of terms whose length equals the arity of f� u is a term representing the
source unit instance and c is the label of the channel in the source unit instance�
The update set Updates�In�G� is de�ned as Updates�Rin� G� where Rin is de�
�ned in Figure �� Note that both input and output rules update the auxiliary
universe Messages in order to proceed with the interaction� An element of this
universe has three attributes� the target instance �target� which will receive
the message� the unit instance which has sent the message �source�� a label
indicating the source channel from where the message has been sent �label��
and the contents of the message �value��

��� Topology Con�guration Rules

Let Conn � connect c�u�U�s in i be a connection rule� where c is a label
de�ning the point of the connection inside the current instance� u is a term rep�
resenting the instance to be connected� U is the unit de�nition name from whose
de�nition u was derived� s is a function name such that� s � Fun�u�� and when



extend Messages with x

target�x��� u�

source�x��� Self�

label�x��� c�

value�x���t�

Fig� �� Output Rule Rout for t�c �� u

if �� m � Messages�

target�m� � Self � source�m� � u � label�m�� c then

choose m in Messages satisfying

target�m� � Self � source�m� � u � label�m�� c

f�tt� �� value�m��

Messages�m� �� false�

Fig� �� Input Rule Rin for f�tt� �� u�c

the connection is completely performed s is supposed to be updated with the cur�
rent instance� If u is a nullary function name� we may omit c and assume c�u� We
may also omit U and s� and assume that their corresponding value is undef� The
connection rule mainly updates the auxiliary universe Connections� whose ele�
ments are unordered� pairs of quintuples� ��u�� c�� U��o�� a��� �u�� c�� U��o�� a����
where ui are the unit instances of the connection� ci are the labels de�ning the
point of connection inside the current instance� Ui are the corresponding unit
de�nition names� oi are labels de�ning the point of connection in the other in�
stance� such that� when the connection is performed c� � o� and c� � o�� and ai
represent each instance awareness of the connection� for i � f
� �g� The connec�
tion rule is performed in three stages� what means that it takes at least three
moves to be completely performed� since the stages need to be performed in
sequence�


� In the �rst stage a connection with the other instance must be established�
There are three cases to be considered here�

�a� The connection rule de�nes which is the unit instance u to be connected
to� and that instance u had already attempted the connection� Formally�
this means that u is de�ned� and Connections��party�� party���� true�
where party� � �u� c� U� f� true�� party� ��v� k� V � x� false�� v � Self

or v � undef� k � f or k � undef� V � Def�Self� or V � undef� and x
� c or x � undef� If any of the values v� k� V � and x are interpreted as
undef� this means that the instance u does not require the corresponding
restriction connected� i�e�� any value for v� k� V � and x should satisfy�
In this �rst case Updates�Conn�G� for the �rst stage is the same as the
one de�ned by rule �a� in Figure ��

� i
e
� ��u�� c�� U��o�� a��� �u�� c�� U��o�� a��� � ��u�� c�� U��o�� a��� �u�� c�� U��o�� a���



�b� The connection rule de�nes which is the unit instance to be connected�
and that unit had not attempted the connection yet� Formally� this
means that u is de�ned� and Connections��party��party����false�
where party
 and party� are the same as above� In this case� there are
two stages to be performed in sequence� so these two stages takes at least
two moves to be performed�

i� The current unit instance has to warn the other instance that it is
attempting a connection� Formally� this means that the update set
Updates�Conn�G� for the �rst sub�stage of the �rst stage is the same
as the one de�ned by rule �b� in Figure ��

ii� The current unit instance waits until the other instance noti�es that
it is aware of the connection� Formally� the current instance checks
if the other instance had updated Connections� either with the in�
dication that it is aware of the connection� just like the rule �a� or
�c� in Figure �� or with rule �b� in Figure �� and in this case it is
necessary to �re rule �a� in Figure � to indicate that the current in�
stance is aware of the connect� When the above has been performed�
the private control functions in the sub�vocabulary Aux are properly
updated to release the sequence�

�c� The connection rule does not de�ne a speci�c unit instance to be con�
nected� In this case the only action the current instance Self can perform
is to check if there is any instance trying a connection such that Self
could satisfy� Formally� the current instance checks whether there is an el�
ement in Connections� such that� either party� or party� equals �a� b� A�
o� false�� where a�Self or a�undef� b�s or b�undef� A�Def�Self�
or A�undef� o�u or o�undef� If there is such element� let the other
connect point be k � v � V�f in a rule where the current instance must
notify the other instance� that it has properly accepted the connection�
Formally� this means that the update set used to establish the connection
is the same as de�ned by rule �c� in Figure �� Note that the unde�ned u

is properly updated with the other instance�

�� In the second stage the interaction i is performed� By induction� the update
set on this stage is Updates�i� G��

�� In the last stage the current unit instance must disconnect from the other
instance� Formally� this means that the element x that represented the con�
nection must be discarded� and if the function u was unde�ned before the
connection� it must continue unde�ned after the connection� Note that if x
has already been discarded by the other instance� Connections is not up�
dated� So the update set in this stage equals �fUpdate�� Connections�x��
false�� G�g � �� ��fUpdate��u� undef�� G�g���� where s� � s� means either
s� or s�� but not both�

Let Alloc � new u�U be an allocation rule� where u is the identi�cation of
the new instance� U is the unit de�nition from where u is derived� Formally�
the update set Updates�Alloc� G� � Updates�Ralloc� G�� where Ralloc rule is the



choose x in Connections satisfying

value�x� � �party�� party�� with

Connections�x� �� false�
extend Connections with x

value�x�����u
c
U
f
true�
�Self
f
Def�Self�
c
true���

�a�
extend Connections with x

value�x�����u
c
U
f
false�
�Self
f
Def�Self�
c
true���

�b�
choose x in Connections satisfying

value�x� � ��v
k
V
f
false�
�Self
f
Def�Self�
k
true�� with

Connections�x� �� false�
extend Connections with x

value�x�����v
k
V
f
true�
�Self
f
Def�Self�
k
true���

u �� v

�c�

Fig� �� Connection Rule

same as the rule in Figure 
� substituting u and U for ui and Ui� respectively�
This rule provides the dynamic instantiation of a unit�

Let Dealloc � destroy u be a deallocation rule� where u is the identi�cation
of instance to be discarded� Formally� the update set Updates�Dealloc� G� �
Updates�Rdealloc� G�� where Rdealloc rule is U�u� �� false� Def�u� �� undef�

��� Control Rules

Let Par � i� j i� be a parallel rule� where i�� i� are interaction rules� By induction
on i� and i�� we de�ne Updates�Par�G� � Updates�i�� G��Updates�i�� G�� The
operator j may be omitted� if desired�

Let Seq � i� �� i� be a sequential rule� where i�� i� are interaction rules� By
induction on i� and i�� let Updates�Seq�G� � Updates�i�� G� � Updates�i�� G��
There are some more semantics embedded in the sequential rule� Let u be any
unit instance� Let SM � m�� � � � �mr� for some �nite r� be a initial valid sequence
of moves performed by unit u� Let SSM � mseq�� � � � �mseqr be a subsequence of
SM � such that� the rule Seq � i� �� i� is ready to be �red on� and only on� each
mseqi �
 � i � seqr�� Suppose mi � mseqm� and mj � mseqn� for some i� j �
f
� � � � � rg� and for some seqm� seqn � fseq
� � � � � seqrg� If i � j then seqm �

seqn� but not necessarily mi�� � mseqm��� By induction on seq
� � � � � seqr� the
update set Updates�Seq�G� is calculated as Updates�i�� G� on mseq�� Suppose
on move mseqi �
 � i � seqr�� Updates�Seq�G� is calculated as Updates�i�� G��
Then� on move mseqi��� Updates�Seq�G� is calculated as��

Updates�i�� G� if i� has been completely performed
Updates�i�� G� otherwise�

Alternatively� if on mseqi� Updates�Seq�G� is calculated as Updates�i�� G��
i�e��



�
Updates�i�� G� if i� has been completely performed
Updates�i�� G� otherwise�

An interaction i will be completely performed in a move m� if and only if�

� i is an input rule and there is a message in Messages satisfying the input
condition� and thus enabling the update of the target function on move m�

� i is a connection rule the disconnection occurs on move m�
� i is a synchronization rule and the corresponding waiting function is up�
dated to false by the internal computation rules on move m�

� i is any other rule to be performed on move m�

Note� The necessity or not of the sequential rule may be a point for con�
troversy� because pure ASM avoid this notation in favor of more logical trans�
parency� We argue for the need of the sequential rule because it makes the
interaction rule of a unit de�nition clear� in the sense that in the interaction rule
it is forbidden explicit update rules� Otherwise� the conceptual transparency of
the interaction rule would be lost� if updates were allowed�

Let Cond � if g then i� else i� be a conditional rule� where i�� i� are
interaction rules� By induction on i� and i�� we de�ne Updates�Cond�G� �
Updates�i�� G� � Updates�i�� G�� If the guard g is evaluated to true on state G
the update set is Updates�i�� G�� otherwise it is Updates�i�� G��

Let Sync � waiting�name�be a synchronization rule� where name is a nullary
function name� and waiting is a unary public function name in Aux� The func�
tion name must be used only as argument for the waiting function� Di�erent
function names used as arguments for the waiting function are interpreted as dif�
ferent elements� When the waiting rule is performed� the waiting function is
updated to true and the waiting rule is completely performed when the internal
computation rules update the waiting function to false�

Let Lab � i � label be a labeled rule� where i is a interaction rule and
label is a nullary public function name in Aux� By induction� the update set
Updates�Lab� G� is Updates�i� G�� �fUpdate��label� label� ��� G�g � ��� The
update that increments the value of label has to be �red in the same move that
i is completely performed�

��� Internal Computation Rules

The internal computation rules have the same syntax and the same meaning of
pure ASM rules� The only restriction is that rules can mention only function
names in Vlocal� where Vlocal is a subset of V equals Fun�u��Self � Auxpublic �
fDefg � fSelfg� where Auxpublic is the subset of Aux which contains the public
functions names�

� A Case Study� The Program Committee Problem

Let us give a problem to be speci�ed� This will be useful when comparing this
approach with others and for illustrating its reasoning capability� Following the



A conference is announced� and an electronic submission form is publicized� Each
author fetches the form and activates it� Each author �lls an instance of the form
with the required data and attaches a paper� The form checks that none of the
required �elds are left blank and sends the data and the paper to the program chair�
The program chair collects the submission forms and assigns the submissions to
the committee members� by instructing each submission form to generate a review
form for each assigned member� Each assigned member is a reviewer� and may
decide to review the paper directly or to send it to another reviewer� The review
form keeps track of the chain of reviewers� Eventually� a review is �lled and it �nds
its way back to the program chair� The program chair collects all review forms�
The chair merges all review forms for each paper in a paper report form� Then the
chair declares each report form an accepted paper report form� or a rejected paper
review form� and �nally returns this form to each author� All accepted paper report
forms are required to generate �nal version forms on which the author attaches
the �nal version of the paper and sends it back to the program chair�

Fig� �� Problem Speci�cation

traditional ASM philosophy we do not plan to introduce a logical calculus to
prove properties about the speci�cation� Instead� we make rigorous� mathemat�
ical reasoning but without an associated formal system�

The Figure � reproduces verbatim a simpli�ed and modi�ed version of the
problem consisting in managing a virtual program committee meeting for a con�
ference� The problem was presented as a challenge in ��	�

Now we will give a partial Interactive ASM semantics for this problem� We
will focus on the interaction section of the speci�cation and will intentionally
omit the declaration of the internal state and the the internal rules of each
unit� for the sake of conciseness and to show how the relative independence of
the interaction rules from the internal computation rules provides an adequate
mechanism for modular reasoning�

In Figure �� we present the unit de�nition Author which models the behavior
an author must have in order to correctly participate of a call for papers� It has
the following three parallel actions�


� Whenever there is a paper ready to be submitted� the nullary function
wants to submit �supposed to be initiated with false� will be set to true

by an internal computation rule and the �rst action will be enabled� This
action requires a connection with any instance derived from Submission� and
then� i� performs an output of the paper and respective data� which are sup�
posed to be consistently updated by the internal computation rules� ii� and
performs an input from the Submission instance indicating if the paper was
properly received�

�� Whenever an author gets a response from a Submission instance� it inter�
nally either decides to re�send the paper� or to stay waiting the result of
the submitted� or even to send another paper� All these actions should be



unit Author





interaction
if �wants to submit� then

connect s � Submission
a in
data paper �� s��
response �� s
response � responses

if �waiting result� then
connect the chair� Chair
author result

result �� the chair
result
if �ready �nal� then

connect the chair� Chair
author �nal
�nal �� the chair






Fig� �� Unit Author

unit Submission





interaction
connect a� Author
s in

data paper �� a
data paper��
waiting�checking data���
if �data ok� then

response��ok� �� a
connect the chair� Chair
s in

data paper �� the chair��
else

response��fail� �� a





Fig� 	� Unit Submission

speci�ed by the internal rules� In the case of waiting the result of the sub�
mission� all we know is that the function waiting result should be set to
true by the internal computation rules� Whenever this occurs� the second
action will be waiting a connection from the unit the chair� which is a static
instantiated one� Note that the function the chair declared inside the unit
Author is presumably initiated with the static instance the chair declared
in the main speci�cation de�ned in the sequel� Whenever the connection is
performed� the action will be waiting the result to be sent from the chair�

�� The third action is similar to the previous one� whenever an author gets the
result it decides internally to send the �nal version� and so on�

The unit de�nition Submission acts as an intermediary between an author
and the chair� It models an agent that interacts with the author of a paper� get�
ting all necessary information with an attached paper� The internal rules should
make all the necessary checking� including the one that prevents papers being
submitted after the deadline� An agent instantiated from Submission performs
the following action�


� It requests a connection with an author� Note that if there is not any au�
thor wanting a connection� nothing is done� Then i� it receives the paper



unit Chair





interaction
if �accepting submissions� then

connect s� Submission
the chair in
data paper �� s
data paper ��
waiting�store paper�

if �data papers �� nil� then
waiting�one paper��� waiting�a reviewer���
connect reviewer � Reviewer
the chair paper in

a paper �� reviewer � sent reviews
if �sent reviews � received reviews� then

connect r� Reviewer
the chair review in
review �� r
the review � received reviews

if �result ok� and �not all noti�ed� then
waiting�a result���
connect author result� Author
the chair in

result �� author result
if �receiving �nal versions� then

connect author �nal� Author
the chair in
�nal �� author �nal
�nal






Fig� 
� Unit Chair

and respective data from the author� ii� waits until the data is checked�
and iii� sends a response to the respective author� If the data is valid� the
agent requests a connection with the chair� Then� i� it sends the paper and
respective data to the chair�

The unit Chair has �ve parallel actions� each one represented by a guarded
rule evaluated depending only on its internal state�


� The �rst action is enabled by an internal function which is presumably initi�
ated with true� It requires a connection with a Submission instance� possibly
attempting a connection� and if there is such one� it receives a paper and
the respective data� and then it waits until the internal computation rules
store the received paper and its respective data into an internal function
data papers which represents a bu�er that contains all papers that still
need to be sent to reviewers�

�� The second action checks if the bu�er for papers is not empty and then waits
an internal selection of a pair paper�reviewer and dispatches the respective
paper� Note that the channel that will receive the paper in the unit Review
is the chair paper�

�� The third action action checks if still there are any papers that were not
sent back by the reviewers� This checking is made easily� because we have
labels counting the sent and received papers� respectively� sent reviews and
received reviews� Note that the channel that will send the paper in the
unit Review is the chair review�

�� The fourth action waits an internal processing of the results �represented by
the guard result ok� and will be enabled only if there is any author that
was not noti�ed �represented by the not all notified��



�� Finally the last action connects to authors wanting to send the �nal version
of the paper and receives the respective version�

The unit Reviewer has an elaborated scheme for creating the dynamic com�
munication between reviewers� An agent instantiated from the unit Reviewer
has basically two parallel interaction tasks�


� It gets a paper from the chair and� either directly reviews the paper� or sends
it to another reviewer together with a blank review form�
Note that it is opened two connections to the same Chair instance� This
is necessary because the chair can be connected in the same step with
two di�erent reviewers� one that receives a paper for review and other that
returns a reviewed paper� In order to solve this situation the chair connects
to di�erent function names in unit Reviewer� namely the chair paper and
the chair review� Whenever a paper is sent from a reviewer to another� it
is managed a list of reviewers which forwarded the paper and the respective
review� The static function firsthistory is internally de�ned to be a list
with only two elements� self� the chair�� Note how the use of labels that
makes the input�output matching possible�

�� The agent receives a paper from another reviewer and if the paper is already
reviewed� the agent either passes the paper back to the chair� or passes it
to the appropriate reviewer� If the paper is not reviewed� the agent either
directly reviews the paper and passes it to the appropriate reviewer or just
sends the paper to another reviewer� Note that when passing a paper forward�
the agent adds its identi�cation to the history of the reviewers for that paper�
When passing a paper backward in the history� it removes a reviewer from
the list being sent backward with the review�
One of the new features in this action is the use of terms in the connect and
output rules� Note that the function name other is crucially used by other
connect rules when passing a paper forward or backward� After receiving
a paper from another reviewer� the current one redirects the paper and re�
spective review through three possible rules� Note that while redirecting the
paper� the history is also being handled�

At last� in Figure 

� we specify the startup speci�cation creating some initial
unit instances� Other instances must have to be created dynamically by some
Authorization unit� intentionally not speci�ed� Now� we are going to present some
propositions about the previous example and show their validity to illustrate the
reasoning mechanism�

Consider the following assumptions about the initial state and the internal
computation rules�

� �Author��� The function wants to submit equals true whenever there is a
paper ready to be submitted�



unit Reviewer





interaction
if �receiving from the chair� then

connect the chair paper� Chair
reviewer in
a paper �� the chair paper
a paper endconnect ��

if �directly review� then
waiting�the review���
connect the chair review� Chair
r in

the review �� the chair review
else

waiting�a reviewer����
connect r�r�� Reviewer
other in

history��rsthistory �� r j
a paper �� r j
review�blank �� r

if �receiving from others� then
connect other� Reviewer
r in

history� �� other
history j
a paper� �� other
a paper j
review� �� other
review endconnect ��

if �review� �� blank� and
head�history�� � the chair review� then

connect the chair review� Chair
r in
the review�review� �� the chair

elseif �review� �� blank or directly review� then
if �directly review� then

wait�the review�� ��
connect r�head�history�� � Review
other in

history�tail�history�� �� head�history�� j
a paper�a paper� �� head�history�� j
review�review� �� head�history��

else
waiting�a reviewer����
connect r�r�� Reviewer
other in

history�cons�Self� history�� �� r j
a paper�a paper� �� r j
review�review� �� r






Fig� ��� Unit Reviewer

main speci�cation
the chair� Chair�
committee member�� Reviewer�




committee memberN� Reviewer�
secretary�� Submission�




secretaryN� Submission�

end speci�cation

Fig� ��� Startup Speci�cation



�
 Author�connect s� Submission�a�
Submission�connect a� Author�s

�
 Author�connect the chair� Chair�author result�
Chair�connect author result� Author�the chair

�
 Author�connect the chair� Chair�author final�
Chair�connect author final� Author�the chair

�
 Submission�connect the chair� Chair�s�
Chair�connect s�Submission�the chair

�
 Chair�connect reviewer� Reviewer�the chair paper�
Reviewer�connect the chair paper� Chair�reviewer

�
 Chair�connect r� Reviewer�the chair review�
Reviewer�connect the chair review� Chair�r

�
 Reviewer�connect r�r� Reviewer�other�
Reviewer�connect other� Reviewer�r

�
 Reviewer�connect r�head�history��� Reviewer�other�
Reviewer�connect other� Reviewer�r


 Reviewer�connect r�r�� Reviewer�other�
Reviewer�connect other� Reviewer�r

Fig� ��� Valid Connections

� �Author��� Initial state� the chair�self� � the chair and s�self� � x�
such that x� Submission�

� �Submission��� Initial state� the chair�self� � the chair and a�self� �

undef�
� �Chair��� Initial state� r�self� � undef� author final�self� � undef�

s�self� � undef�
� �Chair��� The internal computation rules update adequately the functions
occurring in the guards� so as to correctly perform the conditional rules�

� �Chair��� The internal computation rules update adequately� i� the function
a paper with a paper to be sent to reviewer� ii� reviewer with the selected
reviewer of a paper and iii� the function author result with the author
which has to receive a result�

� �Chair��� The same result is not sent back to the author more than once� by
assuming the internal computation rules produce just one result per submis�
sion�

� �Reviewer��� Initial state� other�self� � undef� the chair paper�self�

� the chair� the chair review�self� � the chair�
� �Reviewer��� The internal computation rules update adequately the functions
occurring in the guards� so as to correctly perform the conditional rules�

� �Reviewer��� The internal computation rules update adequately the functions
r� and r	 with other selected reviewers for a paper�

Proposition �� All connections in Figure �� will be completely performed when
necessary�

Proof Sketch�


� Let x be an instance of Author� and y be an instance of Submission�
By Author�� the connect rule of Author will be executed when neces�
sary� The case for the connect rule in the �rst stage is case �b� because�



by Author�� the function s is de�ned and� by Submission�� no instance
of Submission could have updated Connect� since function a is unde�
�ned� The connect rule of y is always readily to be performed since it is
a top�level rule� By Submission�� the case for the connect rule of y for
the �rst stage is �c� since the function a is unde�ned� So� on a �rst step
x extends Connections with ��y��s�� Submission� �a�� false�� �x�

�a�� Author� �s�� true��� and stays waiting for the awareness of y� On
a second step� y �res the update set �c� of Figure �� because there is above
element insert by x is the required element� Finally� on a third step x is
realesed and the two connection are aware and the inner interaction rule can
be performed�

�� Let x be an author which is selected by the chair to receive the result� In
this connection� the chair is de�ned in x� and author result is de�ned
in the chair� by Author� and Chair�� respectively� So� the cases for both
connection rules are either cases �a� or �b� of the �rst stage� There are two
possibilities�
�a� Both instances update Connections with rule �b� of Figure � in the

same move� Note that in this case there will be two equal elements in
Connections� but there is no problem since when disconnecting� each
instance removes an element� On a second step� both instances will �re
rule �a� to indicate that they are aware of the connection�

�b� One instance updates Connections in advance with rule �b�� On a sec�
ond step� the other instance enters the case �a� of the connect semantics
and �res rule �a� of Figure �� On a third step� the instance which was
waiting completes the connection�

�� Let x be an instance of Author� Not that the chair is the only instance of
Chair� The case for the connection rule of x is case �b� because� by Author��
the function the chair is de�ned and� by Chair�� no instance of Chair
could have updated Connect� since function author final is unde�ned� By
Chair�� the connect rule of y will be to be performed� By Chair�� the case
for the connect rule of the chair for the �rst stage is �c� since the function
author result is unde�ned� The steps are the same as item 
�

�� Similar to item ��
�� Similar to item ��
�� Similar to item ��
�� Similar to item �� Note that r is de�ned and other is unde�ned�
�� Similar to item ��
�� Similar to item ���

Proposition �� All papers received by the chair are sent to a reviewer�

Proof Sketch� This is guaranteed by the second guard of the unit de�nition
Chair� that dispatches any submission that has not been sent to any reviewer�
Since this guard is executed in parallel with all the others� it will be executed
without being blocked� By Chair�� it will be selected a pair paper�reviewer� The
connection with the appropriate reviewer in the channel the chair paper is
guaranteed by Proposition 
��



Proposition �� The chair waits for the devolution of all papers sent to review�
ers�

Proof Sketch� This can be easily checked with the counters for the number
of sent papers and the number of received papers� Whenever sent reviews be
greater than received reviews� the chair will be waiting a connection with a
reviewer��

Proposition �� All reviewed papers certainly reaches back the chair�

Proof Sketch� Let the chair� r�� � � � � rn be the instances which have received
a paper p and let rn be the reviewer of p� When r� receives p from the chair� it
sends the history r�� the chair� to r�� By induction on i� when ri receives p
the history is ri��� � � � � r�� the chair�� If i � n then rn reviews p and sends the
history ri��� � � � � r�� the chair� to ri��� Again� by induction on i� the review
will reach the chair� Since� by Proposition 
� all connections will be performed�
then all input�output rules will also be performed to enable the �ow of the
review��

Proposition 	� All submissions received by the chair generate a report form to
the author if� and only if� there is a reviewer that directly reviews the paper�

Proof Sketch�


� If� for each paper� there is a direct reviewer for it� then all submissions
generates a report form� We have that all the papers received by the chair
are sent to a reviewer by Proposition ��
If the paper is already reviewed there are two possibilities� i� The chair is
the head of the history list �the chair review is assumed to be initiated
with the static instance the chair�� Since the connection is guaranteed by
Proposition 
 the review reaches the chair� ii� The chair is not the head of
the history list� It is assumed that since a reviewer instance has the function
receiving from others set to true� it will not change this function� and so
the head of the history list will forever be enabled to be connected� Since
the connection is guaranteed� the history list is guaranteed to be consumed
until head evaluates to the chair� because by de�nition �rst element of the
history is the chair�
If the paper is not reviewed there are two possibilities� i� The reviewer di�
rectly reviews the paper and send it back through the history list� The review
will certainly reaches the chair� and this is guaranteed in the same way of
the previous item� ii� The reviewer does not review the paper� But� by as�
sumption� there will be a reviewer that directly reviews the paper� So� by
the previous item� the paper will certainly be sent back through its history
when reviewed�
Finally� assuming that the internal behavior of the chair produces the �nal
result when all the reviews of the paper had come back� then by the fourth
guard of the unit Chair� we can guarantee that all results are sent back to
the authors� since the connection will be eventually established�



�� All submissions would have back the result report� only if there is a reviewer
that directly reviews each paper�
Suppose if� for a certainly review� there is not a reviewer that directly reviews
it� Then� that review will never be sent to the chair� and consequently� will
not be sent to the author�
Depending on the internal behavior of the chair when preparing the result� it
may happen that none of the authors receives the review� but this situation
has to be addressed elsewhere��

There are many issues that have not been addressed in the above speci�cation�
such as� timing constraints and failures� But this is just a problem of re�ning
the speci�cation� In ��	 we have modeled an unreliable channel using additional
unit de�nitions�

� Conclusions

The simple� yet powerful language presented is suitable for producing clear mo�
bile ASM speci�cations� The idea of explicitly isolating the interaction between
computing units with di�erent purposes makes clear their interdependencies�
and provides an independent mechanism to reason about the agent interactions�
This can be seen in this paper since we have not speci�ed the internal computa�
tion rules in our case study� and we still have reasoned about the speci�cation�
making independent assumptions about the internal rules�

The explicit interaction for connecting agents� even with a simple meaning�
has several usages� binds internal names dynamically� provides dynamic commu�
nication topology useful for specifying a wide spectrum of concurrent programs�
and resembles Web connections� The application migration is not modeled by a
code movement� but only by an update on the connection�

We have shown the reasoning capability of the method for a simpli�ed exam�
ple� but the high modularization degree and the emphasis given to the interaction
part make us believe that the method will scale up to bigger speci�cations� Since
the proof has not an associated mechanized deduction� it is subject to errors�
but the chances of correctness of this speci�cation is much higher than totally
informal ones�

There are still some aspects that must be further studied�


� from the software engineering point of view� issues such as re�nement and
reutilization�

�� from the Web usage point of view� failure and security issues�

We expect the above item to be modeled without any major adaptation in
the present approach�

References

�
 R
 Amadio
 An asynchronous model of locality� failure� and process mobility
 In
Proceedings of COORDINATION ��� volume ���� of Lecture Notes in Computer
Science
 Springer Verlag� ��




�
 G
 Berry and G
 Boudol
 The Chemical Abstract Machine
 Theoretical Computer
Science� ������������� ��


�
 L
 Cardelli
 Abstractions for mobile computation
 to appear as a chapter in Secure
Internet Programming� available from http���www
luca
demon
co
uk� �


�
 L
 Cardelli and A
 Gordon
 Mobile ambients
 In M
 Nivat� editor� Foundations of
Software Science and Computational Structures� volume ���� of Lecture Notes in
Computer Science� pages �������
 Springer Verlag� ��


�
 C
 Fournet� G
 Gonthier� J
�J
 L�evy� L
 Maranget� and D
 R�emy
 A calculus of mo�
bile agents
 In Proc� �th International Conference on Concurrency Theory CON�
CUR ��� pages �������� ��


�
 P
 Glavan and D
 Rosenzweig
 Communicating Evolving Algebras
 In E
 B�orger�
H
 Kleine B�uning� G
 J�ager� S
 Martini� and M
 M
 Richter� editors� Computer
Science Logic� volume ��� of Lecture Notes in Computer Science� pages �������

Springer� ��


�
 Y
 Gurevich
 Evolving Algebras ��� Lipari Guide
 In E
 B�orger� editor� Speci��
cation and Validation Methods� pages ���
 Oxford University Press� ��


�
 M
 Maia and R
 Bigonha
 Interaction�based semantics for mobile objects
 Tech�
nical Report LP ����� Universidade Federal de Minas Gerais� Programming
Languages Laboratory� Brazil� �
 submitted to III Brazilian Symposium on
Programming Languages



 M
 Maia� V
 Iorio� and R
 Bigonha
 Interacting Abstract State Machines
 In
Proceedings of the ��th Annual Conference of the German Society of Computer
Science� ��


��
 W
 May
 Specifying Complex and Structured Systems with Evolving Algebras

In TAPSOFT	��
 Theory and Practice of Software Development� �th International
Joint Conference CAAP�FASE� number ���� in LNCS� pages ������
 Springer�
��


��
 R
 Milner� J
 Parrow� and D
 Walker
 A calculus of mobile processes �Parts I and
II�
 Information and Computation� ��������� ��



