
A Literate Logic Programming System

Pierre Deransart 1

Roberto da Silva Bigonha
Patrick Parot 2

Mariza Andrade da Silva Bigonha
José de Siqueira

Universidade Federal de Minas Gerais
Departamento de Ciência da Computação

Abstract

The purpose of this paper is to present an experimental hypertext programming environ-
ment for PROLOG based dialects and its application to some logic program development
according to a logic programming methodology. The genericity of the tool makes it easily
adaptable to other logic programming languages and to other applications in the field of
logic programs development, in particular to handle logic programs with constraints. The
proposed tool permits to record all the experiences accumulated during the life cycle of a
software.

1 The Software Documentation Problem

Software documentation is a perennial problem and a very important issue which still does
not have a satisfactory solution. Software systems evolve along their lifetime and thus
require continuous maintenance, which is usually expensive and difficult to accomplish
because most systems are poorly documented. Indeed, software documentation is often
nonexistent, incomplete or out-of-date.

Information contents of software documentation are naturally redundant, since the
main purpose of any documented software is to provide at least two alternative views of
the same material: the program view for the machine and the text view in a literate style
for human consumption. It is also a fact that program documentation tends to become a
large collection of files, which is prone to discourage programmers to keep the text part
of the documentation up-to-date to the corresponding software. A good documentation
system should then provide ways to check automatically inconsistency of this kind, perhaps
by creating strong ties between the documentation and its related pieces of programs. The
consistency between descriptive texts and the corresponding program code should be always
enforced somehow.

Additionally, modern program documentation must be computer processable and com-
pilable, so errors in coding can be detected earlier in the design process. All error messages,

1Institut National de Recherche en Informatique et en Automatique–France
2Service de Cooperation (CSN) France



including those produced by compilers, must refer to the original document files, so that
programmers should be encourage to do debugging or testing only on the original document
files.

Documentation of software must also be organized in a way to provide different levels
of abstraction of the documented software in order to help the understanding of large
systems.

2 Characteristics of Logic Programming

Logic Programming is issued from researches in Artificial Intelligence and Logics. Software
engineering tradition has been of relatively few influence on discovery and design of pro-
gramming languages and adapted environments based on the new logical paradigms. Furt-
hermore the axiomatic form of logic programming makes programs similar to executable
specifications, and therefore more attention has been given to their use in rapid prototy-
ping rather than their use in very large applications. Logic program documentation and
verification have thus received relatively little attention. In contrast implementations have
been considerably improved and new logic programming languages compete favorably with
commonly used imperative languages. Although a language like Prolog has reached an in-
dustrial maturity (there exists now an ISO standard [5, 9]), it is not as extensively used as
it could be. People realize now that the lack of well adapted development tools is one of
the reasons for its painful growing.

On the other side, the positive qualities of logic programming (highly declarative lan-
guage, versatility, natural modularity, robustness) recommend various industrial applica-
tion (see [3] for a survey), also limited by the lack of good development tools. Nowaday
the need for such tools is well recognized. Classical tools, developed for imperative or
functional programming, cannot be directly re-used. The peculiarities of logic program-
ming demand for well adapted tools which take into account the high level and declarative
aspects of the language.

With Constraint Logic Programming (CLP) the situation is even more acute: CLP
programs are relatively short pieces of code, but often constitute the sensible kernel of
an application. Due to their high level of expressiveness they are closer to a specification
rather than to a traditional program. Furthermore, due to commitment to efficiency of
implementations, the same CLP program is maintained along the whole life cycle of the
application: from its conception until its final uses and further improvements or updating.
This has an important consequence: there must be some way to maintain also the whole
documentation concerning the program of an application, during its whole life.

3 Logic Programming Tools

Logic program development has been considered by different authors from different points
of view. Most of them consider program development as a transformation process from
a specification to an efficient Prolog program. Deville [6] starts from first order logical
formulas and “mode” declarations. More generally mode declarations can be viewed as
type declarations. His ideas have been experimented in the FOLON system [7]. The system



imposes a strict discipline in logic program development and performs automatically some
optimizing transformations. Leon Sterling (Case Western Research University, Ohio, USA)
and Jan Komorowski (University of Trondheim, Norway) developed pure logic program
transformation systems to progressively (and semi automatically) specialize programs by
applying transformation rules. A complete survey on logic program transformation can be
found in [19].

Most of the systems are intended to help the programmer in developing correct pro-
grams, or verifying afterwards that the program satisfies some properties. In logic pro-
gramming different kinds of proof systems have been designed. In [17] one of these system
is described. In [4] a systematic approach for logic program validation is presented. Some
of the ideas have been implemented in the system LDS2 described in [30] and used to
define a methodology for writing specifications in logic programming style [1, 2].

4 Other Systems for Documentation

At the current state-of-the-art, there are no satisfactory tools or widely accepted metho-
dologies for documenting PROLOG programs. Knuth’s Literate Programming philosophy for
documenting Pascal or C programs [11, 13, 14, 12] apparently offers the basis to esta-
blishing a methodology to document programs in the logic programming paradigm, but it
seems not sufficient as we shall see.

In the context of Web-like literate programming systems developed since 1984, the
followings are the most important documentation systems: 1) Knuth’s Web for Pascal and
C [11, 12, 14]; 2) Ramsey’s Noweb [25, 24, 26]; 3) Thimbleby’s Cweb [32], a variant of
Knuth’s Web; 4) Ramsey’s Spider [27], which is a Web generator.

The basic idea behind Literate Programming is founded on three languages: a type-
setting language, such as LaTEX [15]; a programming language, such as Pascal, and a
language which allows flexible combination of the typesetting and the programming texts
into a single document. A literate program contains pieces of programs interleaved with
descriptive texts. A literate programming system integrates these languages by provi-
ding tools to extract (and process), from the input files, program texts and to generate
documents containing summaries, index tables, cross-references, etc. The result is called
‘literate programming’ because the final document is not only readable, but may, according
to Knuth [12], actually be appreciated as literature work.

Donald Knuth introduced literate programming in the form of Web, his tool for writing
literate Pascal programs [11]. Since then, many other systems have been designed in order
to satisfy particular styles of literate programming. In the mid ’80s, Web was adapted
to programming languages other than Pascal, including C, Modula-2, Fortran, Ada, and
others [32, 27].

Cweb [32] is a tool to produce program documentation in a combination of C, the
programming language, and troff, a text-formating language. The combined code and do-
cumentation can be processed and possibly typeset to result in a high-quality presentation
including a table of contents, index, cross-referencing information, and related typographi-
cal conventions. Cweb differs from Knuth’s Web system mainly in the choice of languages:
Web is based on Pascal and TEX instead of C and troff (or nroff) as in Cweb.



Spider[27] was designed for developing verified Ada programs. The difficulty of using
Web directly is that the target programming language is SSL (language for specifying
structured editors), and the only languages for which Web implementations were available
were Pascal and C. Spider is in fact a Web generator, akin to parser generators. Using
Spider the user can build a Web without understanding the details of web’s implementation,
and can easily adjust that Web to language definition changes.

Recently, Norman Ramsey has proposed a new literate programming system, called
Noweb [25, 24, 26], which is intended to be a simple and extensible tool. It was developed

on Unix and can be ported to non-Unix systems provided that they can simulate pipelines
and support both ANSI-C and either awk or icon. Noweb can also work with HTML, the
hypertext markup language for Netscape and the World-Wide Web.

A Noweb file is a sequence of chunks. A chunk may contain code or documentation
texts, and may appear in any order. Code chunks contain program source code and refe-
rences to other code chunks. Several code chunks may have the same name. Noweb tools
are implemented as pipelines. Each pipeline begins with the Noweb source file. Successive
stages of the pipeline implement simple transformations of the source until the desired
results appears in the end of the pipeline. Users change or extend Noweb by inserting or
removing pipelines stages rather than recompiling it.

Ramsey claims that Noweb is simpler than Knuth’s Web due to its independence
on the target programming language, but it also means that Noweb can do less. The
system is extensible in the sense that new tools can be easily added to it, requiring no
reprogramming. Its weave tool preserves white spaces and program indentation when
expanding chunks. Theses features are necessary to document programs in languages like
Miranda and Haskell, in which indentation is significant. In Noweb one can extract more
than one program from a single source file. It also generates compiler directives so as to
give the underlying compiler the location of lines on the original input files. This facility
helps issuing good error messages.

Most of the differences between Web and Noweb come from the fact that Web has
language-dependent features which are not present in Noweb. Web works poorly with
LaTEX, which cannot be used in Web source, and requires tedious adjustments by hand
to get weave output to work in LaTEX documents. At last, Noweb works with both plain
TEX and LaTEX. Web takes the monolithic view of literate programming, while Noweb’s
approach is to compose simple tools that manipulate files in the Noweb format.

Modern tools [26], like Nuweb and Funnelweb, are also language-independent. To users
Noweb looks very similar to Nuweb. There are only minor syntactic differences: Nuweb

uses markup within the source file instead of command-line options to show things like the
names of output files, but both are simple ad easy to master. Funnelweb is a complex tool
that includes its own typesetting language and command shell.

Concluding, no system today has gone beyond the experimental stage or beyond the
capacity to handle small programs. Programming in the large with such systems is an
objective still far to be reached. Moreover the problem of documenting the programs is
marginally considered.

Our purpose is thus to offer a tool which permits to record all the experiences accumu-
lated when developing an application based on (constraint) logic programming, and when
maintaining it. The high level of expressiveness of constraint logic programming makes



possible to consider a program as an executable specification. It is thus quite clear what
such system has to provide: i) an easy way to mixture natural language comments and pro-
gram with text editing facilities; ii) program debugging functionalities and iii) validation
tools with easy interfaces.

Following this idea, we propose to consider a CLP program as a unique document
written with a methodology which takes into account the peculiar aspects of logic pro-
gramming. All information concerning the program development and its maintainance will
be recorded in this single document. Obviously such a document will grow very quickly and
therefore functions to help writers or readers to handle and to use it must be defined. The
experimental system, called HyperPro, we propose is based on the hypertext system Thot
[23]. The purpose of HyperPro is to handle such documents and facilitate logic programs
development.

We also present a methodology to develop and document logic program based on the
methods for a structured elaboration of code and comments that have been investigated
by Deransart and Renault [31].

5 Proposed Methodology

The HyperPro system offers a way to handle two basic aspects: text editing and CLP
programming. For text editing it uses the Thot system [23]. A HyperPro program is a
Thot document written in a report style.

A HyperPro program contains also specific paragraphs which correspond to relation
definitions. Their format reflects strictly the methodology required for CLP program deve-
lopment. The methodology is based on the works described in [1, 4, 16, 30]. It uses simple
basic principles: in CLP the program unit is a packet of clauses characterizing a relation.
Thanks to the declarative aspect of relational programming a relation definition may be
understood by just looking at the clauses and the informal definitions of the predicates
used in their bodies. The nature of comments is obviously important: it must bring a re-
dundant but different information. For such purpose different kinds of informations must
be provided, which are precisely defined in the methodology. On the other side, the text
editing system must provide facilities to navigate inside the program and its comments.

We first explain the basic piece of the methodology (the relation definition), then we
describe the different functionalities of the HyperPro system.

5.1 The Relation Definitions

Relation definitions (RD) consists of two items: one containing the name and arity of the
predicate, say, for example, safe/1 and the second being a sequence of predicate definitions.
Each predicate definition is built on the same model and has two to four items: one
informal comment (called Definition), optional type statements (called Types), optional
assertions (called Assertions) and the packet of clauses defining the relation. Different
predicate definitions in a RD correspond to different versions of the same relation. A
relation is uniquely defined by its name and arity. However, the same relation may appear
in different sections of a document during program development. In that case it will not
be considered as the same relation (see Section 5.2). Here is an example:



safe/1

Definition:
If safe1 is a list of positive integers then all the points of coordinates x/y, where y is the
integer of rank x in the list, are not on the same row neither on the same diagonal.

Types:
safe1 is a list of integers.

Assertions:
For all y,v, (y in safe1 and v in safe1 and rank-of(y,x) and rank-of(v,u) and not x = u)
implies (not y = v and not x-u = y-v and not x-u = v-y)

safe([]).

safe([Queen|Others]) :-

safe(Others),

noattack(Queen, Other, 1).

Notice that it is possible to give several types and assertions. Arguments of a predicate
pred of arity n are denoted pred1 to pred

n
everywhere. Each information plays a specific

role and contributes to a clear understanding of a predicate definition:

• Definition: it is an informal comment which characterizes the semantics of the
defined relation. It must be a partial correctness property, i.e., a property of all
possible argument values satisfying the relation.

• Types: There are formal or informal expressions. They characterize the form of
the arguments either when the predicate is used, or the kind of solutions of interest.
Sometimes both informations coincide. It is the case here: safe1 must be a list of
integers when calling safe/1. But if one considers this predicate alone it has non
ground solutions, and only solutions consisting of lists of integers are interesting.

• Assertions: Different assertions are possible, depending on the kind of intended
use. Here one uses partial correctness assertions [4] written in a formal language:
a first order formula. The formula states clearly that the argument denotes points
corresponding to reciprocally non-attacking queens.

• Packet: The packet of clauses.

To understand a predicate it should be sufficient to read its definition and those used
in it. For example safe/1 uses noattack/3 defined as: If noattack1 denotes a point of
coordinates (x, noattack1) and noattack3 is a positive integer and noattack2 denotes a list
of points at an horizontal distance noattack3 from x, then no point (x+noattack3+r−1,v),
where v is the element of rank r in noattack2, is on the same diagonal.

Therefore, an informal “logical” reading of the second clause should be, after obvious
simplifications:

If (Definition of noattack/3:) if Queen denotes a point of coordinates (x, Queen)
and Other denotes a list of points after x, then no point (x + r, v), where v is the element
of rank r in Other, is on the same diagonal, and



If (Definition of safe/2 in the body:) if Others is a list of positive integers, then
all the points of coordinates x/y, where y is the integer of rank x in the list, are not on the
same row neither on the same diagonal,

Then (Definition of safe/2 in the head:) if [Queen | Others] is a list of positive
integers, then all the points of coordinates x/y, where y is the integer of rank x in the list,
are not on the same row neither on the same diagonal.

The implication is obviously satisfied. Such reading helps to understand the clausal
predicate definition. It comes as an additional useful information.

The formal assertions may also be used. However, they are intended to be used by a
proof system interfaced with the HyperPro system.

It happens usually that such local definition is not sufficient to explain the program.
It is the purpose of the report style. At any place (but not inside a predicate definition)
more comments may be added.

5.2 Navigation Facilities: index and pointers

Writing a document in a disciplined manner is not easy without navigating facilities. We
have considered two ways of navigation: references to definitions and indexes.

References include references to RD’s and references to predicate definition inside an
RD. Anywhere in the document an RD may be referenced, in particular it is associated
with every predication in a clause body. With the name/arity of a relation, an associated
reference points to the current version. With such pointers it is possible to identify at any
time the current version which is under development or testing.

Indexes offer the possibility to the user to focus an important notion and to point to
all the parts of the text where this notion or related notions are used. Index is a true
thesaurus and helps considerably to maintain the consistency of the text. Predicate cross
references are also part of the index. They are built automatically.

5.3 Editing Facilities: document views and projections

The main originality of the HyperPro system is the possibility to use views and projections
instead of the full text. In fact the document grows and becomes intractable very quickly.
The HyperPro’s synchronized views approach helps the user to write the program. Four
basic views are provided corresponding to the items in a predicate definition: the com-
ments view (Definition), the type view (Types), the assertion view (Assertions) and
the program view (packet).

The program view offers the possibility to program directly, as usual, with the editing
help of syntactic menus. Each view corresponds to a window with the pertinent infor-
mation only, but concerning all the defined relations in the document. All the views are
synchronized in such a way that when pointing, for example, to a clause of a predicate
definition in the “program view”, the corresponding informal definition is selected in the
“comment view” and also in the other views.

Projections are views corresponding to selected portions of text which are gathered
into a single window. The selection criterion is on the same basis as for a “grep” function.
There is also the possibility to open a view of the index.



The combination of all these views offers great possibilities of navigation and facilitate
construction, consultation and maintainance of the program/document.

5.4 Document Exportation: interfaces

The purpose of the system is not just to write a program but also to test it or to make
some experimentation with it. Therefore there are possibilities of exportation. Two kinds
of program exportation have been considered: syntactic one and global one. The first one
is used to test the syntax of lines of code: the user may select some lines and a language
(Prolog or CLP(fd), for example) and the system runs the corresponding compiler on the
considered code and reports syntactic errors.

The global program exportation consists, for example, of selecting a goal or a portion
of text and a language, and the system create a file with the corresponding program (built
from the current versions) and opens a window to run the corresponding processor and to
inspect the program.

Finally Thot also offers the possibility to define sophisticated applications. In particular
interfaces with proof systems are possible. In this case, there is the possibility to export
assertions with the purpose to run a proof system and, thus, to report in the program
documentation text the results of the validation activity. We intend to integrate the
HyperPro prototype with the LDS2 system [30] and with the theorem prover SEQUOIA
[10].

6 The HyperPro System

6.1 Thot: principles and main concepts

Thot allows the user to create, modify and consult interactively documents that comply
with models. These models enable the production of homogeneous documents. Formatting
and typography are handled by the editor itself: thus, the user mainly focus his attention
on the logic organization and on the contents of documents. Thot performs automati-
cally other operations such as numbering, updating cross references, building index tables,
spelling correction, etc (see [23] and [28] for further information).

6.1.1 Generic Structure

Functionalities and services provided by the Thot editor are mainly based on the internal
representation of documents in the editor. This representation derives from a document
model that can be specified by the user through a description language [22] provided by
Thot. Such document model allows the user or an external system to operate on the
different logic elements that form the document organization. Those elements, such as
chapters, sections, paragraphs and notes are entities that compose the logical structure of
a document class. This structure specifies types of usable elements and relationships that
can relate them. Specifications of logic entities and their relations describe the generic
structure (or generic model) of a document. Each instance of a generic structure is called
specific structure. A class of documents is a set of documents having similar structure



(e.g. articles, reports, books and thesis); more formally, it means that a class is a set of
documents whose specific structure is built according to the same generic structure.

The editor itself ensures that each document being handled complies with its generic
model. It only allows operations which preserve logical structure consistency according to
the document generic structure [18]. The editor also uses the generic structure to guide the
user during its writing process, and to generate automatically document chunks, potentially
empty, to be filled.

6.1.2 Generic Presentation

Since the generic structure describes organization of a document class, it is possible to
specify presentation models for the considered class; the user defines presentation rules
that will be applied to all documents of the given class. Such a presentation can be very
fine-grained because rules may be applied to all kinds of entities that are defined in the
generic structure. Thus it is possible to specify different presentations for chapter titles,
section titles and similarly to specify, for example, titles for sections according to their level
in the section hierarchy. The set of rules which specify the presentation of the elements
defined in a generic structure is logically called generic presentation. A whole document
model in Thot consists of both a generic structure and a generic presentation.

6.1.3 Hypertext Features

The generic structure previously mentioned is mainly hierarchical. However the Thot sys-
tem offers possibilities to model non hierarchical organization through hypertext features,
notably as hyperlinks and cross-references. Hypertext features emphasize more flexibility
of the underlied structure; hyperlinks allow to relate freely any types of data. The reader
can refer to [29] for more information about hypertext notions.

6.2 The Prototype

We have designed a well-suited document generic structure for logic programs according to
the usually accepted methodology in Logic Programming. With few changes, the prototype
could be applied to other programming languages as we will see in the conclusion. The
associated generic presentation has been designed according to criteria relative to the
nature, importance, expected position of the elements in a program document, etc. Use of
the prototype allows us to assess results and to evaluate the impact and the relevance of
our technique relative to the proposed methodology for logic program development.

6.2.1 Prototype Architecture

A whole program document is visualized in the integral document view. Other views may
be specified in the generic presentation. Different conversion schema may be defined to
export a program into different specific formalisms (e.g. LaTEX). Document exportation
may be achieved upon views to collect information that can be used as input of various
external systems such as a Prolog evaluator, a spell checker, a theorem prover system,
etc. The Application Program Interfaces (API) provided by Thot allows us to develop our



specific applications that potentially could act on the editing document. The Thot toolkit
is a comprehensive set of editing functions (written in C) that can be used for building
the previously mentioned applications; such functions perform operations on structured
documents in the UNIX X-window environment.

6.2.2 Views

A program (document) can be seen from different perspectives called views: each of them,
specified in the generic presentation, is a way to visualize exclusively specific elements of
the generic structure that are relevant for the programmer during a given stage of the
development process. For instance, the user might want to focus on the clauses part of
the program, or on the assertions or comments parts. Automatic synchronization of views
allows the programmer to navigate on its document by pointing or selecting some chunks in
any views. This aspect may be very relevant for large programs and facilitates “real-time”
information retrieval. The user can work (write) in a specific view instead of editing the
integral document since the editor itself will achieve real-time up-to-date of all the other
views (as well as the integral document view). All the views can be opened simultaneously.
Such features enhance flexibility and facilitate the program development process. Four
kinds of views have been specified in HyperPro:

• Program view: allows to visualize exclusively the clauses parts (predicate definition)
of the integral document.

• Comment view: allows to visualize exclusively the comments parts relative to the
predicate definitions.

• Assertion view: allows to visualize exclusively the assertions parts relative to the
predicate definitions.

• Typing view: allows to visualize exclusively the typing parts relative to the predicate
definitions.

6.2.3 Document Format Conversions and Exports

Thot is an open system; this means that documents may be exchanged with other systems
by means of a flexible exporting mechanism.

Specifications of document models enable Thot to produce documents in a high-level
abstract form, called canonical form well-suited to handle documents. For each document,
a set of translation rules can be defined, specifying how the canonical form has to be
transformed into the wished specific formalism. We have defined different export schemes
of our program documents: a LaTEX conversion, an ASCII conversion of the whole document
or of certain specific parts as the comments part, the clauses part, the assertions part; all
of them corresponding to the different views of the program document.

6.2.4 Hypertext Functionalities: links, flexibility

The program document model we defined contains relation definitions (elements of the
generic structure) where the same predicate may be defined by several versions. Our
prototype offers possibilities to put links in two ways: i)to point the current version of a



given predicate definition in a relation definition block; ii)to relate a use of a predicate
to its whole definition, which contains all the information about the considered predicate
such as comments, assertions and predicate type.

We have specified many optional elements in the generic structure and elements that
can be chosen through menus. For instance, a user who wants to write a clause can choose
to insert a fact, a rule or a goal, etc, and the prototype will give him automatically the
corresponding template to be filled out accordingly.

6.3 Executable Documentation

In the beginning, a user might think that the writing process provided by the hypertext
environment is too rigid, due to the underlying generic structure, and this may be seen
as a drawback. But anyone will rapidly change his mind after more practice because this
potential rigidity turns to be a great advantage of our approach: it gives orientations to
respect a programming methodology during the entire writing process and allows automa-
tic and powerful processing (views, translation,...) that can be performed on the whole
document or only on specific chosen elements of the underlied generic structure.

Here we give a few examples of such operations developed with the application program
interfaces (API) provided by the editor system:

• Partial tangle: the user selects a chunk of program (packet of clauses) and requires to
test it. After clicking on a special menu item the considered chunk is saved on a file,
the system opens a window, calls a Prolog evaluator and loads the packet of clauses
file. Then the user can perform any tests he wants within the Prolog evaluator. A
possibility to load automatically all the current predicate definitions that often are
necessary to test a part of code is being studied.

• Global tangle: possibility to extract exclusively the referenced program part of a
document in order to load it to an evaluator.

Possibilities to include some results in the program document are being studied.

7 Main Results and Prospectives

One of the main results is that our system enables logic programs writing according to
a given methodology which is supported by the editor itself through consistency between
a generic structure and the specific structure of an editing program document. This is a
great advantage to control efficiently the different stages of the software developments and,
notably, during the maintenance stage. Different presentations can be available and the
user may carry out some customizations to match its specific needs or tastes.

HyperPro offers possibilities to work in different views: this facilitates the writing
process because the user can focus on specific document parts that turn to be more relevant
for him during a given stage of the program development.

Hypertext features as hyperlinks allows the user to follow predicate definitions and to
retrieve the current version of a predicate definition. This is very useful to perform some



tests when there exists several implementation versions of the same predicate definition in
the same document.

HyperPro offers possibilities to export a document into different formalisms: it allows
the user to exchange or to transfer piece of documents with other systems such as LaTEX
or World Wide Web for instance.

HyperPro is an interactive WYSIWYG3 system, which is an other advantage [8] in
comparison with the “classical” Web family systems described in Sections 3 and 4.

Thot is an integrated and extensible system. It allows to process with the same tool and
within the same document not only structured text but also graphics, pictures, complex
tables, mathematical formulas, etc. This is not an exhaustive list: users can add other types
of information by specifying the appropriate models. In this sense our prototype enhances
programs to be documented with hypermedia style comments. Moreover possibilities to
add a complete bibliography and some annexes at the end of the programs are available.

An other advantage of the HyperPro prototype is emphasized by the fact that all the
future improvements of the Thot editor system will be available in the HyperPro system
without a lot of work because of the reciprocal interaction.

We claim that all those previous points are great improvements in comparison with the
usual Web systems that are used in the industry. We intend to apply our experiment to
imperative programming with languages such as C or Pascal.

8 Conclusion

In any area or programming paradigms, software documentation is a serious and yet not
satisfactorily solved problem. Documentation has a direct impact in the cost of software
maintainance. Particularly, with constraint logic programming there is a great need for a
good documentation system. Due to the high level of expressiveness of CLP, programs are
closer to a specification rather than to a traditional program. Usually, as a consequence
to commitments to efficiency of implementations, the same CLP program is maintained
along the entire life cycle of the application: from its conception to its final uses and further
improvements or updating. The role of the HyperPro system is exactly to offer the facilities
to maintain also the whole documentation concerning the program of an application, during
its whole life. The HyperPro approach allows texts, clauses and assertions to share a
single document which helps keeping consistent software documentation throughout their
lifetime. Inconsistencies are not automatically checked, but we expect the fact that Prolog
clauses and their corresponding explanatory texts are strongly tied together encourages
maintenance people to keep software changes well documented.

Documentation of software must also be organized in a way to provide different levels
of abstraction of the documented software in order to help the understanding of large
systems. The synchronized viewing facilities provided by Thot, and used in the HyperPro
system, permit the definition of levels of abstraction, which are the key to build large,
understandable and manageable documents. Furthermore, the view windows implemented
in HyperPro also accept updating operations of their contents with automatic reflection in
all other view windows.

3WYSIWYG stands for what you see is what you get.



Additionally, HyperPro views program documentations as being computer processable,
compilable, and executable, so errors in coding can be detected earlier in the design process.
All error messages, including those produced by compilers, refer to the original document
files, so that programmers are encouraged to do debugging or testing only on the original
document files.

At the present stage of development, HyperPro does not check automatically inconsis-
tency among clause definitions, assertions and their informal descriptions presented in the
documents. A solution for this hard problem still has to be envisioned, perhaps by crea-
ting strong ties between the documentation and its related pieces of programs. Thus, the
consistency between descriptive texts and the corresponding program code clauses could
be always enforced somehow.

References

[1] Pierre Deransart and Gérard Ferrand, An Operational Formal Definition of Prolog:
a Specification Method and its Application , New Generation Computing 10 (1992),
121-171, 1992.

[2] Abdelali Ed-Dbali and Pierre Deransart, Software Formal Specification by Logic pro-
gramming, Logic Programming Summer School, Zurich, N. E. Fuchs and G. Comyn,
1992, Zurich, Suisse, Springer Verlag, LNAI, 636, 278–289, September.

[3] Ciancarini, Paulo and Levi, Giorgio, Applications of Logic Programming in Software
Engineering, University of Bologna, 1995, cianca@cs.unibo.it, 38.

[4] Deransart, Pierre and Ma luszyński, Jan, The MIT Press, A Grammatical View of
Logic Programming, novembre, 1993.

[5] Deransart, Pierre and Ed-Dbali, Abdelali and Cervoni, Laurent, Springer Verlag, Pro-
log, The Standard; Reference Manual, 1996.

[6] Deville, Yves, Addison Wesley, Logic Programming: Systematic Program Develop-
ment, 1990.

[7] Henrard, J. and Le Charlier, B., FOLON: an Environment for Declarative Construc-
tion of Logic Programs, PLILP’92, Leuven, Belgium, 217–231, 1992, August 26–28.

[8] Furuta, R. Quint, V. and André, J., Interactively Editing Structured Documents, Elec-
tronic Publishing, 1988, 1, 1, 19–44, April.

[9] ISO, Programming Languages - Prolog - Part 1: General core, Information Technology,
1995, ISO/IEC 13211-1, May.

[10] Siqueira, J. de, SEQUOIA: a theorem prover for counter model construction, XVth
conference of the Chilean Computer Science Society, Arica, Chile, 1995, August.

[11] Knuth, Donald, The Web System of Structured Documentation, Technical Report 980,
Stanford Computer Science, Stanford, California, September 1983.



[12] Knuth, Donald D., Literate Programming, The Computer Journal, Vol. 27, No. 2,
1984, pp. 97-111.

[13] Knuth, Donald, Literate Programming, CSLI lecture notes, Stanford, CA, Center for
the study of language and information, 1992, 27, 349–358.

[14] Knuth, Donald, and Levy, Silvio, Cweb System of Structured Documentation, Version
3.0, Addison-Wesley Publishing Company, 1994.

[15] Lamport, L., Latex : A Document Preparation System, Addison-Wesley Publishing
Company, 1986.

[16] M. Bergère and G. Ferrand and F. Le Berre and B. Malfon and A. Tessier, La Pro-
grammation Logique avec Contraintes Revisitée en Termes d’Arbre de Preuve et de
Squelettes, LIFO, Orléans, 1995, LIFO 96-06, February.

[17] Loveland, D., Near-Horn Prolog and Beyond, Journal of automated Reasoning, 1991,
1, 1–26.

[18] Parot, P., Construction incrémentale et modulaire de modèles de documents, Mémoire
de DEA, Université d’Orléans, 1992.

[19] Pettorossi, Alberto and Proietti, Maurizio, Transformation of Logic Programs, Com-
plog II Deliverables of Year 3, D13.3.1, Apt, K.R. and Marchiori, E., CWI, Amster-
dam, NL, 91, 1995, August.

[20] Quint, V. and Vatton, I., Grif : an interactive System for structured Document Mani-
pulation, Proceedings of the International Conference on Text Processing and docu-
ment Manipulation, 1986, November, 200-213, Cambridge University Press.

[21] Quint, V. and Vatton, I., Hypertext aspects of the Grif structured editor : design and
applications, Rapports de Recherche #1734, INRIA Rocquencourt, 1992, July.

[22] Quint, V., Les langages de Grif, Internal report (in french), INRIA-CNRS, 1992, May.

[23] Quint, V., The Thot user manual, Internal report, INRIA-CNRS,

1995.

[24] Ramsey Norman, The noweb Hacker’s Guide, Departament of Computer Science,
Princeton University, September 1992 (Revised August 1994).

[25] Ramsey Norman, Literate-Programming Tools Can be Simple and Extensible, Depar-
tament of Computer Science, Princeton University, November 1993.

[26] Ramsey Norman, Literate Programming Simplified, IEEE Software, V.11(5), 97-105,
September 1994.

[27] Ramsey Norman, Literate Programming: Weaving a language-independent Web ,
Communications of the ACM, 32(9): 1051-1055, September 1989.



[28] Richy, H., Grif et les index électroniques, INRIA Rocquencourt, 1992, October .

[29] Rizk, A. Streitz, N. and André, J., Hypertext : concepts, systems and applications,
Proceedings of the European Conference on Hypertext, 1990, November, University
Press.

[30] S. Renault and P. Deransart, Design of Redundant Formal Specifications by Logic
Programming: Merging Formal Text and Good Comments, International Journal of
Software Engineering and Knowledge Engineering, 1994, 4, 3.

[31] Renault, Sophie and Deransart, Pierre, Design of Redundant Formal Specifications
by Logic Programming: Merging Formal Text and Good Comments , International
Journal of Software Engineering and Knowledge Engineering, vol 4, No. 3, 1994, 369–
390.

[32] Thimbleby, H., Experiences of ‘Literate Programming’ using Cweb(a variant of
Knuth’s Web), The Computer Journal, Vol. 29, No. 3, 201-211, 1986.


