
Universidade Federal de Minas Gerais

Instituto de Ci�encias Exatas

Departamento de Ci�encia da Computa�c�ao

Laborat�orio de Linguagens de Programa�c�ao

An ASM Implementation of a
Self�Applicable Partial Evaluator

by

Vladimir O� Di Iorio
Roberto S� Bigonha

LLP ��������

Caixa Postal ���

���������� � Belo Horizonte

Minas Gerais � Brazil

February ����

Abstract

Partial evaluation is a technique for specializing programs with re�
spect to parts of their input� We describe an o�ine partial evaluator for
Abstract State Machines� written in the ASM language itself� The par�
tial evaluator receives an input ASM speci�cation and generates a resid�
ual ASM speci�cation� Suitable internal representations for these speci�
�cations are presented� The partial evaluator is self�applicable� so some
problems related to self�application are discussed� We show how compiler
generation can be achieved using the partial evaluator and an interpreter
written in ASM�

� Introduction

Partial evaluation is a source�to�source program transformation technique
for specializing programs with respect to parts of their input ���� The
main goal is e�ciency improvement� so it is expected that the specialized
program runs faster than the original one� Partial evaluators have been
successfully built for functional �	�

�
��� logical �
�� and imperative �
�

�� languages�

An interpreter for a language L is usually a program with two inputs

a source program S� written in L� and the input data for S� Specializing
the interpreter with respect to a given source program yields a compiled
program� i�e�� a program written in the interpreter�s implementation lan�
guage� with the semantics of the source program�

A partial evaluator is also a program with two inputs
 the program
to be specialized and part of its input� So a partial evaluator itself can
be specialized �self�application�� The specialization of a partial evaluator
with respect to an interpreter yields a compiler� Finally� specializing a
partial evaluator with respect to itself yields a compiler generator�

Abstract State Machines are a formal speci�cation method created
by Yuri Gurevich with the goal of simulating algorithms in a direct and
coding�free way ���� ASM has been used to describe the semantics of
several programming languages ��� ��
��� The description usually consists
of an interpreter for the programming language�

We present an o�ine partial evaluator for Abstract State Machines�
written in the ASM language itself� The description can be seen as a
formal speci�cation of a partial evaluator for ASM� The partial evaluator
is self�applicable� allowing compiler generation�

� Partial Evaluation

A partial evaluator� when given a program and some of its input data�
produces a so�called residual or specialized program �
	�� In other words�
a partial evaluator is a program specializer� The parts of the subject
program�s input data used in the specialization process are known as
static data� The remaining input data are known as dynamic data�

A partial evaluator performs a mixture of code execution and code
generation� so it is sometimes called mix� Let P be a program with two
inputs� in� and in�� written in a language S� Let ��P ��S represent the
semantics of P � Figure
�a� presents an equational de�nition of a partial
evaluator mix for S programs�

out � ��P ��
S
�in�� in��

Pin� � ��mix��
L
�P� in��

out � ��Pin� ��T �in��

target � ��mix���int� P �

compiler � ��mix���mix� int�

cogen � ��mix���mix�mix�

�a� Equational de�nition of mix� �b� Futamura Projections�

Fig� �� Partial evaluation equations�

The languages involved are S �the language of the programs processed
by the partial evaluator�� L �mix implementation language� and T �the
language of the programs produced bymix�� S and T are usually the same
language� Pin� is the residual program� i�e�� the result of the specialization
of P with respect to the �rst input in��

��� Compilation and Compiler Generation

Futamura was the �rst to realize that partial evaluation can be used for
compilation and compiler generation �
	�� Let int be an interpreter for a
language Lint� written in a language S� Let mix be a partial evaluator
for S�programs� The equations presented in Figure
�b� are known as the
Futamura Projections�

The First Futamura Projection shows compilation by the partial eval�
uation of an interpreter with respect to a given source program� The
Second Futamura Projection shows how a compiler can be generated by
the self�application of a partial evaluator� The Third Futamura Projec�
tion shows the generation of a compiler generator cogen by specializing
a partial evaluator with respect to itself� The second and third equations
require that mix be written in its own input language�

��� Online and O�ine Partial Evaluation

The specialization process can be carried out either following the online
or the o�ine approach� If the values computed during program special�
ization can a�ect the execution �ow of the partial evaluator� the strategy
is online� otherwise it is o�ine �
	�� In practice� in the online approach�
specialization is performed in a single stage� Almost all o�ine partial
evaluators� on the other hand� perform specialization in two stages�

The �rst stage of an o�ine partial evaluator is called binding time

analysis �BTA�� An annotated program is produced� with all structures

marked either as dynamic or static� according to their dependence on the
input data� The second stage is the specialization itself� The annotations
are strictly followed to produce the residual program�

The �rst partial evaluators were all online �
	�� but they did not pro�
duce good results on compiler generation by self�application� O�ine par�
tial evaluation was invented in
��� and made self�application feasible in
practice �
���

��� Partial Evaluation and ASM

Huggins and Gurevich present an o�ine partial evaluator for sequential
ASM in ���
��� It performs specialization of basic ASM rules� but self�
application is not addressed�

In ��� we present an o�ine partial evaluator for ASM� written in Java�
which performs specialization of ASM rules and also user�de�ned recursive
functions� We have also implemented another partial evaluator mixASM �
written in ASM itself� which makes self�application possible�

In this work� we describe the partial evaluator mixASM � which was
not discussed in detail in ���� Special attention is devoted to the problems
related to self�application�

� An O	ine Partial Evaluator for ASM

The architecture of an o�ine partial evaluator for ASM speci�cations is
presented in this section� The terms static and dynamic have di�erent
meanings in ASM� To avoid name con�icts with established notation� we
will use positive instead of static and negative instead of dynamic� This
notation has been suggested by Huggins and Gurevich ����

The partial evaluator assumes that input to ASM speci�cations is
provided by the external �oracle� functions� So� each external function
must be previously classi�ed either as positive or negative� The division
of the external functions into positive and negative is called the initial

division�

The partial evaluator receives as input the ASM speci�cation to be
specialized� the initial division and the values for the positive external
functions� The �rst stage of the partial evaluator is called binding time

analysis� All functions used in the ASM speci�cation are classi�ed either
as positive or negative� computing a BTA division� Then� an annotated
speci�cation is generated� with all strutuctures marked either as positive
or negative� according to the BTA division� The second stage is called

ASM Specification

Initial Division

Static Values

Compute
Division

Produce
Annotated
Specification

BTA Division

Ann. SpecificationSpecialization

Offline Partial Evaluator

BTA

Residual Specification

Fig� �� Architecture of an o�ine partial evaluator for ASM�

specialization� The annotations are strictly followed to produce a residual
speci�cation� using the values of the positive external functions� Figure 	
shows a representation of this process�

Section � discusses an internal representation for ASM speci�cations�
ASM rules describing binding time analysis and specialization are pre�
sented in sections � and �� respectively� Self�application of the partial
evaluator is discussed in Section ��

 Representation of Speci�cations

An ASM speci�cation is the input of the partial evaluator� annotated
speci�cations are produced by the BTA phase� and residual speci�cations
are generated by the specialization phase� In this section� we discuss the
way the partial evaluator encodes these syntactical objects into an internal
representation� Three di�erent representations will be presented
 input
speci�cations� annotated and residual speci�cations�

The partial evaluator deals only with basic ASM transition rules
 up�
date instructions� block constructors and conditional constructors� The
abstract syntax of these rules is presented below� where f denotes func�
tion names� t denotes terms and R denotes rules

R

� f�t�� � � � � tr�
� t

R

� R� � � � Rk

R

� if t then R� else R�

	�� Input Speci
cations

To encode the input speci�cations� we will use de�nitions similar to those
presented in ���� An input speci�cation SPEC� associated to an algebra
Ain� is de�ned as SPEC � ��in�D� Init �Prog�� where

�in is a vocabulary containing at least all function names occurring in D�
Init and Prog�

D is a set of function de�nitions� They may be constructive de�nitions�
which the partial evaluator is able to evaluate� or interface declara�

tions� de�ning externally alterable oracle functions�

Init is a block of update instructions which de�ne part of the initial state
S� of Ain�

Prog is the transition rule�

An implicitly given part of the initial state S� of Ain results from
default interpretations of prede�ned function names in �in which are con�
sidered as built�in functions of the partial evaluator� This set of built�in
functions contains at least the basic logic names� Part of the initial state
is de�ned by Init� It is interesting to use a block of rules to represent Init
because it can be specialized by the partial evaluator�

As in ���� we de�ne a mapping ������� that yields� for each syntactical ob�
ject� the corresponding element of one of the following domains de�ned by
the partial evaluator
 FNAME �function names�� TERM �terms�� RULE
�transition rules� and DEF �abstract function de�nitions�� We assume
that the input speci�cation is syntactically correct and the encoding has
been carried out by a preprocessing step�

For function names f in �in� we have ��f �� � ��f�� where � is an
injective function from �in into FNAME� For each function name f in �in�
we assume that �PE� the vocabulary of the partial evaluator� contains a
nullary function name �f�
FNAME such that �f� � ��f��

The elements of the domain TERM are de�ned by means of a term

constructor function� Using this constructor� di�erent terms are induc�
tively mapped to di�erent elements of TERM in the following way

term
 �FNAME � TERM ��� TERM

��f �t�� � � � � tr� �� � term ���f ��� h��t���� � � � � ��tr��i�

The mapping of transition rules can be de�ned in a similar way� using
the following constructor functions� which are used to encode the Init and

Prog components of SPEC

update instr
 �TERM � TERM �� RULE

block cons
 RULE� � RULE

cond cons
 �TERM � RULE � RULE �� RULE

	�� Annotated Speci
cations

Annotated speci�cations are produced by the BTA phase� They are very
similar to input speci�cations� except that a BTA tag is associated to
each syntactical object� BTA tags can assume one of the values
 BTA�
POS and BTANEG� The value BTAPOS indicates that the syntactical
object can be computed at specialization time� while BTANEG indicates
a �residualizable� object�

The universe TBTA represents the BTA tags� Annotated terms and
rules are elements of the universes TTERM and TRULE� where �T�
means �tagged�� Constructors including annotations are described below�
A special constructor lift is used to indicate a positive term that occurs
in a negative context �see Section ���

tterm
 �TBTA� FNAME �TTERM ��� TTERM

tupdate instr
 �TBTA� TTERM � TTERM �� TRULE

tblock cons
 TRULE� � TRULE

tcond cons
 �TBTA� TTERM � TRULE � TRULE�� TRULE

lift
 TTERM � TTERM

	�� Residual Speci
cations

Residual rules are elements of the universe GRULE� These elements can
be de�ned by the previous constructors term and update instr� together
with the new constructors gblock cons and gcond cons

gblock cons
 �null � �GRULE �GVAL��� GRULE

gcond cons
 �TERM �GVAL�GVAL�� GRULE

A residual block can be either an empty block �null� or a residual rule
together with a GVAL value that indicates the next rule in the sequence�
A residual conditional rule is represented by the guard �a term� and two
GVAL values that indicate the then and else rules�

A gencode function will be used by the partial evaluator to build links
among the generated rules� An example is presented in Figure �� where

�����
����

update instr
�
�

if term� then

update instr
�

else

update instr
�

gencode��� � gblock cons�update instr
�
� 	�

gencode�	� � gcond cons�term��
� ��

gencode�
� � update instr
�

gencode��� � update instr
�

�a� A block to be generated� �b� Internal representation�

Fig� �� Example of use of the gencode table�

if ��x � CSET � then

choose x � CSET
CSET �x��� false�

ProcessBlock�x�

if ���x � CSET � then

if change then

CSET �prog��� true�

change�� false

Fig� �� Rules for computing the BTA division�

GVAL is INT� for simplicity� Figure ��a� shows a block with two rules� In
Figure ��b�� the table gencode is used to store this block�

� Binding Time Analysis

The binding time analysis phase is divided into two sequential steps�
The �rst step computes a division of all functions into either positive or
negative� In the second step� an annotated speci�cation is generated�

��� Computing a BTA Division

Figures � and � show the rules that formalize the computation of the BTA
division� Initially� all functions of the input speci�cation are classi�ed as
positive� except the oracle �external� functions� All update instructions
f�t�� � � � � tr�
� t are sequentially examined� If t or any ti�
 � i � r is
negative� then f must also be classi�ed as negative� The division algorithm
iterates until a �xpoint is reached�

A unary relation CSET
 RULE � BOOL is used� as in ���� to identify
the instances of subrules that are being considered in a given step� The
functions init and prog extract the initial and the transition rules of the
input speci�cation� respectively� The function bta val associates� to each
function f in �in� a TBTA value �BTAPOS or BTANEG�� The boolean
nullary function change is used to determine when a �xpoint is reached�

if x � block cons�r�� rest� then

CSET �r�� �� true�

CSET �rest� �� true

if x � cond cons�t� r�� r�� then

CSET �r�� �� true�

CSET �r�� �� true

if x � update instr�loc� val� then

let term�f� t�� � loc in

if bta val�f� � BTAPOS and �isneg��t�� or isneg�val�� then
bta val�f� �� BTANEG�

change �� true

Fig� �� Rule ProcessBlock�x��

The function isneg�t� indicates if the term t is negative� and isneg��t��
indicates if one of the terms of the list t� is negative�

For each function f in �in� bta val�f� is initialized to BTAPOS�
except for the oracle functions� whose classi�cation is given as input�
Other initial values
 CSET � finit� progg and change � false�

��� Generating an Annotated Speci
cation

After computing a BTA division� an annotated speci�cation is generated�
The functions used to build the annotated rules are gentr and gentt�
whose de�nition is presented in Figure �� The function gentr describes a
mapping from rules to annotated rules� and gentt describes a mapping
from terms to annotated terms� A third function gentt� is applied to lists
of terms�

If a positive term occurs in a negative context� the result of the com�
putation must be residualized� To indicate this situation to the specializa�
tion phase� a lift constructor is used in the annotated representation� The
function gentt uses its second argument to determine if a lift is necessary�

Observe that an annotated block constructor is always generated� even
when a conditional constructor or update instruction is processed� The
only reason for this is to simplify the specialization algorithm�

� Specialization

The specialization algorithm uses the annotated speci�cation produced
by the BTA phase and the values of the positive external functions to
generate a residual speci�cation� The technique used is polyvariant spe�
cialization� The process consists on computing the set of all reachable
specialized program points �
	�� A specialized program point� in this case�

gentt � TERM � TBTA � TTERM

gentt �term�f� t��� tag� �
let tag� � bta val�f�

tt � gentt��t�� tag��
in if �tag � BTANEG� and �tag� � BTAPOS�
then lift�tterm �tag�� f� tt�� else tterm �tag�� f� tt�

gentr � RULE � TRULE

gentr �block cons �r�� rest�� �
tblock cons �gentr�r��� gentr�rest��

gentr �cond cons �t� r�� r��� �
let term�f� t�� � t

tag � bta val�f�
result � tcond cons �tag� gentt�t� tag�� gentr�r��� gentr�r���

in tblock cons�result� null�
gentr �update instr �t�� t��� �

let term�f� t�� � t�
tag � bta val�f�
result � tupdate instr �tag� gentt�t�� tag�� gentt�t�� tag��

in tblock cons�result� null�

Fig� �� Functions gentt and gentr�

is identi�ed by a sequence of values for the positive functions� Each dif�
ferent sequence of values is a di�erent program point� These sequence of
values will be designated as positive states�

The initial positive state� which is de�ned by the initial values of the
positive functions� is inserted into a set PENDING� This set comprises
the positive states that have not been processed yet� On each iteration�
an element is picked up from PENDING and processed�

When a positive state is processed� an associated code is generated and
new positive states are produced� Those not processed yet are inserted
into PENDING� This process is carried out until PENDING becomes
empty� At this point� a generated rule Rk is associated to each di�erent
positive state k� The residual speci�cation will have an additional function
CURSTATE and its residual transition rule will be a block of rules of the
form �if CURSTATE � k then Rk��

Figure � shows ASM rules that describe the specialization algorithm�
A unary relation GSET identi�es the instances of subrules that are be�
ing considered in a given step� in a way similar to CSET in Section ��
The di�erence is that elements of GSET are a tuple formed by a rule�
an integer number used as a link by the generated code� and a set of
collected updates� The initial value of GSET is fhinit� �� nullig� A set

if ��x � GSET � then

choose x � GSET
GSET �x� �� false�

ProcessBlock�x�

if ���x � GSET � then

if ��s � PENDING� then

code number �� ��

GSET ��prog���null�� �� true�

choose s � PENDING
PENDING�s� �� false�

MARKED�s� �� true�

curvalues �� s

Fig� �� Specialization Rules�

MARKED� initially empty� identi�es the positive states that have already
been processed� The function codenumber is used by the residual code�
The function curvalues represents the current positive state being pro�
cessed� and its initial value is a positive state in which the functions are
unde�ned at all points� The functions init and prog now denote the
initial and transition rules of the annotated speci�cation�

Before showing the complete description of the specializer� we discuss
how positive states are represented and computed�

��� Representation of States

A universe VALUE � BOOL �fundef g�� � �� N provides interpretations
for standard function names� Let posfuncs denote the list of function
names classi�ed as positive by BTA� not including the external functions�
If posfuncs � hf�� � � � � fki� then a positive state ps � PSTATE is a list
hfv�� � � � � fvki� where fvi represents a function value for fi�
 � i � k�
A function value is a sequence of pairs hVALUE��VALUEi � FVALUE�
representing the �nitely many updated values of a function�

To build new positive states� the partial evaluator must compute val�
ues using positive terms of the annotated speci�cation� To specify the
evaluation of these terms� the following auxiliary functions are introduced�
which are similar to those presented in ���

 g�� � � � � gr represent the prede�ned functions�

 apply
 DEF � VALUE � � VALUE is a function which produces
values for the functions de�ned by the input speci�cation� given a
function de�nition and a sequence of arguments� This de�nition can
be constructive or an interface for an external function�

 cont
 FNAME � � FVALUE � � LOCATION � �VALUE � nil� is a
function which produces values� given a sequence of function names� a

positive state and a location� in the following way
 cont �pf � ps � hf� t�i�
identi�es the position of the function name f in the sequence pf �
obtaining the correctly associated element fv � FVALUE from ps �
Using fv and the terms t�� a value �possibly undef � is produced� The
special nullary function nil indicates that the function name f is not
in the sequence pf �

Interpretations to the annotated terms are provided by the evaluation
function Val
 FNAME � � FVALUE � � TTERM � VALUE using
values de�ned by a positive state and its associated list of positive function
names� This function� which will be applied only to positive terms� is
de�ned by the equation

Val �pf � ps � tterm �tag� f� ht�� � � � � tni�� �
let h�xi � hVal �t�� � � � � �Val �tn�i in
if f � �g�� then g� ��x�
� � �

else if f � �gr� then gr ��x�
else if cont �pf � ps � hf� h�xii� �� nil then cont �pf � ps � hf� h�xii�
else if def �f� �� undef then apply �def �f� � h�xi�
else undef

When a negative term is processed by the partial evaluator� the resid�
ual generated term must have all positive information computed� The
function Reduce
 FNAME � � FVALUE � � TTERM � TERM

produces these residual reduced terms� Like Val� Reduce uses values de�
�ned by a positive state and its associated list of postive function names�
To produce a residual term� negative annotated terms are simply con�
verted to terms without annotations� Positive terms are evaluated using
the function Val� When a lift constructor is found� denoting a positive
term inserted in a negative context �see Section ��� the positive value is
computed and converted to a term constructor�

��� Processing Blocks

Figure � shows ASM rules to process the elements inserted in GSET�
These elements are formed by a block of annotated rules� an integer num�
ber used in code generation� and a sequence of collected updates� The
sequence of collected updates is formed only by syntactical objects �each
update is represented by a pair of TTERM elements��

On each iteration� the �rst annotated rule of the block is processed�
inserting new elements in GSET �see the description of ProcessRule��

let �thisblock� cn� updates�� x in

if thisblock � tblock cons�r�� rest� then

ProcessRule �r�� cn� rest� updates�

else �����thisblock is an empty block

let newvalues � compute updates �posfuncs� curvalues� updates� in

gencode��curvalues�cn�� �� gen next step �newvalues��

if ��newvalues � MARKED� then

PENDING�newvalues� �� true

Fig� �� Rule ProcessBlock�x��

If the block is empty� a new positive state is produced using its collected
updates and appropriate code is generated�

A new positive state newvalues is computed by compute updates�
using the values de�ned by the current positive state curvalues and the
sequence of syntactical objects representing the collected updates of the
block� We do not present here the description of compute updates� but it
may be easily de�ned using the function Val� previously described� If the
new positive state has not been processed yet� it is inserted in PENDING�

The function gencode� as explained in Section �� associates a residual
rule to each processed block� A block is identi�ed by the value of the cur�
rent positive state and a code number cn� The function gen next step�v�

generates the code �CURSTATE �� v�� which de�nes the �ow of control in
the residual transition rule �see Section �����

��� Processing Conditional Constructors

Annotated conditional constructors tcond cons �tag� cond� rthen� relse� are
processed by the ASM rules shown in Figure �� To append two blocks of
rules��the function merge blocks is used�

If the rule is positive� then the condition is evaluated using the func�
tion Val� Depending on the result �true or false�� the new subrule to be
processed in the next step is rthen or relse� merged with the rest of the
current block�

If the rule is negative� two new subrules are inserted in GSET� Observe
that new code numbers are assigned to these subrules� The generated
residual code is a conditional constructor which is linked to the code
numbers of the new subrules� All positive information of the residual
condition is computed by the Reduce function�

if r� � tcond cons �tag� cond� rthen� relse� then

let merged rthen � merge blocks �rthen� rest��

merged relse � merge blocks �relse� rest�

in if tag then

if V al �posfuncs� curvalues� cond� then

GSET ��merged rthen� cn� updates�� �� true

else GSET ��merged relse� cn� updates�� �� true

else

GSET ��merged rthen� codenumber�	� updates�� �� true�

GSET ��merged relse� codenumber�
� updates�� �� true�

codenumber �� codenumber �
�

gencode��curvalues�cn�� �� gcond cons �

Reduce �posfuncs� curvalues� cond��

�curvalues�codenumber�	�� �curvalues�codenumber�
��

Fig� 	� ProcessRule�r�� cn� rest� updates�� for conditional constructors�

��	 Processing Update Instructions

Figure
� shows ASM rules to process annotated update instructions
tupdate instr �tag� t�� t���

If the rule is positive� the new subrule inserted in GSET is formed
by the rest of the current block� with ht�� t�i added to the sequence of
collected updates� The code number is the same of the current block� be�
cause no residual code is generated� Observe that t� and t� are syntactical
objects�

If the rule is negative� the new subrule inserted in GSET is formed by
the rest of the current block� with the same sequence of collected updates�
A new code code number is assigned to this subrule� because a residual
block is generated using the current code number� A reduced �positive
information computed� version of the update instruction is the �rst rule
of the residual generated block� which is linked to the new subrule to be
processed�

��� The Residual Transition Rule

After the last step of the specialization algorithm� the links established
by the function gencode can be used to build the residual transition rule�
Each positive state ps � MARKED has an associated residual rule Rps

de�ned by gencode�ps��

An additional function CURSTATE
 PSTATE de�nes the �ow of control
in the residual speci�cation� The initial value of CURSTATE is a positive

if r� � tupdate instr �tag� t�� t�� then

if tag then let newupdates � cons �� t�� t� �� updates� in

GSET �� rest� cn� newupdates�� �� true

else

GSET �� rest� codenumber�	� updates�� �� true�

codenumber �� codenumber � 	�

gencode��curvalues�cn�� �� gblock cons �

update instr �Reduce �posfuncs� curvalues� t���
Reduce �posfuncs� curvalues� t�� ��

�curvalues�codenumber�	��

Fig� �
� ProcessRule�r�� cn� rest� updates�� for update instructions�

state in which the functions are unde�ned at all points �the same initial
value of curvalues in the specializer�� The residual transition rule is
a block of rules of the form �if curstate � ps then Rps�� for each
ps � MARKED� The �ow of control is determined by the assignments to
CURSTATE which are generated when an empty block is processed by the
specializer �see Figure ���

� Self�Application and Compiler Generation

The o�ine approach simpli�es the process of self�application because it
divides partial evaluation into two separated phases� The partial evaluator
for ASM �mixASM� is composed of two separated programs
 BTA �binding
time analysis� and spec �specialization�� Using these programs� the Second
Futamura Projection can be rewritten in the following way

specann � ��BTA���spec� div spec�

intann � ��BTA���int � div int�

compiler � ��spec���specann� intann�

where pann denotes an annotated version of a program p and divp de�
notes the division of the external functions of p into static �positive� and
dynamic �negative��

The compiler generation process using the o�ine partial evaluator
for ASM is performed in three steps� First� an interpreter for a language
L is written in ASM� Second� an annotated version of this interpreter is
generated using the BTA algorithms described in Section �� Finally� a pre�
viously annotated version of the spec specialization algorithm �described
in Section �� is specialized with respect to the annotated interpreter� A

compiler from L to ASM is generated� Note that BTA is not included in
the self�application of the specializer�

The specialization algorithm described in Section � processes only ba�
sic ASM rules� The text of the description uses simple pattern matching
constructs and let expressions to enhance readability� but these struc�
tures can be easily translated into appropriate selector functions that
extract the desired components� The choose constructor is also used� but
its semantics is essentially deterministic� It can be translated into oper�
ations that extract elements from a list� So the entire description can be
translated into a speci�cation that uses only basic ASM rules� making
self�application possible�

Not all programs are suitable for partial evaluation� The structures
depending on static �positive� and dynamic �negative� values must be
carefully separated� The positive structures will be computed during spe�
cialization time� and will not appear in the residual code� To show that
the specializer presented in Section � is suitable for partial evaluation� it
is necessary to analyze its annotated version� produced by submitting it
to the BTA algorithm�

The specializer has two input data
 an annotated speci�cation and the
values of its positive external functions� To access the annotated speci��
cation� external functions like init �initial rule�� prog �transition rule�
and def �de�nitions� are used� If the specializer is specialized with respect
to the �rst input� these external functions are marked as positive� The
second input� the values of the positive external functions� is accessed by
means of the auxiliary function apply �see Section ��
�� This function is
marked as negative�

We present now the application of the BTA algorithm to the special�
izer and the initial division described above� The function Val depends
on the function apply� so any occurrence of Val is negative� The function
compute updates depends on Val� so it is also negative� Other negative
functions
 curvalues� gencode and the sets PENDING and MARKED�
On the other hand� the components of the elements inserted in GSET

are all positive
 the subrules and the collected updates are extracted from
the annotated program� and the code number depends only on itself� So
GSET is classi�ed as positive� The reason of using only syntactical objects
to represent the collected updates now becomes clear �another possibility
would be using computed values� but it would make GSET negative��

A residual compiler generated by the Second Futamura Projection has
no occurrence of the positive functions enumerated above� The positive

and negative structures are satisfactorily separated� so the specializer can
be considered suitable for self�application�

 Conclusion

Self�application of a partial evaluator allows compiler generation� but im�
poses additional requirements on the speci�cation� The partial evaluator
must process its own text� Static �positive� and dynamic �negative� struc�
tures must be carefully separated�

The ASM speci�cation of the partial evaluator presented is very simple
and is few lines long� We have decided to use the o�ine approach because
it simpli�es self�application �
	�� We have shown that it is possible to
describe a self�applicable partial evaluator using only basic ASM rules�
The ASM model has proved to have the necessary expressive power to
specify the partial evaluator in a elegant way�

The o�ine partial evaluator for ASM di�ers from partial evaluators
for imperative and functional languages in several aspects� For example� it
must deal with parallel updating of functions and has a di�erent concept
of specialized program points�

In imperative languages� a specialized program point is de�ned by a
pair hl� vvi � where l is a program label and vv represents the values of
the static variables� In functional languages� specialized program points
are de�ned by a function name and the values of its static arguments� In
ASM speci�cations� on the other hand� the entire transition rule is pro�
cessed for each di�erent set of positive �static� functions� So a specialized
program point is represented only by the values of the positive functions�
Processing the entire transition rule multiple times brings additional di��
culties� because several new specialized program points may be produced
at each iteration�

The parallel updating of functions is an important feature of ASM
speci�cations� The partial evaluator is supposed to maintain a set of col�
lected updates that are to be �red in parallel� when a new specialized
program point is built�

We have found some di�culties to represent the code generated by
the specializer� Residual generated speci�cations could be internally rep�
resented with the same structures used for input speci�cations� However�
the top�down generating process used by the specializer makes the use
of those structures unsuitable� specially for block and conditional con�
structor rules� The technique described in Section ��� is appropriate for
top�down code generation�

Many optimizations may be implemented in the partial evaluator� The
most important is transition compression �
	�� With transition compres�
sion� compatible rules can be merged and unnecessary residual rules can
be eliminated� producing a more e�cient residual speci�cation�

Some experiments involving compilation and compiler generation us�
ing ASM and partial evaluation are described in ���� Using a powerful
partial evaluator for ASM� implemented in Java� interpreters written in
ASM are specialized with respect to source programs� Good results in
compilation are reported� in experiments involving a simple Turing Ma�
chine interpreter and an interpreter for a subset of C�

The partial evaluator described in this document� which we call mixASM�
was used in compiler generation experiments� The partial evaluator writ�
ten in Java was used to specialize mixASM with respect to a simple Turing
Machine interpreter� The residual compiler processes Turing Machine pro�
grams and generates ASM code� The results� however� are not satisfactory�
because of the lack of optimizations in mixASM�

A more promising alternative for compiler generation is being con�
sidered� A statically typed ASM language� called Mach��na� is presented
in �
��� An e�cient compiler from Mach��na to C is under construction�
Another important work is a compiler generator cogen� which uses partial
evaluation techniques� An integrated system will generate compilers in C�
using as input interpreters written in Mach��na�

References

	� L� Andersen� C program specialization� Technical Report

�	�� DIKU� University
of Copenhagen� Denmark� May 	

�

� L� Birkedal and M� Welinder� Partial evaluation of Standard ML� Master�s thesis�
DIKU� University of Copenhagen� Denmark� 	

�� DIKU Research Report
��

�

�� E� B�orger and W� Schulte� Programmer Friendly Modular De�nition of the Se�
mantics of Java� In J� Alves�Foss� editor� Formal Syntax and Semantics of Java�
LNCS� Springer� 	

��

�� C� Consel and O� Danvy� Tutorial notes on partial evaluation� In Twentieth ACM
Symposium on Principles of Programming Languages� Charleston� South Carolina�
January ����� pages �
����	� ACM� New York� ACM� 	

��

�� G� Del Castillo� I� Durdanovi�c� and U� Gl�asser� An Evolving Algebra Abstract
Machine� In H� K� B�uning� editor� Proceedings of the Annual Conference of the
European Association for Computer Science Logic �CSL�
��� volume 	�

 of LNCS�
pages 	
	�
	�� Springer� 	

��

�� V� O� Di Iorio� R� S� Bigonha� and M� A� Maia� A Self�Applicable Partial Evalua�
tor for ASM� Technical Report LLP�		�

� Programming Languages Laboratory�
DCC� Universidade Federal de Minas Gerais� 	

�

�� Y� Gurevich� Evolving Algebras 	

�� Lipari Guide� In E� B�orger� editor� Speci��
cation and Validation Methods� pages
���� Oxford University Press� 	

��

�� Y� Gurevich and J� Huggins� The Semantics of the C Programming Language� In
E� B�orger� H� Kleine B�uning� G� J�ager� S� Martini� and M� M� Richter� editors�
Computer Science Logic� volume ��
 of LNCS� pages
�����
� Springer� 	

��

� Y� Gurevich and J� Huggins� Evolving Algebras and Partial Evaluation� In
B� Pehrson and I� Simon� editors� IFIP ��th World Computer Congress� volume I�
Technology�Foundations� pages �����

� Elsevier� Amsterdam� the Netherlands�
	

��

	�� J� Huggins� An O�ine Partial Evaluator for Evolving Algebras� Technical Report
CSE�TR�

�
�� EECS Dept�� University of Michigan� 	

��

		� N� Jones� C� Gomard� A� Bondorf� O� Danvy� and T� Mogensen� A self�applicable
partial evaluator for the lambda calculus� In ���� International Conference on
Computer Languages� New Orleans� Louisiana� March ����� pages �
���� New
York� IEEE Computer Society� 	

��

	
� N� Jones� C� Gomard� and P� Sestoft� Partial Evaluation and Automatic Program
Generation� Englewood Cli�s� NJ� Prentice Hall� 	

��

	�� N� Jones� P� Sestoft� and H� S�ndergaard� An experiment in partial evaluation�
The generation of a compiler generator� In J��P� Jouannaud� editor� Rewriting
Techniques and Applications� Dijon� France� �Lecture Notes in Computer Science�
vol� 	�	
� pages 	
��	��� Berlin� Springer�Verlag� 	
���

	�� J� J�rgensen� Compiler generation by partial evaluation� Master�s thesis� DIKU�
University of Copenhagen� Denmark� 	

� Student Project

�	���

	�� M� Marquard and B� Steensgaard� Partial evaluation of an object�
oriented imperative language� Master�s thesis� DIKU� University of
Copenhagen� Denmark� April 	

� Available from ftp�diku�dk as �le
pub�diku�semantics�papers�D�	�
�ps�Z�

	�� T� Mogensen and A� Bondorf� Logimix� A self�applicable partial evaluator for Pro�
log� In K��K� Lau and T� Clement� editors� LOPSTR �	� Workshops in Computing�
Berlin� Springer�Verlag� Jan� 	

��

	�� F� Tirelo� R� Bigonha� M� A� Maia� and V� Iorio� Mach��na� A Linguagem de
Especi�ca�c�ao de ASM �in portuguese�� Technical Report ���	

� Laborat�orio de
Linguagens de Programa�c�ao� Universidade Federal de Minas Gerais� 	

�

	�� C� Wallace� The Semantics of the C Programming Language� In E� B�orger�
editor� Speci�cation and Validation Methods� pages 	�	�	��� Oxford University
Press� 	

��

