Universidade Federal de Minas Gerais
Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Laboratério de Linguagens de Programacgao

An ASM Implementation of a
Self-Applicable Partial Evaluator

by
Vladimir O. Di Iorio
Roberto S. Bigonha
LLP 004/2000

Caixa Postal 702
30.161-970 - Belo Horizonte
Minas Gerais - Brazil
February 2000

Abstract

Partial evaluation is a technique for specializing programs with re-
spect to parts of their input. We describe an offline partial evaluator for
Abstract State Machines, written in the ASM language itself. The par-
tial evaluator receives an input ASM specification and generates a resid-
ual ASM specification. Suitable internal representations for these speci-
fications are presented. The partial evaluator is self-applicable, so some
problems related to self-application are discussed. We show how compiler
generation can be achieved using the partial evaluator and an interpreter
written in ASM.

1 Introduction

Partial evaluation is a source-to-source program transformation technique
for specializing programs with respect to parts of their input [4]. The
main goal is efficiency improvement, so it is expected that the specialized
program runs faster than the original one. Partial evaluators have been
successfully built for functional [2,11, 14], logical [16] and imperative [1,
15] languages.

An interpreter for a language L is usually a program with two inputs:
a source program S, written in L, and the input data for S. Specializing
the interpreter with respect to a given source program yields a compiled
program, i.e., a program written in the interpreter’s implementation lan-
guage, with the semantics of the source program.

A partial evaluator is also a program with two inputs: the program
to be specialized and part of its input. So a partial evaluator itself can
be specialized (self-application). The specialization of a partial evaluator
with respect to an interpreter yields a compiler. Finally, specializing a
partial evaluator with respect to itself yields a compiler generator.

Abstract State Machines are a formal specification method created
by Yuri Gurevich with the goal of simulating algorithms in a direct and
coding-free way [7]. ASM has been used to describe the semantics of
several programming languages [3, 8, 18]. The description usually consists
of an interpreter for the programming language.

We present an offline partial evaluator for Abstract State Machines,
written in the ASM language itself. The description can be seen as a
formal specification of a partial evaluator for ASM. The partial evaluator
is self-applicable, allowing compiler generation.

2 Partial Evaluation

A partial evaluator, when given a program and some of its input data,
produces a so-called residual or specialized program [12]. In other words,
a partial evaluator is a program specializer. The parts of the subject
program’s input data used in the specialization process are known as
static data. The remaining input data are known as dynamic data.

A partial evaluator performs a mixture of code execution and code
generation, so it is sometimes called miz. Let P be a program with two
inputs, in; and ing, written in a language S. Let [P]g represent the
semantics of P. Figure 1(a) presents an equational definition of a partial
evaluator mix for S programs.

out = [P]4(in1,inz) target = [miz](int, P)
Pip, = [miz], (P, in1) compiler = [miz](mizx,int)
out = [Pin,]y (in2) cogen = [mix](miz, miz)
(a) Equational definition of miz. (b) Futamura Projections.

Fig. 1. Partial evaluation equations.

The languages involved are S (the language of the programs processed
by the partial evaluator), L (miz implementation language) and T' (the
language of the programs produced by miz). S and T are usually the same
language. P, is the residual program, i.e., the result of the specialization
of P with respect to the first input in;.

2.1 Compilation and Compiler Generation

Futamura was the first to realize that partial evaluation can be used for
compilation and compiler generation [12]. Let int be an interpreter for a
language L;,;, written in a language S. Let miz be a partial evaluator
for S-programs. The equations presented in Figure 1(b) are known as the
Futamura Projections.

The First Futamura Projection shows compilation by the partial eval-
uation of an interpreter with respect to a given source program. The
Second Futamura Projection shows how a compiler can be generated by
the self-application of a partial evaluator. The Third Futamura Projec-
tion shows the generation of a compiler generator cogen by specializing
a partial evaluator with respect to itself. The second and third equations
require that miz be written in its own input language.

2.2 Online and Offline Partial Evaluation

The specialization process can be carried out either following the online
or the offline approach. If the values computed during program special-
ization can affect the execution flow of the partial evaluator, the strategy
is online, otherwise it is offline [12]. In practice, in the online approach,
specialization is performed in a single stage. Almost all offline partial
evaluators, on the other hand, perform specialization in two stages.

The first stage of an offline partial evaluator is called binding time
analysis (BTA). An annotated program is produced, with all structures

marked either as dynamic or static, according to their dependence on the
input data. The second stage is the specialization itself. The annotations
are strictly followed to produce the residual program.

The first partial evaluators were all online [12], but they did not pro-
duce good results on compiler generation by self-application. Offline par-
tial evaluation was invented in 1984 and made self-application feasible in
practice [13].

2.3 Partial Evaluation and ASM

Huggins and Gurevich present an offline partial evaluator for sequential
ASM in [9,10]. It performs specialization of basic ASM rules, but self-
application is not addressed.

In [6] we present an offline partial evaluator for ASM, written in Java,
which performs specialization of ASM rules and also user-defined recursive
functions. We have also implemented another partial evaluator miz agrs,
written in ASM itself, which makes self-application possible.

In this work, we describe the partial evaluator mix 4557, which was
not discussed in detail in [6]. Special attention is devoted to the problems
related to self-application.

3 An Offline Partial Evaluator for ASM

The architecture of an offline partial evaluator for ASM specifications is
presented in this section. The terms static and dynamic have different
meanings in ASM. To avoid name conflicts with established notation, we
will use positive instead of static and negative instead of dynamic. This
notation has been suggested by Huggins and Gurevich [9].

The partial evaluator assumes that input to ASM specifications is
provided by the ezternal (oracle) functions. So, each external function
must be previously classified either as positive or negative. The division
of the external functions into positive and negative is called the initial
division.

The partial evaluator receives as input the ASM specification to be
specialized, the initial division and the values for the positive external
functions. The first stage of the partial evaluator is called binding time
analysis. All functions used in the ASM specification are classified either
as positive or negative, computing a BTA division. Then, an annotated
specification is generated, with all strutuctures marked either as positive
or negative, according to the BTA division. The second stage is called

Offline Partial Evaluator

¥ BTA Y

ASM Specification
Compute Produce
P g | Annotated
» Anie BTA Division »
Initial Division Division Specification

Static Values » Specialization 1« Ann. Specification

Y

Residual Specification

Fig. 2. Architecture of an offline partial evaluator for ASM.

specialization. The annotations are strictly followed to produce a residual
specification, using the values of the positive external functions. Figure 2
shows a representation of this process.

Section 4 discusses an internal representation for ASM specifications.
ASM rules describing binding time analysis and specialization are pre-
sented in sections 5 and 6, respectively. Self-application of the partial
evaluator is discussed in Section 7.

4 Representation of Specifications

An ASM specification is the input of the partial evaluator, annotated
specifications are produced by the BTA phase, and residual specifications
are generated by the specialization phase. In this section, we discuss the
way the partial evaluator encodes these syntactical objects into an internal
representation. Three different representations will be presented: input
specifications, annotated and residual specifications.

The partial evaluator deals only with basic ASM transition rules: up-
date instructions, block constructors and conditional constructors. The
abstract syntax of these rules is presented below, where f denotes func-
tion names, ¢ denotes terms and R denotes rules:

R:= f(t1,...,ty) =t
R : Rle
R:= if t then R; else Ry

4.1 Input Specifications

To encode the input specifications, we will use definitions similar to those
presented in [5]. An input specification SPEC, associated to an algebra
Ain, is defined as SPEC = (Y}, D, Init, Prog), where

Tin is a vocabulary containing at least all function names occurring in D,
Init and Prog.

D is a set of function definitions. They may be constructive definitions,
which the partial evaluator is able to evaluate, or interface declara-
tions, defining externally alterable oracle functions.

Init is a block of update instructions which define part of the initial state
SU of Am

Prog is the transition rule.

An implicitly given part of the initial state Sy of Aj;, results from
default interpretations of predefined function names in 1;,, which are con-
sidered as built-in functions of the partial evaluator. This set of built-in
functions contains at least the basic logic names. Part of the initial state
is defined by Init. It is interesting to use a block of rules to represent Init
because it can be specialized by the partial evaluator.

As in [5], we define a mapping “[.]” that yields, for each syntactical ob-
ject, the corresponding element of one of the following domains defined by
the partial evaluator: FNAME (function names), TERM (terms), RULE
(transition rules) and DEF (abstract function definitions). We assume
that the input specification is syntactically correct and the encoding has
been carried out by a preprocessing step.

For function names f in 7j,, we have [f] = ¢(f), where ¢ is an
injective function from 15, into FNAME. For each function name f in 15,
we assume that Tpg, the vocabulary of the partial evaluator, contains a
nullary function name “f” :FNAME such that “f” = ¢(f).

The elements of the domain TERM are defined by means of a term
constructor function. Using this constructor, different terms are induc-
tively mapped to different elements of TERM in the following way:

term : (FNAME x TERM*) — TERM
[[f (tlv"'vtr)]]: term([[f]]v([[tl]]v"'v[[tr]]»

The mapping of transition rules can be defined in a similar way, using
the following constructor functions, which are used to encode the Init and

Prog components of SPEC:

update_instr : (TERM x TERM) — RULE
block_cons : RULE* — RULE
cond_cons : (TERM x RULE x RULE) — RULE

4.2 Annotated Specifications

Annotated specifications are produced by the BTA phase. They are very
similar to input specifications, except that a BTA tag is associated to
each syntactical object. BTA tags can assume one of the values: BTA-
POS and BTANEG. The value BTAPOS indicates that the syntactical
object can be computed at specialization time, while BTANEG indicates
a “residualizable” object.

The universe TBTA represents the BTA tags. Annotated terms and
rules are elements of the universes TTERM and TRULE, where “T"”
means “tagged”. Constructors including annotations are described below.
A special constructor [ift is used to indicate a positive term that occurs
in a negative context (see Section 5).

tterm : (TBTA x FNAME x TTERM*) — TTERM
tupdate_instr : (TBTA x TTERM x TTERM) — TRULE
tblock_cons : TRULE* — TRULE
tcond_cons : (TBTA x TTERM x TRULE x TRULE) — TRULE
lift : TTERM — TTERM

4.3 Residual Specifications

Residual rules are elements of the universe GRULE. These elements can
be defined by the previous constructors term and update_instr, together
with the new constructors gblock_cons and gcond_cons:

gblock_cons : (null U (GRULE x GVAL)) - GRULE
gcond_cons : (TERM x GVAL x GVAL) - GRULE

A residual block can be either an empty block (null) or a residual rule
together with a G VAL value that indicates the next rule in the sequence.
A residual conditional rule is represented by the guard (a term) and two
G VAL values that indicate the then and else rules.

A gencode function will be used by the partial evaluator to build links
among the generated rules. An example is presented in Figure 3, where

update_instr, , gencode(0) = gblock_cons(update_instr,,1)
if term; then gencode(1l) = gcond_cons(termi, 2, 3)
update_instr, gencode(2) = update_instr,
else .
update_instr, gencode(3) = update_instr,
(a) A block to be generated. (b) Internal representation.

Fig. 3. Example of use of the gencode table.

if (3z € CSET) then if =(3x € CSET) then
choose x € CSET if change then
CSET(z):= false, CSET (prog):= true,
ProcessBlock(x) change:= false

Fig. 4. Rules for computing the BTA division.

GVAL is INT, for simplicity. Figure 3(a) shows a block with two rules. In
Figure 3(b), the table gencode is used to store this block.

5 Binding Time Analysis

The binding time analysis phase is divided into two sequential steps.
The first step computes a division of all functions into either positive or
negative. In the second step, an annotated specification is generated.

5.1 Computing a BTA Division

Figures 4 and 5 show the rules that formalize the computation of the BTA
division. Initially, all functions of the input specification are classified as
positive, except the oracle (external) functions. All update instructions
f(t1,...,t,) := t are sequentially examined. If ¢ or any #;,1 < i < r is
negative, then f must also be classified as negative. The division algorithm
iterates until a fixpoint is reached.

A unary relation CSET : RULE — BOOL is used, as in [5], to identify
the instances of subrules that are being considered in a given step. The
functions init and prog extract the initial and the transition rules of the
input specification, respectively. The function bta_val associates, to each
function f in 25,, a TBTA value (BTAPOS or BTANEG). The boolean
nullary function change is used to determine when a fixpoint is reached.

if = = block_cons(ri,rest) then if = = cond_cons(t,r1,r2) then
CSET(r1) := true, CSET(r1) := true,
CSET(rest) := true CSET(r2) := true

if = = update_instr(loc,val) then
let term(f,t") =loc in
if bta-val(f) = BTAPOS and (isneg”(t*) or isneg(val)) then
bta val(f) := BTANEG,

change := true

NN

Fig. 5. Rule ProcessBlock(z).

The function isneg(t) indicates if the term ¢ is negative, and isneg*(¢*)
indicates if one of the terms of the list £* is negative.

For each function f in T;,, bta_val(f) is initialized to BTAPOS,
except for the oracle functions, whose classification is given as input.
Other initial values: CSET = {init,prog} and change = false.

5.2 Generating an Annotated Specification

After computing a BTA division, an annotated specification is generated.
The functions used to build the annotated rules are gentr and gentt,
whose definition is presented in Figure 6. The function gentr describes a
mapping from rules to annotated rules, and gentt describes a mapping
from terms to annotated terms. A third function gentt* is applied to lists
of terms.

If a positive term occurs in a negative context, the result of the com-
putation must be residualized. To indicate this situation to the specializa-
tion phase, a lift constructor is used in the annotated representation. The
function gentt uses its second argument to determine if a /ift is necessary.

Observe that an annotated block constructor is always generated, even
when a conditional constructor or update instruction is processed. The
only reason for this is to simplify the specialization algorithm.

6 Specialization

The specialization algorithm uses the annotated specification produced
by the BTA phase and the values of the positive external functions to
generate a residual specification. The technique used is polyvariant spe-
cialization. The process consists on computing the set of all reachable
specialized program points [12]. A specialized program point, in this case,

gentt : TERM x TBTA — TTERM
gentt (term(f,t*),tag) =
let tag: = bta_val(f)
tt = gentt™ (t*,tag1)
in if (tag = BTANEG) and (tagi = BTAPOS)
then lift(tterm (tag:, f,tt)) else tterm (tag, f,tt)

gentr : RULE — TRULE
gentr (block_cons (r1,rest)) =
tblock_cons (gentr(ri), gentr(rest))
gentr (cond_cons (t,ri,72)) =
let term(f,t") =t
tag = bta_val(f)
result = tcond_cons (tag, gentt(t,tag), gentr(ri), gentr(rz))
in tblock_-cons(result, null)
gentr (update_instr (ti,t2)) =
let term(f,t") =t
tag = bta_val(f)
result = tupdate_instr (tag, gentt(ti,tag), gentt(ts,tag))
in tblock_cons(result, null)

Fig. 6. Functions gentt and gentr.

is identified by a sequence of values for the positive functions. Each dif-
ferent sequence of values is a different program point. These sequence of
values will be designated as positive states.

The initial positive state, which is defined by the initial values of the
positive functions, is inserted into a set PENDING. This set comprises
the positive states that have not been processed yet. On each iteration,
an element is picked up from PENDING and processed.

When a positive state is processed, an associated code is generated and
new positive states are produced. Those not processed yet are inserted
into PENDING. This process is carried out until PENDING becomes
empty. At this point, a generated rule Ry is associated to each different
positive state k. The residual specification will have an additional function
CURSTATE and its residual transition rule will be a block of rules of the
form “if CURSTATE = k then R;”.

Figure 7 shows ASM rules that describe the specialization algorithm.
A unary relation GSET identifies the instances of subrules that are be-
ing considered in a given step, in a way similar to CSET in Section 5.
The difference is that elements of GSET are a tuple formed by a rule,
an integer number used as a link by the generated code, and a set of
collected updates. The initial value of GSET is {(init,0,null)}. A set

if =(3x € GSET) then
if (3s € PENDING) then

if (3z € GSET) then code_number := 0,

choose = € GSET GSET(<prog,0,null>) := true,
GSET(z) := false, choose s € PENDING

ProcessBlock(x) PENDING(s) := false,
MARKED(s) := true,

curvalues := s

Fig. 7. Specialization Rules.

MARKED, initially empty, identifies the positive states that have already
been processed. The function codenumber is used by the residual code.
The function curvalues represents the current positive state being pro-
cessed, and its initial value is a positive state in which the functions are
undefined at all points. The functions init and prog now denote the
initial and transition rules of the annotated specification.

Before showing the complete description of the specializer, we discuss
how positive states are represented and computed.

6.1 Representation of States

A universe VALUE = BOOL U{undef }U...U N provides interpretations
for standard function names. Let posfuncs denote the list of function
names classified as positive by BTA, not including the external functions.
If posfuncs = (fy,..., fx), then a positive state ps € PSTATE is a list
(fvi,..., fug), where fu; represents a function value for f;,1 < i < k.
A function value is a sequence of pairs (VALUE*, VALUE) € FVALUE,
representing the finitely many updated values of a function.

To build new positive states, the partial evaluator must compute val-
ues using positive terms of the annotated specification. To specify the
evaluation of these terms, the following auxiliary functions are introduced,
which are similar to those presented in [5]:

- 9g1,-.-.,9gr represent the predefined functions.

— apply : DEF x VALUE* — VALUE is a function which produces
values for the functions defined by the input specification, given a
function definition and a sequence of arguments. This definition can
be constructive or an interface for an external function.

— cont : FNAME* x FVALUE* x LOCATION — (VALUE Unil) is a
function which produces values, given a sequence of function names, a

positive state and a location, in the following way: cont (pf, ps, (f,t*))
identifies the position of the function name f in the sequence pf,
obtaining the correctly associated element fv € FVALUE from ps.
Using fv and the terms ¢*, a value (possibly undef) is produced. The
special nullary function nil indicates that the function name f is not
in the sequence pf.

Interpretations to the annotated terms are provided by the evaluation
function Val : FNAME* x FVALUE* x TTERM — VALUE using
values defined by a positive state and its associated list of positive function
names. This function, which will be applied only to positive terms, is
defined by the equation

Val (pf7ps7tterm(tag7f7 (tl,.--,tn))) =
let (Z) = (Val (t1),..., Val (ty)) in
if f = “g1” then g1 (7)

else if f = “g,” then g, (z)
else if cont (pf,ps,(f,(Z))) # nil then cont (pf,ps,(f,(Z)))

else if def (f) # undef then apply (def (f),(z))
else undef

When a negative term is processed by the partial evaluator, the resid-
ual generated term must have all positive information computed. The
function Reduce : FNAME* x FVALUE* x TTERM — TERM
produces these residual reduced terms. Like Val, Reduce uses values de-
fined by a positive state and its associated list of postive function names.
To produce a residual term, negative annotated terms are simply con-
verted to terms without annotations. Positive terms are evaluated using
the function Val. When a [ift constructor is found, denoting a positive
term inserted in a negative context (see Section 5), the positive value is
computed and converted to a term constructor.

6.2 Processing Blocks

Figure 8 shows ASM rules to process the elements inserted in GSET.
These elements are formed by a block of annotated rules, an integer num-
ber used in code generation, and a sequence of collected updates. The
sequence of collected updates is formed only by syntactical objects (each
update is represented by a pair of TTERM elements).

On each iteration, the first annotated rule of the block is processed,
inserting new elements in GSET (see the description of ProcessRule).

let <thisblock, cn, updates>=z in

if thisblock = tblock_cons(ri,rest) then
ProcessRule (ri, cn, rest, updates)

else //...thisblock is an empty block

let newvalues = compute_updates (posfuncs, curvalues, updates) in
gencode(<curvalues,cn>) := gen next_step (newvalues),
if -(newvalues € MARKED) then

PENDING (newvalues) := true

Fig. 8. Rule ProcessBlock(z).

If the block is empty, a new positive state is produced using its collected
updates and appropriate code is generated.

A new positive state newvalues is computed by compute updates,
using the values defined by the current positive state curvalues and the
sequence of syntactical objects representing the collected updates of the
block. We do not present here the description of compute_updates, but it
may be easily defined using the function Val, previously described. If the
new positive state has not been processed yet, it is inserted in PENDING.

The function gencode, as explained in Section 4, associates a residual
rule to each processed block. A block is identified by the value of the cur-
rent positive state and a code number cn. The function gen_ next_step(v)
generates the code “CURSTATE := v”, which defines the flow of control in
the residual transition rule (see Section 6.5).

6.3 Processing Conditional Constructors

Annotated conditional constructors tcond_cons (tag, cond, rthen, relse) are
processed by the ASM rules shown in Figure 9. To append two blocks of
rules,.the function merge blocks is used.

If the rule is positive, then the condition is evaluated using the func-
tion Val. Depending on the result (¢rue or false), the new subrule to be
processed in the next step is rthen or relse, merged with the rest of the
current block.

If the rule is negative, two new subrules are inserted in GSET. Observe
that new code numbers are assigned to these subrules. The generated
residual code is a conditional constructor which is linked to the code
numbers of the new subrules. All positive information of the residual
condition is computed by the Reduce function.

if ri = tcond_cons (tag, cond, rthen, relse) then
let merged_rthen = merge_blocks (rthen, rest),
merged_relse = merge_blocks (relse, rest)
in if tag then
if Val (posfuncs, curvalues, cond) then
GSET (<merged _rthen, cn, updates>) := true
else GSET (<merged relse, cn, updates>) := true
else
GSET (<merged _rthen, codenumber+l, updates>) := true,
GSET (<merged relse, codenumber+2, updates>) := true,
codenumber := codenumber + 2,

gencode(<curvalues,cn>) := gcond_cons (
Reduce (posfuncs, curvalues, cond),
<curvalues,codenumber+1>, <curvalues,codenumber+2>)

Fig. 9. ProcessRule(r;, cn, rest, updates), for conditional constructors.

6.4 Processing Update Instructions

Figure 10 shows ASM rules to process annotated update instructions
tupdate_instr (tag,t1,ts).

If the rule is positive, the new subrule inserted in GSET is formed
by the rest of the current block, with (¢1,¢2) added to the sequence of
collected updates. The code number is the same of the current block, be-
cause no residual code is generated. Observe that ¢; and ¢2 are syntactical
objects.

If the rule is negative, the new subrule inserted in GSET is formed by
the rest of the current block, with the same sequence of collected updates.
A new code code number is assigned to this subrule, because a residual
block is generated using the current code number. A reduced (positive
information computed) version of the update instruction is the first rule
of the residual generated block, which is linked to the new subrule to be
processed.

6.5 The Residual Transition Rule

After the last step of the specialization algorithm, the links established
by the function gencode can be used to build the residual transition rule.
Each positive state ps € MARKED has an associated residual rule R,
defined by gencode(ps).

An additional function CURSTATE : PSTATE defines the flow of control
in the residual specification. The initial value of CURSTATE is a positive

if ri = tupdate_instr (tag, t1, t2) then
if tag then let newupdates = cons (< t1,t2 >, updates) in
GSET (< rest, cn, newupdates>) := true
else
GSET (< rest, codenumber+l, updates>) := true,
codenumber := codenumber + 1,
gencode(<curvalues,cn>) := gblock_cons (
update_instr (Reduce (posfuncs, curvalues, t1),
Reduce (posfuncs, curvalues, t3)),
<curvalues,codenumber+1>)

Fig. 10. ProcessRule(r;, cn, rest, updates), for update instructions.

state in which the functions are undefined at all points (the same initial
value of curvalues in the specializer). The residual transition rule is
a block of rules of the form “if curstate = ps then R,,", for each
ps € MARKED. The flow of control is determined by the assignments to
CURSTATE which are generated when an empty block is processed by the
specializer (see Figure 8).

7 Self-Application and Compiler Generation

The offline approach simplifies the process of self-application because it
divides partial evaluation into two separated phases. The partial evaluator
for ASM (mix,sy) is composed of two separated programs: BTA (binding
time analysis) and spec (specialization). Using these programs, the Second
Futamura Projection can be rewritten in the following way:

spec™™" = [BTA](spec, div gpec)
int®" = [BTA](int, divin;)

compiler = [spec](spec™™, int*™)

where p®*" denotes an annotated version of a program p and div, de-
notes the division of the external functions of p into static (positive) and
dynamic (negative).

The compiler generation process using the offline partial evaluator
for ASM is performed in three steps. First, an interpreter for a language
L is written in ASM. Second, an annotated version of this interpreter is
generated using the BTA algorithms described in Section 5. Finally, a pre-
viously annotated version of the spec specialization algorithm (described
in Section 6) is specialized with respect to the annotated interpreter. A

compiler from L to ASM is generated. Note that BTA is not included in
the self-application of the specializer.

The specialization algorithm described in Section 6 processes only ba-
sic ASM rules. The text of the description uses simple pattern matching
constructs and let expressions to enhance readability, but these struc-
tures can be easily translated into appropriate selector functions that
extract the desired components. The choose constructor is also used, but
its semantics is essentially deterministic. It can be translated into oper-
ations that extract elements from a list. So the entire description can be
translated into a specification that uses only basic ASM rules, making
self-application possible.

Not all programs are suitable for partial evaluation. The structures
depending on static (positive) and dynamic (negative) values must be
carefully separated. The positive structures will be computed during spe-
cialization time, and will not appear in the residual code. To show that
the specializer presented in Section 6 is suitable for partial evaluation, it
is necessary to analyze its annotated version, produced by submitting it
to the BTA algorithm.

The specializer has two input data: an annotated specification and the
values of its positive external functions. To access the annotated specifi-
cation, external functions like init (initial rule), prog (transition rule)
and def (definitions) are used. If the specializer is specialized with respect
to the first input, these external functions are marked as positive. The
second input, the values of the positive external functions, is accessed by
means of the auxiliary function apply (see Section 6.1). This function is
marked as negative.

We present now the application of the BTA algorithm to the special-
izer and the initial division described above. The function Val depends
on the function apply, so any occurrence of Val is negative. The function
compute_updates depends on Val, so it is also negative. Other negative
functions: curvalues, gencode and the sets PENDING and MARKED.
On the other hand, the components of the elements inserted in GSET
are all positive: the subrules and the collected updates are extracted from
the annotated program, and the code number depends only on itself. So
GSET is classified as positive. The reason of using only syntactical objects
to represent the collected updates now becomes clear (another possibility
would be using computed values, but it would make GSET negative).

A residual compiler generated by the Second Futamura Projection has
no occurrence of the positive functions enumerated above. The positive

and negative structures are satisfactorily separated, so the specializer can
be considered suitable for self-application.

8 Conclusion

Self-application of a partial evaluator allows compiler generation, but im-
poses additional requirements on the specification. The partial evaluator
must process its own text. Static (positive) and dynamic (negative) struc-
tures must be carefully separated.

The ASM specification of the partial evaluator presented is very simple
and is few lines long. We have decided to use the offline approach because
it simplifies self-application [12]. We have shown that it is possible to
describe a self-applicable partial evaluator using only basic ASM rules.
The ASM model has proved to have the necessary expressive power to
specify the partial evaluator in a elegant way.

The offline partial evaluator for ASM differs from partial evaluators
for imperative and functional languages in several aspects. For example, it
must deal with parallel updating of functions and has a different concept
of specialized program points.

In imperative languages, a specialized program point is defined by a
pair (I,vv) , where [is a program label and vv represents the values of
the static variables. In functional languages, specialized program points
are defined by a function name and the values of its static arguments. In
ASM specifications, on the other hand, the entire transition rule is pro-
cessed for each different set of positive (static) functions. So a specialized
program point is represented only by the values of the positive functions.
Processing the entire transition rule multiple times brings additional diffi-
culties, because several new specialized program points may be produced
at each iteration.

The parallel updating of functions is an important feature of ASM
specifications. The partial evaluator is supposed to maintain a set of col-
lected updates that are to be fired in parallel, when a new specialized
program point is built.

We have found some difficulties to represent the code generated by
the specializer. Residual generated specifications could be internally rep-
resented with the same structures used for input specifications. However,
the top-down generating process used by the specializer makes the use
of those structures unsuitable, specially for block and conditional con-
structor rules. The technique described in Section 4.3 is appropriate for
top-down code generation.

Many optimizations may be implemented in the partial evaluator. The
most important is transition compression [12]. With transition compres-
sion, compatible rules can be merged and unnecessary residual rules can
be eliminated, producing a more efficient residual specification.

Some experiments involving compilation and compiler generation us-
ing ASM and partial evaluation are described in [6]. Using a powerful
partial evaluator for ASM, implemented in Java, interpreters written in
ASM are specialized with respect to source programs. Good results in
compilation are reported, in experiments involving a simple Turing Ma-
chine interpreter and an interpreter for a subset of C.

The partial evaluator described in this document, which we call mix,gy,
was used in compiler generation experiments. The partial evaluator writ-
ten in Java was used to specialize mix,gy with respect to a simple Turing
Machine interpreter. The residual compiler processes Turing Machine pro-
grams and generates ASM code. The results, however, are not satisfactory,
because of the lack of optimizations in mixgy.

A more promising alternative for compiler generation is being con-
sidered. A statically typed ASM language, called Machina, is presented
in [17]. An efficient compiler from Machina to C is under construction.
Another important work is a compiler generator cogen, which uses partial
evaluation techniques. An integrated system will generate compilers in C,
using as input interpreters written in Machina.

References

1. L. Andersen. C program specialization. Technical Report 92/14, DIKU, University
of Copenhagen, Denmark, May 1992.

2. L. Birkedal and M. Welinder. Partial evaluation of Standard ML. Master’s thesis,
DIKU, University of Copenhagen, Denmark, 1993. DIKU Research Report 93/22.

3. E. Borger and W. Schulte. Programmer Friendly Modular Definition of the Se-
mantics of Java. In J. Alves-Foss, editor, Formal Syntaz and Semantics of Java,
LNCS. Springer, 1998.

4. C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Twentieth ACM
Symposium on Principles of Programming Languages, Charleston, South Carolina,
January 1993, pages 493-501. ACM, New York: ACM, 1993.

5. G. Del Castillo, I. Durdanovié¢, and U. Glasser. An Evolving Algebra Abstract
Machine. In H. K. Biining, editor, Proceedings of the Annual Conference of the
European Association for Computer Science Logic (CSL’95), volume 1092 of LNCS,
pages 191-214. Springer, 1996.

6. V. O. Di Iorio, R. S. Bigonha, and M. A. Maia. A Self-Applicable Partial Evalua-
tor for ASM. Technical Report LLP-11-99, Programming Languages Laboratory,
DCC, Universidade Federal de Minas Gerais, 1999.

7. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Y. Gurevich and J. Huggins. The Semantics of the C Programming Language. In
E. Borger, H. Kleine Biining, G. Jager, S. Martini, and M. M. Richter, editors,
Computer Science Logic, volume 702 of LNCS, pages 274-309. Springer, 1993.

Y. Gurevich and J. Huggins. Evolving Algebras and Partial Evaluation. In
B. Pehrson and I. Simon, editors, IFIP 13th World Computer Congress, volume I:
Technology/Foundations, pages 587592, Elsevier, Amsterdam, the Netherlands,
1994.

J. Huggins. An Offline Partial Evaluator for Evolving Algebras. Technical Report
CSE-TR-229-95, EECS Dept., University of Michigan, 1995.

N. Jones, C. Gomard, A. Bondorf, O. Danvy, and T. Mogensen. A self-applicable
partial evaluator for the lambda calculus. In 1990 International Conference on
Computer Languages, New Orleans, Louisiana, March 1990, pages 49-58. New
York: IEEE Computer Society, 1990.

N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

N. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial evaluation:
The generation of a compiler generator. In J.-P. Jouannaud, editor, Rewriting
Techniques and Applications, Dijon, France. (Lecture Notes in Computer Science,
vol. 202), pages 124-140. Berlin: Springer-Verlag, 1985.

J. Jorgensen. Compiler generation by partial evaluation. Master’s thesis, DIKU,
University of Copenhagen, Denmark, 1992. Student Project 92-1-4.

M. Marquard and B. Steensgaard. Partial evaluation of an object-
oriented imperative language. Master’s thesis, DIKU, University of
Copenhagen, Denmark, April 1992. Available from ftp.diku.dk as file
pub/diku/semantics/papers/D-152.ps.Z.

T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Pro-
log. In K.-K. Lau and T. Clement, editors, LOPSTR 92. Workshops in Computing.
Berlin: Springer-Verlag, Jan. 1993.

F. Tirelo, R. Bigonha, M. A. Maia, and V. Iorio. Machina: A Linguagem de
Especificagao de ASM (in portuguese). Technical Report 08/1999, Laboratério de
Linguagens de Programagcao, Universidade Federal de Minas Gerais, 1999.

C. Wallace. The Semantics of the C++ Programming Language. In E. Borger,
editor, Specification and Validation Methods, pages 131-164. Oxford University
Press, 1995.

