
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Departamento de Ciência da Computação

A Java Based Simulator

for the PeerSpaces Coordination

Language

Fernando Magno Quintão Pereira

Wendell Figueiredo Taveira

Technical Report
Programming Language Laboratory

LLP002/2002

Av. Antônio Carlos, 6627

31270-010 - Belo Horizonte - MG

August 26, 2003

Abstract. This technical report presents a Java-based simulator for the
PeerSpaces coordination model. PeerSpaces is a shared space coordina-
tion model designed for ad hoc mobile networks. The model is based
on the concept of tuple spaces firstly proposed by Linda parallel pro-
gramming language. In order to suit well the dynamic environment that
characterizes ad hoc networks, PeerSpaces does not assume the presence
of any centralized structure for communication and coordination. This
report also describes an algorithm for termination detection in ad hoc
networks built on PeerSpaces using the proposed simulator.

1 Introduction

Ad hoc networks are mobile networks that do not rely on any based station
infrastructure for communication [6, 12]. Instead, hosts depend on each other to
send and receive messages. In ad hoc networks, two hosts can exchange messages
whenever they happen to be at communication range. Bluetooth is an example
of network technology that makes this form of wireless communication possible.

Designing applications for such networks presents many interesting prob-
lems [15, 16]. Particularly, coordination is a challenging task. Since a user can
find himself in a different network at any moment, the services available to him
change along the time. Thus, computation should not rely on any predefined and
well known context. Also, coordination should not assume the existence of any
centralized node, because permanent availability of this node cannot be granted.
Communication should also be uncoupled in time and space, meaning that two
communicating entities do not need to establish a direct connection to exchange
data nor must know the identity of each other.

This report describes a Java based simulator for the PeerSpaces model and a
distributed algorithm built on this simulator. PeerSpaces is a coordination model
for ad hoc networks based on Linda [5]. In Linda, several process communicate
through a central data repository called tuple space. Processes communicate
by inserting (out), reading (rd) and removing (in) ordered sequences of data
from this space. Tuple retrieving is associative because it is based on a pattern
against which a matching tuple is non-deterministically chosen from the space.
If a matching tuple is not found, the caller process is suspended until such tuple
is posted in its tuple space.

Communication in Linda presents many characteristics that are desirable
in mobile environment. Particularly, communication is asynchronous and un-
coupled in time and space. Communicating processes do not need to create a
socket-like connection to exchange data. The associative mechanism allows com-
munication based on the contents of the messages rather than on their addresses
or other identifiers. Moreover, the blocking semantics used to retrieve tuples
automatically provides synchronization among processes. All these features are
important in mobile systems, since they are characterized by dynamic and short-
lived patterns of communication

In traditional Java-based Linda systems, like TSpaces [19] and JavaSpaces
[4], the tuple space is a centralized and global data structure that runs in a

pre-defined service provider. In the base station scenario this server can easily
be located in the fixed network. However, if operation in ad hoc mode is a
requirement, this choice is not available, since in this case the fixed infrastructure
simply does not exist. This suggests that standard client/server implementations
of Linda are not suitable to ad hoc scenarios, since they assume a tight coupling
between client and servers and the permanent availability of the latter.

Aiming to answer the new requirements posed by ad hoc mobile computing
systems, PeerSpaces departs from the traditional client/server architecture used
in Linda and push towards a completely decentralized one. In the model, each
node (or peer) has the same capabilities, acting as client, shared space provider
and as router of messages. In order to provide support to operation in ad hoc
mode, service lookup is distributed along the network and does not require any
previous knowledge about its topology.

The report is organized as follows. In Section 2 we informally present the
PeerSpaces model, including its main design goals, concepts and primitives. Sec-
tion 3 gives an overview of a simulator for the PeerSpaces model and describes
how the more complex primitives of the model are implemented. Section 4 de-
scribes the implementation and simulation in PeerSpaces of a termination detec-
tion algorithm. Detecting the termination of diffusing computation is a impor-
tant problem in the distributed processing field and is used in this documment
as an example of distributed algorithm that can be build on PeerSpaces. Finally,
Section 6 concludes the report.

2 PeerSpaces: A Coordination Model for Ad Hoc Mobile
Systems

PeerSpaces assumes an ad hoc network of mobile devices. Thus, there is no infras-
tructured network and hosts may connect or disconnect at any moment. As usual
in ad hoc settings, two hosts can communicate when their wireless interfaces are
in the same vicinity. The model does not assume any centralized structure and
does not promise to provide any kind of shared memory abstraction encompass-
ing connected hosts. Instead, it fosters a peer to peer model of computation,
where any connected node has the same capabilities. Furthermore, hosts can
discover each other using a decentralized lookup service and then communicate
using remote primitives.

The main concepts used in PeerSpaces are the following:

Hosts The model assumes that hosts are mobile devices. Each host has its
own local tuple space and a set of running threads. The host-level tuple space
has three main purposes. First, it is used for local coordination among threads
running in the host. Second, it is used for remote communication, since there are
primitives in the model to retrieve and output messages in the space of remote
hosts. Third, it is used to publish services and to retrieve the results of lookup
queries. A service is any entity available in the host that can be useful to other
hosts. Services in PeerSpaces are defined by tuples, whose fields describe the

attributes of the service. Finally, a lookup query is a query performed along the
network to discover services.

Network Mobile hosts in the model are connected by a wireless and ad hoc
network. As usual in such networks, connectivity is transient and determined by
the distance among hosts. Consequently, the topology of the network is continu-
ously changing. Moreover, any host in the network can act as router, propagating
messages between nodes that are not directly connected.

2.1 PeerSpaces Primitives

PeerSpaces defines a set of primitives to assemble applications using the previ-
ous defined concepts. The set of primitives of PeerSpaces is a superset of the
primitives originally proposed by Linda.

As in Linda, the out t primitive inserts tuple t into the tuple space of the
local node. The remote outh, v primitive inserts tuple v in the tuple space of
host h. The remote out primitive is asynchronous meaning that if host h is not
reachable the operation returns after leaving the tuple v temporarily stored in
space of the issuing host h′. When a communication path is established between
h′ and h the tuple is automatically transmitted to its final destination.

As in Linda, the in t, x primitive removes a tuple matching pattern t from
the local space of a node and binds it to x. If there are several matching tuples,
one of then is chosen non-deterministically. If there is no matching tuple, the
calling thread remais blocked until the operation can be completed. The remote
operation specifies a remote host name as a parameter as in inh, v, x.

The non-blocking version of in is called inp (probe in). If it is not possible
for inp t, x to match a tuple, a null reference is binded to the name x. There is
also a remote version for the inp operation. The last primitive of the in family is
called ing. The operation ing t, a[] retrieves from the local tuple space all tuples
matching pattern t and stores them into the array a. The operation does not
block the calling thread if no tuple is found.

In order to retrieve information from tuple spaces without removing the data
PeerSpaces provides a reading operation. The rd t, x operation is similar to a
local in but it does not change the state of the tuple space. The remote version
of the operation is rdh, v, x and the non blocking version is named rdp. Like
rd, the non blocking operation also has a remote version. Finally, rdg t, a[] fills
the array a with all tuples in the local space matching pattern t.

PeerSpaces extends Linda with a lookup primitive used to discover services
in the network. Since the model is designed for use in ad hoc networks, this
primitive does not make use of any central authority, as a directory service.
Instead, the execution of the lookup primitive, called find , is distributed along
the federation of connected devices. The find p operation queries hosts in the
network for tuples matching pattern p. All matching tuples found are copied
asynchronously to the local space of the host that has called the operation.

For example, a PDA-based auction system that wants to find other PDA’s
users selling 21 inches TVs despite its branch, price and seller can issue the follow-

ing operation: find 〈mall, sellers〉, 〈tv, 21, ?, ?, ?〉. The operation will trigger a
query for tuples matching the pattern 〈tv, 21, ?, ?, ?〉 in the hosts of subgroup
sellers of the root group mall. Matching tuples, like 〈tv, 21, foo, 325, h〉, where
foo, 325 and h are respectively the TV’s branch, the TV’s price and the name of
the mobile host offering the TV, will be outputted in the local space of the PDA
sometime after the operation was issued. The PDA system can then retrieve
these answers using the local in primitive and place an offer v using the remote
operation outh, v.

The find operation originates a query that is propagated to all nodes of
the network. Basically, the host that originated the query transmit it to its
neighbors, that retransmit it to their neighbors and so on, until the network
graph is covered. This protocol is similar to the one used by distributed file
sharing systems in the Internet, like Gnutella [7]. Not surprisingly, the logical
network created by Gnutella over the fixed Internet presents many characteristics
that are typical of wireless and ad hoc networks.

Often it is useful to query connected hosts for a service and keep the query
effective until such service is available. In this way, a client does not need to pe-
riodically send lookup queries to detect new services that may become available
since the last query was issued. In PeerSpaces, lookup queries that remain ac-
tive after their first execution are called continuous queries. Continuous lookup
queries are issued adding the lifetime t to the find primitive: find p, t. This
primitive will search the hosts of the network for available services matching
pattern p and for services that may become available in t time units.

3 A Java-based Simulator for PeerSpaces

In order to design and test distributed ad hoc systems in PeerSpaces, a simu-
lador was implemented for the model. The simulator was written in Java and is
available as a Java package. For tuple space manipulation, the simulator uses a
Java-based tuple space system named LighTS [8].

The simulator supports a stochastic model of simulation. The behavior of
network elements is based on probabilistic parameters. The simulation is driven
by a discrete time and random events are generated following the parameters
defined by the user. The user specify the number of nodes in the network and
the size of the grid where the nodes are located. For each node, the user defines
its pattern of movement and the range of its wireless interface.

In order to implement and test a distributed algorithm, the user has to extend
some pre-defined classes and interfaces. Each algorithm is a set of classes that
implements the Command interface. This interface has two methods: eval (to
evaluate the command guard) and exec to execute the command action. Several
algorithms can be composed together in order to create a more complex one.

The simulator was implemented in two layers. In the first layer the user has
the illusion that communication between two entities is carried on directly. In
this layer, the user makes use of the primitives of the model. The second layer

implements the routing protocol used by the PeerSpaces primitives. In this layer,
messages are transmitted only between adjacent nodes.

The routing algorithm implemented in the second layer of the simulator is
based on flooding [17]. According to this technique, after receiving a message
whose final address is not its address, a node send the message to all its neighbors.
Although the implementation of this algorithm is straightforward, the exchange
of information between two nodes that are not neighbors can generate a large
number of messages in the network. On the other hand, flooding is fast and
reliable in the sense that if there is a path connecting sender and receiver, then
a message will be delivered in the shortest possible time. The problem of loops in
the transmission of messages is solved by assigning identifiers to each message.

3.1 Implementation of the PeerSpaces primitives

Remote out In order to handle the asynchronism inherent to the remote out
operation, it is executed in two steps. Suppose that a node h′ executes an outh, v
to post a message v in the space of host h. In the first step, a tuple vh, called a
misplaced tuple, is inserted in the tuple space of h′. At the same time, h′ sends
to h the tuple vh. After receiving this tuple, h extracts v from vh and attempts
to retrieve the misplaced tuple from the tuple space of h′ with an inp operation.

If there is not a path connecting h and h′, tuple vh will be kept in the local
space of h′ until its propagation to h is possible. Whenever a new node connects
to the network, a notifying message is sent to each connected node. After re-
ceiving this message, a node retransmits all misplaced tuples it currently holds.
Although expensive in terms of number of messages exchanged, this alternative
makes sure that, if there is a possibility, the misplaced tuples will be delivered.
In order to guarantee a exactly once semantic for the delivery of tuples in the
remote out operation, each misplaced tuple owns an identifier that is stored by
the receiving node.

Continuous queries Each node should keep a registration of all valid contin-
uous queries which exists in a certain time. In order to address this necessity,
every node was given a data structure called temporary space for keeping tuples
wanted by persistent queries. The temporary tuples are augmented with three
extra fields: 〈c1, c2, . . . cn〉 ⇒ 〈c1, c2, . . . cn, r, i, tll〉. r is a remote reference to the
waiting node, ttl determines the instant of time when the querie will expire and
i is a identifier to avoid inserting repeated queries in the same temporary space.
Whenever a new tuple t is inserted in the regular tupla space of a node, the
temporary space is scanned for tuples t′ matching t. If the result of the search
is positive, t is sent to the remote nodes that are looking for it.

The remotion of continuous queries can not be a task of the node that issued
the search, because as the topology of a ad hoc network is dynamic, it is possible
that the searching node do not is present when comes the time to remove the
query. The solution was to bind a time to live to each persistent search. A kind
of garbage collector service available on each node is responsible for checking the

validate of the temporary tuples and removing the ones whose period of life has
passed.

Another question that is addressed in the simulator is the maintenance of
consistent states in the network. Every node in a cluster of connected nodes has
to keep the same set of continuous queries recorded in its temporary space. When
the topology of the network chances, it is necessary to update the state of the
nodes in order to keep the consistent property. This synchronization follows a
best effort strategy similar to the one used to propagate queries in the network.
For example, suppose the engagement of host h in group g. Any query owned
by h that is not already in g is propagated to one of the hosts in the group, that
in turn propagate it to its neighbors and so on, until the query is propagated to
all hosts in the group. The same occurs with queries owned by a host in group
g and that do not exist in h. Finally, when a lookup query is propagated from a
host to another its remaining lifetime is honored by the target host.

The use of continuous queries can be expensive in terms of memory and
traffic of messages but just its existence do not implies in any cost. This service
should be avoided on large cluster of devices with very limited capacity because
these systems can saturate rapidly. In order to minimize the costs of continuous
queries it is worth considering the importance of the concept of group of nodes
for reducing the size of the search space.

4 Example: A Termination Detection Algorithm

In order to present the main techniques for the design of distributed algorithms
in the PeerSpaces model, an algorithm for termination detection of diffusing
computation is described next. Termination detection is an important problem
in distributed systems. Basically the problem consists in a node getting the in-
formation that a computation previously spread through the network has been
done by every element in the system. For instance, in some public key crypto-
graphic systems each node must change its public key after a time for the sake
of security. If such a system is used in a distributed environment, when a node
changes its key it should be assured that each other element of the network
knows the new key before sending secure messages.

The solution described in this report was first presented in [14] and is based
on a well-know solution proposed by Dijikstra and Scholten [3]. The approach
adopted can be split in three phases. In the first phase, a partial ordering is
build on the network, starting with a root node, in such a way that, in the end
of the process, any node a, b and c will have different identifiers. Those identifiers
must follow the transitive property on the less than operation, meaning that if
a < b and b < c than a < c. The second phase of the algorithm involves the
activation of idle nodes through the propagation of the job. Upon activation, a
node becomes the child of the activating node, causing a transition from idle
to active status. In the third and last phase, the termination of the distributed
computation is actually detected. Each node after terminating the requested job,

passes this information to a node of higher rank and eventually all termination
reports will reach the root node, which owns the highest rank.

Figure 1 describes the main variables and auxiliary functions used by the
guarded commands of the algorithm.

n Host identifier
root Root node identifier
π Name of the local tuple space of the node
count (t) Number of occurrences of tuples matching pattern t
bestRank(a[]) Returns the highest rank in the array of tuples a
newRank (r) Returns a rank identifier not yet used in the network
isBetter(r1, r2) True if r1 is a better rank than r2

Fig. 1. Global variables for node n and auxiliary functions

The PeerSpaces simulator supports the modular construction of distributed
programs. Thus, the termination detection algorithm was developed in three
separated modules, which are explained in the rest of this section.

4.1 The Creation of a Partial Ordering in The Network

In this example, just one node is interested in detecting the termination of a
distributed computation. It is called the root node. If the execution environment
was a fixed network, every node achieved by the work request could report the
event of finishing the job directly to the root node. In a ad hoc environment,
however, a direct path connecting the root and a activated node may not exist.
It is interesting also that a node becomes idle as soon as it finishes its task and
reports this event just once aiming to reduce the traffic of messages. In order
to solve these two problems, the termination detection algorithm involves the
creation of a partial ordering in the network. The root node has the highest
rank. A host, upon finishing its computation, sends this information to a node
with a better rank. The received reports are recorded by the accepting node and
propagated when it is possible. Following this pattern of transmission of events,
the root node will receive the reports of all the nodes that compound the mobile
network and will be able t o verify the termination.

The guarded commands responsible for creating the partial ordering in the
network are exposed in the Figure 2. The root node is assumed to have a tuple
like 〈“root”〉 in its local tuple space. The algorithm begins with the root node
retrieving that tuple from there. The algorithm is powerful enough to allow the
existence of more than one root node, because the tuples that represent the
rank position of a node contain the identifier of the node responsible by that
rank creation. In the command RankPropagation, each node, upon receiving the
rank descriptor, sends an incremented rank value to each of its neighbors. A node
can receive more than a rank descriptor because of this pattern of propagation.
The command RemoveExtraRanks assures that in a given time a node will have
only one rank tuple. The command RemoveMisplacedTuple guarantees that the

StartRankDistribution
Guard:

〈“rank”, String, String〉 6∈ π ∧ n = root
Action:

out 〈“rank”, n, highestrank〉

RemoveExtraRanks
Guard:

count (〈“rank”, String, String〉) > 1
Action:

Tuple [] ranks;
ing 〈“rank”, String, String〉, ranks
tuple τ ← bestRank(ranks)
out τ

RankPropagation
Guard:

〈“rank”, String, String〉 ∈ π ∧ 〈“activated”〉 6∈ π
Action:

rdp τ , 〈“rank”, id as String, r as String〉
∀ neighbor v of n do

out v, 〈“rank”, id, newRank (r)〉
out 〈“activated”〉

RemoveMisplacedTuples
Guard:

∃ MisplacedTuples τ | τ ∈ π
Action:

do nothing

Fig. 2. Guarded commands for creating a partial ordering in the network

algorithm will not be interrupted while there are misplaced tuples generated by
remote out operations in the local tuple space of any node.

In this algorithm, the rank is described by a sequence of k integer numbers
like n1|n2| · · ·nk. The rank descriptors are compared according two main crite-
ria. Initially the number of fields is compared. The sequence with less fields is
considered higher. If two sequences have the same number of fields, than the
field values are compared from left to right. For instance, 0|1 is a better rank
than “0|2” and “0|2” is higher than “0|0|0”. The ranks transmitted by a node
are always one field bigger than the rank that node first received. These new
ranks are formed by appending an extra field in the received rank descriptors.
Following this pattern, if a node with two neighbors is given the descriptor “0|1”,
it will send for one of the adjacent nodes the sequence “0|1|0” and the sequence
“0|1|1” for the other.

4.2 Job Diffusion

Job diffusion begins with the root node and follows a flooding pattern of trans-
mission. Each node, after receiving a job, activates all of its neighbors by re-
transmiting the job. The job executed in each node is represented by a tuple
that matches the pattern 〈“job”, no, ttl〉, where no is the node that sent the tu-
ple and ttl is an integer used to simulate the time needed to finish the execution
of the job.

StartJobDiffusion
Guard:

〈“job”, n, Integer〉 6∈ π ∧ n = root
Action:

out 〈“job”, n, job duration〉

RemoveRepeatedJobs
Guard:

count (〈“job”, String, Integer〉) > 1)
Action:

Tuple [] jobs;
ing 〈“job”, String, Integer〉, jobs
Tuple τ ← jobs[0]
out τ

JobPropagation
Guard:

〈“activeJob”, String, Integer〉 6∈ π ∧ count(〈“job”, String, Integer〉) = 1
Action:

rdp 〈“job”, s1 as String, ttl as Integer〉, τ
if(s1 6= n)

out s1, 〈“child”, n〉
∀ neighbor v of n do

out v, 〈“job”, n, ttl〉
out 〈“activeJob”, s1, ttl〉

Table 1. Job diffusion

The activation of a node by another node is recorded by both participants,
but in different ways. The node na that has received the job puts the tuple
〈“child”, na〉 in the tuple space of the node that sent the job. Node na then
changes its states from idle to active, which is indicated by the presence of the
tuple 〈“activeJob”, ?, ?〉 in the tuple space of the just activated node. Figure 1
describes the commands responsible for the job diffusion. Since flooding is used to
propagate jobs, a node can receive the same job more than once. The command
RemoveRepeatedJobs assures that just one job request will be addressed on a
given task diffusion.

4.3 Verifing Termination

The tuple 〈“activeJob”, ?, ttl as Integer〉 simulates the job assumed by a node. ttl
is a integer representing the job complexity. At each iteration of the command
nodeExecuteTask the ttl value is decremented by one until it reaches zero,
meaning the job is done. When a node finishes the task it was given, it generates
an idle report by putting a tuple matching 〈“idleReport”, n, children〉 int its
local tuple space. The next step concerns to propagate the idle report to a node
with a better rank. A node performs this action by sending to every neighbor a
tuple containing the information about the idle reports it currently holds. This
tuple, called node info contains the rank, activated children and the identifier
of the node. Upon receiving a such tuple, the receiving node compares its rank
with the rank of the remote node. If the local rank wins, the receiving node
attempts to retrieve the idle report tuple from the remote node. A non-blocking

NodeExecuteTask
Guard:

〈“activeJob”, s1 as String, ttl as Integer〉 ∈ π ∧ ttl > 0

Action:
rdp 〈“activeJob”, s1 as String, ttl as Integer〉, τ
out 〈“activeJob”, s1, ttl− 1〉
if (ttl− 1 = 0)

Tuple [] children;
ing 〈“child”, String〉, children
∀ 〈“child”, si as String〉 ∈ children do

out 〈“idleReport”, n, s0|s1| · · · sk〉

PropagateIdleReports
Guard:

〈“idleReport”, String, String〉 ∈ π ∧ n 6= root
Action:

rdp 〈“rank”, root as String, rank as String〉, τ
rdp 〈“idleReport”, father as String, children as String〉, σ
∀ neighbor v of n do

out v, 〈“nodeInfo”, father, children, rank, n〉

AccepetIdleReports
Guard:

〈“nodeInfo”, String, String, String, String〉 ∈ π
Action:

inp 〈“nodeInfo”, f as String, ch as String, r as String, s as String〉, σ
rdp 〈“rank”, root as String, localRank as String〉, τ
if (isBetter(localRank, r))

out 〈“idleReport”, f, ch〉
inp s, 〈“idleReport”, f, ch〉, x

RemoveIdleLeaves
Guard:

count(〈“idleReport”, n, String〉) > 1 ∧ 〈“done”〉 6∈ π
Action:

inp 〈“idleReport”, father as String, children as String〉, σ
inp 〈“idleReport”, child as String, ∅〉, τ
if (τ = 〈“idleReport”, root, ∅〉)

out 〈“done”〉
else

out 〈“idleReport”, father, children − child〉

Table 2. Termination detection

inp operation is used in this case because as the node info may be sent to several
nodes more than one in operation could be performed over the same tuple.

The process of propagation of idle reports do not continues forever because
there is not a node with a better rank than the root node. When receiving the
idle reports the root attempts to build and prune a tree of activated nodes. If it
is possible for the root to remove all the leaves from the tree it determines the
termination of the distributed computation.

5 Related Work

Many characteristics of PeerSpaces have been inspired in file sharing applica-
tions popular in the Internet, like Napster [10], Freenet [2] and Gnutella [7].
Particularly, the peer to peer network created by Gnutella over the fixed Inter-
net presents many properties that are interesting in mobile settings, like absence
of centralized control, self-organization and adaptation to failures. PeerSpaces
is an effort to transport and adapt such characteristics to mobile computing
systems.

Jini [1] is a distributed object infrastructure that adds support to dynamic
service registration and lookup to Java RMI [18]. However, the system assumes
the existence of a central server to run the lookup service, which restricts its use
to networks with base station support. The Jini framework also includes a Linda-
like shared data space implementation, called JavaSpaces [4]. Once more, the
system assumes that the data space resides in a central server, which precludes
its utilization when operating in ad hoc mode. The same problem is shared by
other client/server implementations of Linda, like TSpaces [19].

Lime [13, 9] introduces the notion of transiently shared data space to Linda.
In the model, each mobile host has its own tuple space. The contents of the local
spaces of connected hosts are transparently merged by the middleware creating
the illusion of a global and virtual data space. Applications in Lime perceive
the effects of mobility by atomic changes in the contents of this virtual space.
However, even when used in a small federation of hosts, the main problems of
transiently shared spaces are efficiency and scalability. The reason is the amount
of global synchronization required to assure the consistency of the virtual space.
Particularly, query operations must run as a distributed transaction to retrieve
matching tuples. Moreover, the model allows users to define the destination tuple
space of an outputted tuple. This leads to the notion of misplaced tuples, i.e.,
tuples that are temporally in a wrong tuple space waiting for the connection of
its target host. Thus, the host engagement protocol also requires a distributed
transaction to deliver misplaced tuples. Finally, disengagements in Lime should
be announced, in order to remove event handlers placed at remote hosts.

There are several simulators for mobile distributed systems. Probably, the
most well known are ns [11] and GloMoSim [20]. They do not support, however,
the implementation of distributed algorithms using high level abstractions, like
tuple spaces.

6 Conclusions

In this report we have presented a simulator for PeerSpaces, a coordination model
for mobile computing systems. PeerSpaces was designed to overcome the main
shortcoming of shared space coordination models when used in ad hoc wireless
networks – the strict reliance on the traditional client/server architecture – while
preserving the main strengths of such models – the asynchronous and uncoupled
style of communication. The design of the model has privileged observance to

ad hoc networks principles. As usual in such models, transparency is sacrificed
in name of scalability and soundness. In order to ilustrate the programming
proposed by PeerSpaces, a termination detection algorithm was presented.

The PeerSpaces simulator, including its source code, can be downloaded from
the URL: http:\\www.dcc.ufmg.br\fernandm\~peerspaces.

References

1. K. Arnold. The Jini Specifications. Addison-Wesley, 2nd edition, 2000.
2. I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous

information storage and retrieval system. In ICSI Workshop on Design Issues in
Anonymity and Unobservability, International Computer Science Institute, 2000.

3. E. W. Dijikstra and C. S. Scholten. Termination detection for diffusing computa-
tion. Information Processing Letter, i 4(11), Aug 1980.

4. E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns, and prac-
tice. Addison-Wesley, Reading, MA, USA, 1999.

5. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, Jan. 1985.

6. S. Giordano. Mobile Ad-Hoc Networks, chapter of Handbook of Wireless Networks
and Mobile Computing. John Wiley & Sons, 2002.

7. Gnutella Home Page. http://gnutella.wego.com.
8. LighTS Home Page. http://lights.sourceforge.net.
9. A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A middleware for physical and

logical mobility. In Proceedings of the 21st International Conference on Distributed
Computing Systems, May 2001.

10. Naspter Home Page. http://www.napster.com.
11. NS Home Page. http://www.isi.edu/nsnam/ns/.
12. C. Perkins. Ad Hoc Networking. Addison-Wesley, 2000.
13. G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda meets mobility. In

D. Garlan, editor, Proceedings of the 21st International Conference on Software
Engineering, pages 368–377. ACM Press, May 1999.

14. C. Roman and J. Payton. A termination detection protocol for use in mobile ad hoc
enviroment. Technical Report WUCS-01-29, Washington University, Department
of Computer Science, St. Louis, Missouri, 2001.

15. G.-C. Roman, G. P. Picco, and A. L. Murphy. Software Engineering for Mobility:
A Roadmap. In A. Finkelstein, editor, The Future of Software Engineering, pages
241–258. ACM Press, 2000.

16. M. Satyanarayanan. Fundamental challenges in mobile computing. In ACM Sym-
posium on Principles of Distributed Computing, May 1996.

17. A. S. Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.
18. A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the Java

system. In 2nd Conference on Object-Oriented Technologies & Systems, pages
219–232. USENIX Association, 1996.

19. P. Wycko, S. W. McLaughry, T. J. Lehman, and D. A. Ford. TSpaces. IBM
Systems Journal, 37(3):454–474, Aug. 1998.

20. X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: A library for parallel simulation of
large-scale wireless networks. In Workshop on Parallel and Distributed Simulation,
pages 154–161, 1998.

