
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Laboratório de Linguagens de Programação

Arcademis: a Java-Based Framework

for Middleware Development

Fernando Magno Quintão Pereira
Marco Túlio de Oliveira Valente

Roberto da Silva Bigonha
Mariza Andrade da Silva Bigonha

Departamento de Ciência da Computação,
Universidade Federal de Minas Gerais

Departamento de Ciência da Computação,
Pontif́ıcia Universidade Católica de Minas Gerais

– Technical Report –

LLP 002/2003

{fernandm, bigonha, mariza}@dcc.ufmg.br,mtov@pucminas.br

Dezembro, 2003

1

Abstract

This paper presents Arcademis, a Java-based framework for middleware
development. Arcademis consists of a set of abstract classes and interfaces
that define the general architecture of middleware systems. The main ob-
jective of Arcademis is to support the implementation of non-monolithic and
easily reconfigurable middleware. In order to illustrate the use of the fra-
mework, the paper also describes the RME system. RME is a middleware
derived from Arcademis that adds a remote method invocation service to dis-
tributed applications built on the CLDC configuration of Java 2 Micro Edition
(J2ME).

Abstract

Este artigo apresenta Arcademis, um arcabouço voltado para o desenvolvi-
mento de plataformas de middleware orientadas por objetos. Tal arcabouço,
implementado na linguagem Java, é composto por um conjunto de classes
abstratas, interfaces e componentes concretos que definem a arquitetura geral
de sistemas de middleware, sendo seu principal objetivo a implementação de
plataformas não monoĺıticas e que possam ser facilmente reconfiguradas a fim
de se adequarem a diferentes ambientes de execução. Com o intuito de ilustrar
a utilização do arcabouço, o artigo introduz RME, um serviço de invocação
remota de métodos desenvolvido para a a configuração CLDC de Java 2 Micro
Edition, o qual foi implementado como uma instância de Arcademis.

1 Introduction

In the last ten years, distributed systems engineers have often relied on middleware
to increase their productivity. Residing between the operating system and distri-
buted applications, these platforms provide higher level abstractions that hide from
application developers several details inherent to distributed programming, such as
network communication primitives, data marshalling and unmarshalling, failure han-
dling, heterogeneity, service lookup and synchronization. There are different kinds of
middleware, such as message passing systems, tuple-space based systems and object
oriented systems. However, object-oriented middleware – like CORBA [OMG, 1999]
and Java RMI [Sun, 2003a] – are the most popular ones at the present time. In such
middleware, developers can invoke methods on remote objects using a syntax similar
to local invocations. In this way, interactions between local and remote processes
look like if they coexist in the same address space.

Object oriented middleware have always been designed to make location trans-
parent from engineers of traditional distributed systems, i.e., systems running in
personal computers connected by local or corporate networks. However, in recent
years, the distributed environment has faced many changes. Nowadays, there are
several kinds of computing devices (sensors, cell phones, PDAs, multicomputers,
clusters etc), several network infrastructures (Internet, wireless networks, grids etc),
several transport protocols (TCP, HTTP etc) and applications with different quality
of service requirements (real time systems, multimedia, mobile systems, electronic
commerce etc). On the other hand, conventional object oriented middleware are
monolithic and inflexible systems, which can not be easily reconfigured to meet the
requirements of rapidly changing technologies.

In order to address the limitations of current middleware implementations, this
paper presents Arcademis1: a Java based framework that supports the implementa-

1In Portuguese, Arcademis is a coined word from the initials of framework for middleware
development

2

tion of modular and highly customizable middleware architectures. Arcademis can
be used by middleware engineers to deploy systems that meet the requirements of
a particular network or technology. For example, this framework has been used to
provide a remote method invocation system for J2ME/CLDC, the Java technology
that targets mobile devices with limited computing resources, such as cell phones
and palmtops. Middleware derived from Arcademis can also be adapted by distri-
buted systems engineers to meet the requirements of a particular application. For
example, new transport protocols, connection management policies, authentication
algorithms or invocation semantics can be easily configured in the platforms derived
from Arcademis.

Arcademis makes extensive use of object oriented frameworks and design pat-
terns. A framework is a set of cooperating classes and interfaces that provide a semi-
complete application that can be customized by the programmer [Johnson, 1997].
Design patterns document recurring solutions to problems in software develop-
ment [Gamma et al., 1994]. In Arcademis, frameworks and design patterns are ap-
plied synergistically to promote the implementation of flexible and non-monolithic
middleware. As a framework, Arcademis predefines the overall architecture of a
middleware system, so that developers can concentrate on the details of their par-
ticular applications. Moreover, well-known design patterns, like singletons, facto-
ries, strategies, decorators and facades, are used to increase Arcademis flexibility.
The framework also uses design patterns to face problems specific to the distribu-
ted system domain, such as patterns that support different connection establish-
ment policies (Acceptor-Connect pattern) [Schmidt, 1996] and invocation semantics
(Request-Response pattern).

The remaining of this paper is organized as described next. Section 2 gives an
overview of existing reconfigurable middleware systems and compares Arcademis
with some of them. In Section 3, the overall architecture of Arcademis is presented,
and the main classes and design patterns used in this framework are described.
This section also documents the aspects of the framework that can be specialized
and reconfigured. Section 4 presents the RME platform: a J2ME/CLDC remote
method invocation system derived from Arcademis. RME illustrates the flexibility
provided by Arcademis, since traditional and monolithic Java middleware, like Java
RMI, are not available in the J2ME/CLDC platform. Finally, Section 5 presents
concluding remarks.

2 Related Work

Reconfigurable middleware systems have been an intense research topic since the
middle of the last decade. Examples of such platforms are TAO, dynamicTAO
and UIC CORBA. The TAO platform [Schmidt and Cleeland, 1999] targets real
time applications, and its architecture is strongly based on design patterns. Some
of these patterns, such as the acceptor-connector [Schmidt, 1996], have been em-
ployed in the Arcademis implementation. DynamicTAO [Román et al., 2001] adds
dynamic reconfiguration to TAO, which only can be customized statically, that is,
at compilation time. UIC CORBA [Román et al., 2001] is also a dynamically re-
configurable middleware that, similar to RME, targets mobile device. Dynamic
reconfiguration in both dynamicTAO and UIC are accomplished by means of refle-
xivity: a mechanism that allows a program to know aspects of its internal structure
during compilation time. Arcademis is not a middleware platform, as TAO, dy-
namicTAO and UIC. It is a framework that allows the derivation of middleware
systems. Another framework with objectives similar to those of Arcademis is Quar-

3

terware [Singhai et al., 1998]. This framework has been used in the development of
systems compatible with CORBA, Java RMI and MPI [Singhai, 1999], a message
oriented middleware.

The greatest difference between Arcademis and the previously cited systems, is
that those are implemented in C++, and are CORBA compliant platforms, even
though Quarterware is not limited to the CORBA environment. Arcademis, on the
other hand, is implemented in Java, and its instances target devices able to execute
a Java Virtual Machine. The choice of Java can be explained since this language
has many relevant features for distributed programming: it is architecture neutral,
portable, multithreaded, robust and secure. Although there are versions of remote
method invocation systems others than the official Sun’s implementation, there is
a lack of reconfigurable middleware platforms implemented in the Java language.
Java RMI itself provides few opportunities for reconfigurations. For example, this
platform supports a predefined marshalling and unmarshalling algorithm (based on
reflection), only one invocation semantics (synchronous, with at-most-once seman-
tics) and only one thread policy (a new thread per connection) [Sun, 2003a].

3 Architecture of Arcademis

A distributed system built on top of Arcademis is structured on three programming
levels. The first of these levels is composed by the framework components. Essen-
tially these are abstract classes and interfaces, although Arcademis also provides
concrete components that can be used without further extensions. The second le-
vel is represented by the concrete middleware platform, obtained as an instance of
Arcademis. The framework defers to this level decisions such as the communica-
tion protocol and the serialization strategy that will be adopted. Finally, the third
programming level comprises all the components that provide services to end users.
These components constitute what is normally called a distributed applications. A
diagram depicting the relation between the programming levels and their users is
presented on Figure 1 (a).

Each instance of Arcademis has a central component called ORB. This element
is implemented as a singleton, a design pattern that limits the maximum number
of instances of a given class to exactly one [Gamma et al., 1994]. Besides being
implemented as a singleton, the ORB can also be characterized as a set of object
factories. An object factory is another design pattern that is used to create instances
of objects. The main advantage of this pattern is to make it easier to change a
component’s implementation without interfering in other modules of the system. For
example, in Arcademis, all communication channels are created by an object factory.
In order to modify the transport protocol used by the middleware, for instance,
from TCP to UDP, it is sufficient to change the channel factory bound to the ORB.
Because the factory preserves the channel interface, the other components of the
platform need not to be changed. Figure 1 (b) presents the general organization of
distributed systems based on Arcademis.

Although several different types of middleware systems can be derived from Ar-
cademis, this framework has been originally devised to support the implementation
of object-oriented middleware platforms. According to this model, a client object
uses intermediate components in order to invoke methods on remote objects. Two
of these components are the stub, that exist on the client side of a distributed ap-
plication, and the skeleton, that is located on the server side. The stub acts as a
local proxy for the remote object, and its function is to forward to the server all
the remote calls made by the client. The skeleton represents the invoking client to

4

Arcademis Middleware Distributed
Applications

Middleware
developer

Application
Developer

End
User

Level 1 Level 2 Level 3
Operating System

Distributed Applications

Identifier
Factory

Dispatcher
Factory

Invoker
Factory

Channel
Factory

ORB (16 factories)

Epid
Factory

Activator
Factory

Scheduler
Factory

. . .

(a) (b)

Figure 1: (a) The programming level views. (b) The ORB organization.

the remote object, acting as an adapter. It receives messages containing informa-
tion about remote invocations and determines what method of the server should be
executed. Although application developers have the illusion that the methods are
being locally processed, actually each remote call is transmitted by the stub to the
skeleton and then to the implementation of the remote object. The result of remote
invocations are transmitted across the opposite path.

Activator

Remote
Object

Remote
Object

Representation

Scheduler

Chain of
Dispatchers

Client
Application

Chain of
Invokers

Request
Sender

Response
Receiver

Middleware
Protocol

Serialization
Protocol

Transporte
Protocol

Connector Acceptor

Request
Receiver
Response

Sender

Skeleton

Discovery
Agency

Stub

Application Layer

M
id

dl
ew

ar
e

 L
ay

er

Figure 2: Representation of the main components of Arcademis.

Stubs and skeletons are presented on any middleware derived from Arcademis. In
addition to these components, the framework defines several others, whose purpose
is to delineate the middleware architecture and to support its customization. The
most important components of Arcademis are represented in Figure 2. They are
described next on this section.

There are eleven basic reconfigurations that can be applied to middleware plat-
forms derived from Arcademis. Although most reconfigurations are orthogonal, some
components of the framework can collaborate on two or more of them. The aspects
that are subjected to reconfigurations in Arcademis are the following:

data transportation: comprises the techniques and protocols used in the trans-
mission of raw sequences of bytes between nodes;

connection set up: defines how channels are established between nodes so that
data can be sent across them. In Figure 2, this aspect is determined by the
implementation of the Acceptor and Connector components;

5

middleware protocol: defines the set of messages exchanged between distributed
objects;

serialization policy: defines how the internal state of objects can be converted
into a raw sequence of bytes and vice-versa. This mechanism allows an object
to be saved in a persistent media or transmitted along a network;

call semantics: determines the level of reliability provided by the implementation
of remote calls (i.e. best effort, at most once, at least once etc). In Figure 2,
this aspect is supported by four elements: RequestSender, RequestReceiver,
ResponseSender and ResponseReceiver;

remote object representation: defines how remote objects are represented in
distributed systems;

service lookup: defines the mechanisms the middleware provides to application
developers so that distributed objects can be discovered;

remote object activation: determines how a distributed object is made ready
for receiving remote calls. In Figure 2 this parameter is represented by the
Activator component;

invocation policy: defines how a remote call is invoked, that is, how it it converted
into a byte sequence and sent across a channel. This strategy is determined
by a component called Invoker;

dispatching policy: determines how a remote invocation is delivered to the ske-
leton once it has been retrieved from the transport network. This strategy is
determined by a component called Dispatcher;

priority policy: defines the order in which method invocations are delivered to the
actual implementation of the remote object;

The remainder of this section describes in details the customization possibilities
provided by the previously mentioned reconfiguration aspects.

3.1 Data Transportation

In Arcademis, data transportation is implemented by two classes: Channel and
ConnectionServer. Channels are responsible for transmitting byte sequences
between clients and servers, whereas the function of connection servers is to receive
connection requests and to create channels. The framework does not assume the use
of any specific transport protocol, and possible implementations can be based on
UDP, TCP, HTTP, SOAP etc. In order to add further functionality to a channel,
Arcademis uses the decorator design pattern [Gamma et al., 1994], which provides
a way to modify the behavior of individual objects without creating new derived
classes. A channel decorator is an object that extends that class and, in addition to
this, has an attribute of the Channel type. As a subclass of channel, the decorator
can overwrite some of its methods in order to aggregate further capabilities to them.

Examples of extra capabilities that can be aggregated to channels by means of
decorators include mechanisms for compressing and cryptographing messages, check
points and error correcting code for handling transmission failures and buffers to
improve performance and to allow undo operations. Figure 3 (a) shows an example of
composition of decorators. ZipChannel compresses messages in order to make better

6

use of the available bandwidth and LogChannel implements a report generator that
yields a log file describing channel utilization. The TcpSocketChannel class is one
of the concrete components provided by Arcademis. The same chain of capabilities
could have being built by means of inheritance, but, in that case, it would not be so
flexible. In Figure 3, nothing prevents ZipChannel from being inserted before the
other decorator; moreover, a third decorator can be added to that sequence without
the need of modifying the implementation of the existing ones. Simple inheritance
does not afford such flexibility.

3.2 Connection Establishment

Connection set up has been implemented according to the acceptor-connector design
pattern [Schmidt, 1996]. This pattern decouples the connection initialization from
its processing, once the channel has been initialized. The main participants of the
pattern are the acceptor, the connector and the service handlers, which are depicted
in Figure 3 (b). The connector is responsible for contacting the acceptor when
necessary to set up a channel between two hosts. Once the connection is established,
the resulting channel is passed to a service handler, which is used to send and receive
messages according to the distributed application needs. One of the advantages of
this design pattern is the possibility of configuring different connection strategies
without the need of modifying the service handlers code. Possible strategies include
synchronous and asynchronous connection establishment and the use of caches in
order to reuse channels.

<<interface>>

Channel

 (from arcademis)

+send(in a:byte[])

+recv() : byte[]

ChannelDecorator

 (from arcademis)

LogChannel

 (from rme)

ZipChannel

 (from rme)

TcpSocketChannel

 (from rme)

Receiver extends
ServiceHandler {
 open(channel)
}

Sender extends
ServiceHandler {
 open(channel)
}

Connector {
 connect(epid)
}

Acceptor {
 accept()
}

Channel {
 send(bytes)
 recv()
}

<creates> <creates>

<uses>

<creates> <creates>

<uses>

(a) (b)

Figure 3: (a) Composition of decorators. (b) The acceptor-connector components.

3.3 Middleware Protocol

The middleware protocol is defined by a set of messages and by a state machine that
determines how messages are exchanged in the system. In Arcademis, messages are
marshalable implementations of the Message interface, and the sequence of bytes
that composes it is given by the implementation of its marshal method (this method
is further discussed in Section 3.4). The protocol state machine is implemented
by the service handlers. The implementation of the request-receiver component
determines the set of messages a service provider can handle; the implementation of
the response-receiver defines the messages that a client can deal with. This approach
makes it easier to modify the middleware protocol. Whenever a new message should
be added to the system, it is sufficient to provide new implementations for the
Message interface and to configure the service handlers to deal with them. Because
messages are typed structures, the same code can be used to handle all of them,
by means of polymorphism and dynamic dispatching. The bridge between message
objects and Channels is done by a component called Protocol. The function of

7

this component is to marshal messages before sending them across channels and to
unmarshal messages after a raw sequence of byte is received.

3.4 Serialization Strategy

The serialization policy used in Arcademis depends on serialization methods imple-
mented by application developers. For this purpose, the framework defines the inter-
faces Marshalable and Stream. Serializable objects should implement the Marsha-

lable interface, which declares two methods: marshal and unmarshal. The first
method describes how an object is transformed into a sequence of bytes, whereas
the second one defines how the state of the object can be recovered from such se-
quence. The Stream interface specifies the serialization protocol, i.e., a collection
of methods for reading and writing sequences of byte. An example of class that
implements Marshalable is presented in Figure 4.

import arcademis.*;

public class Person

implements Marshalable {

private String name = null;

private int age = null;

private boolean isMan = null;

public void marshal(Stream b)

throws MarshalException {

b.write(name);

b.write(age);

b.write(isMan);

}

// implementation of the other methods

public void unmarshal(Stream b)

throws MarshalException

name = (String)b.readObject();

age = b.readInt();

isMan = b.readBoolean();

}

}

Figure 4: Example of serializable class.

3.5 Call Semantics

Skeletons and stubs communicate by means of four different service handlers
that constitute a design pattern, proposed on this research, called request-
response [Pereira, 2003]. These service handlers are called request-sender, request--
receiver, response-sender and response-receiver, as described in Figure 2. The major
advantage of this pattern is the possibility of easily reconfiguring the semantics of
remote calls. The three most popular invocation semantics used in object oriented
middleware are best-effort, at-most-once and at-least-once [Coulouris et al., 1996].
The first of them does not provide any guarantee regarding the processing of remote
calls. In the presence of failures, they may be executed once, several times or even
may not be executed. The semantics known as at-most-once assures that remote
invocations will be processed only once or will not be executed. Finally, the at-least-
once semantics affords the client application the guarantee that remote calls will be
executed at least one time.

3.6 Remote Object Representation

In Arcademis, distributed objects are handled using remote references, which are im-
plemented by the RemoteReference class. By modifying the implementation of this
component, it is possible to configure how a distributed object is distinguished from
others and the semantics presented by operations such as equals and toString

when invoked remotely. The identifier and address of a remote object is imple-
mented by the classes Identifier and EndPointIdentifier, respectively. These

8

components can be implemented in different ways. For instance, in CORBA, remote
addresses are defined as a pair formed by a host name and a port number; in SOAP,
an object can be identified by the host address, an optional port number and a file
system path. Identifiers can also be implemented in a number of ways. When not
necessary to discriminate a really large number of elements, they can be defined as
single integer numbers. On the other hand, in more scalable systems the identifier
implementation should grant that in the distributed network there will not be two
distinct remote objects holding equal identifiers.

Distributed objects have to inherit from the RemoteObject class, that determi-
nes the semantics of operations such as equals and hashcode when locally invoked.
In addition, remote objects must implement the Remote interface. Although this
interface is empty, i.e., it does not declare any method, it is used by the system to
distinguish references to local objects from references to remote objects. For exam-
ple, in remote invocations, the Arcademis implementation should replace remote
references by their associated stubs, in order to simulate call by reference. The
relations among the components described in this section are depicted in Figure 5
(a).

3.7 Service Lookup

Middleware platforms derived from Arcademis can be described as service-oriented
architectures [Champion et al., 2002]. Such architectures have three different actors:
service providers, service requesters and discovery agencies. Service providers are
represented by remote objects, whereas requesters are represented by clients in ge-
neral. The discovery agency, or name service, is a independent element that should
be provided by all instances of Arcademis. The three main actors of service-oriented
architectures are depicted in Figure 5 (b).

Arcademis provides an interface so that client applications can access the disco-
very agency; another interface is used by service providers. Objects are registered in
the discovery agency using a name (a string) or the interface they implement. Other
forms of representation can be provided by middleware designers. Service providers
register themselves using a publish operation, while clients look for distributed
objects by means of a find operation.

<<interface>>

Active

+activate()

+deactivate()

<<interface>>

Epid

<<interface>>

Identifier

<<interface>>

Remote

RemoteRef

Stub

RemoteObject

Skeleton

Discovery
Agency

Remote
Object

Client
Application

Service
Description

Service
Description

Cliente/server
communication

Find Publish

(a) (b)

Figure 5: (a) Components for remote object representation. (b) Service-oriented
architecture.

3.8 Remote Object Activation

The activation of remote objects in Arcademis is implemented by a component
called Activator. This component allocates the resources the server needs in order
to process remote invocations. For example, it initializes data structures internal

9

to the middleware and creates threads to wait for remote calls. The RemoteObject

class implements the activate and deactivate methods, which are used to interact
with the activator. Depending on the activation policy adopted, the activate

method may have to be explicitly invoked by application developers or it may be
automatically called during instantiation of remote objects.

3.9 Invocation Policy

In Arcademis, remote methods are invoked by a component called Invoker. The
main functions of invokers are: (i) to create a connection with the server or to reuse
one if possible; (ii) to create messages containing the remote calls’ arguments; (iii)
to create service handlers to send calls and to wait for their results. Invokers can
also be customized in order to reuse connections across successive calls or to create
a new connection whenever a method invocation is requested.

In order to aggregate further functionalities to a invoker, Arcademis provides an
invoker decorator, which is used in the same way as the channel decorator described
in Section 3.1. Examples of capabilities that may be aggregated to invokers are: ca-
ches (to avoid the transmission of calls already requested), buffers (to group several
remote calls together in order to make better use of the available bandwidth) and
log generators. It is also possible to use invoker decorators to implement asynchro-
nous calls. In this type of call, a separate thread is created to process each remote
invocation, so that the client does not stay blocked during the remote processing.
In this case, results of remote invocations are inserted into a buffer that the client
can inspect afterwards.

3.10 Dispatching Policy

In Arcademis, the overall structure of servers is defined by a component called
Dispatcher. The implementation of this component determines, for example, if
calls are passed directly to the skeleton or if they are inserted into a queue in
order to be analyzed by a scheduler component. An example of this last strategy is
presented in Figure 6. In this example, there are three active objects: the activator,
the scheduler and the response sender. Call descriptors are inserted into a queue and
ordered by a scheduler, before being passed to the remote object. Results of remote
invocations are inserted into another queue, and are asynchronously transmitted to
clients by the response sender.

In addition to provide channels and invokers with decorators, Arcademis also
supports dispatcher decorators. Examples of capabilities that can be added to dis-
patchers by means of decorators include the implementation of security policies, the
generation of log files describing server usage, the report of server load rate to cli-
ents, the redirection of calls to other servers and the creation of threads in order to
process specific calls.

3.11 Priority Policy

Arcademis supports the establishment of priorities among remote calls. The
Scheduler is the component of the framework in charge of applying such priori-
ties. Three possible priority policies, from the simplest to the most complex, are:
the assignment of priorities to remote methods, the assignment of priorities to clients
and the assignment of priorities to servers’ end points. In the last case, it is assu-
med that servers may receive request in more than one endpoint. Besides changing

10

act:Activator

ac:Acceptor

rr:RequestReceiver reqQueue:Buffer

sc:Schedule

dp:Dispatcher

respQueue:Buffer

rs:ResponseSender

1:accept()

2:open(ch)

3:put(rc)

4:rc=get()

5.1:dispatch(rc)

7:rc=get()8:open(ch)

5.2:put(rc)

Figure 6: Representation of the main components of Arcademis.

the scheduler, the implementation of some priority policies also requires changes in
other components. For example, in order to assign each method a different priority,
it is necessary to modify the implementation of stubs.

4 RME: RMI for J2ME

In order to validate Arcademis, this framework has been used to derive a remote
invocation service for Java 2 Micro Edition, a Java distribution that targets resource
constrained devices such as cell phones and palmtops [Riggs et al., 2001]. The J2ME
platform can be divided in different configurations, each of them proper to a specific
family of devices. A J2ME configuration defines a Java Virtual Machine, a set
of libraries and the Java capacities that are available for a group of devices that
meet the minimum set of requirements stipulated by that configuration. Presently,
J2ME provides two main configurations: CDC (Connected Device Configuration)
and CLDC (Connected, Limited Device Configuration). CDC groups devices that
can afford at least 2MB of memory and persistent network connections, often based
on TCP/IP. This configuration provides the application developer with almost all
the features found in the standard Java development kit, such as reflexivity and a
complete set of I/O libraries. The CLDC configuration is suitable to more limited
devices, generally mobile and battery-operated, with memory budgets of no more
than 500 Kilobytes, low bandwidth and intermittent network connections. The
CLDC libraries contains classes that are not present in the J2SE libraries, but, in
general, this configuration provides to the application developer far fewer capabilities
than the standard development kit. It does not feature, for instance, the primitive
types float and double, neither computational reflexivity, although such capacities
are present in CDC. Because the Java RMI serialization mechanism is based on the
reflexivity functionalities provided by the standard edition of the Java language, this
platform cannot be employed in the CLDC configuration.

The proposed service, called RME (RMI for J2ME) [Pereira et al., 2003], tar-
gets the CLDC configuration, and aims to permit the development of distributed
applications that communicate by means of remote method invocation. The main
elements involved in the execution of a remote call are depicted in Figure 7. RME is
a synchronous service, meaning that the client application remains blocked during
all the time in which a remote operation is being processed. In the server side, the
activator and the request receivers are active objects, being a new thread created
for each incoming connection. This arrangement permits to separate the thread
in which connections are received (the acceptor’s thread), from the the threads in
which connections are handled (the request receivers’ threads). In the presented
scheme, AppStub and AppSkeleton are automatically generated instances of the
stub and the skeleton, respectively. In order to allow this automatic generation of

11

components, RME provides rmec, a tool that produces the source code of those
local representatives from the implementation of a remote object. It is possible to
customize rmec to assign a different invoker to each generated method, in order to
associate different invocation tactics with them. In Figure 7, for example, rmec has
assigned the method m() an instance of TwoWayInvoker.

client:Client

:AppStub

:TwoWayInvoker

rs:RmeReqSender

:RmeRespReceiver

:RmeReqReceiver

:RmeRespSender

acc:BlockingAcceptor

:Activator

:RmeDispatcher

:AppSkeleton

obj:RemoteObject

1:m(a)

2:r=invoke(a)

4:open(ch)

5:open(ch)

:Connector

2:open(ch)

3.2:open(ch)

3.1:connect(rs)

1:accept()

4:dispatch(rc)

5:m(a)

Client address space

Server address
 space

3.2:getResult()

3.1:dispatch(rc)

Figure 7: Architecture of RME.

The implementation of TwoWayInvoker reuses connections across successive calls
and provides to the application developer several different tactics for remote invo-
cation: it is possible to use a cache for storing the result of idempotent calls, it is
possible to group several calls together in a single invocation, in order to take better
benefit from the available bandwidth and it is possible to create separate threads to
carry on remote calls. Two different semantics of call processing have been imple-
mented for RME: best-effort and at-most-once. The adoption of each of them is just
a matter of assigning to the ORB the proper service handler factory. Performance
tests show that providing an at-most-once guarantee level to the application adds
no more than .5 percent of time overhead when compared to the best-effort seman-
tics, although the first strategy requires substantial space for storing identifiers in
the server side [Pereira, 2003]. RME also provides to the application developer two
implementations of communication channels, each of them using a distinct trans-
port protocol: TCP/IP and HTTP. The second channel is necessary because the
first release of CLDC (CLDC 1.3) just supports HTTP connections. The TCP/IP
protocol is supported by CLDC 2.0. The communication protocol adopted by RME
is named RMEP (RME Protocol), and it defines seven different types of messages:
call, return, ping, ack, inq, load and mult. The Call message contains the descrip-
tion of one remote method invocation, what includes its arguments and identifiers.
Return messages holds the results of remote calls. Pings and acks are mostly used
in order to verify if servers or clients are alive. The inq message is used by clients in
order to discover the load on specific servers, which is informed by means of a load
message. Finally, messages of the mult type contain several remote calls grouped in
a single package.

RME gives to the application developer a programming syntax similar to that
provided by Java RMI. Remote methods must be declared in an interface that ex-
tends the arcademis.Remote interface and must declare the possibility of throwing
arcademis.ArcademisException. Remote object classes have to implement that
interface and have to extend the RmeRemoteObject class. Figure 8 (a) and (b) shows
an example of remote interface and its implementation. Although distributed ob-
jects’ methods may be invoked remotely, their implementations do not present any
particularity for accessing the subjacent network. The middleware transparently
gives to the application developer the means of calling those methods across the
network. In the given example, the remote method simply sums two integer num-
bers and returns the operation’s result. The server code responsible for the remote
object initialization is shown in Figure 8 (c) and the client that invokes a remote

12

method can be seen in Figure 8 (d). Any distributed application based on RME has
to determine an ORB customization before starting its execution, what is done by
an instance of the RmeConfigurator class. The configure operation determines
the set of component factories that will be associated to the ORB. The discovery
agency of RME is implemented by the RmeNaming class, and it does not use the
interface provided by Arcademis. Instead, it defines the same set of methods provi-
ded by the class java.rmi.Naming, the lookup service implementation of Java RMI.
Because RME targets resource constrained devices, stubs are created by RmeNaming

according to the flyweight design pattern [Gamma et al., 1994]: before creating a
stub, the discovery agency checks if there is already an instance of stub that points
to the same remote object. If there exist such instance, a reference to it is returned,
instead of a reference to a new stub.

import arcademis.*;

public interface RemInt

extends Remote {

public int sum(int a, int b)

throws ArcademisException;

}

import rme.*;

import rme.server.*;

public class RemObj extends

RmeRemoteObject implements RemInt {

public int sum(int a, int b) {

return a + b;

}

}

(a) (b)

import rme.*;

import rme.naming.*;

public class Server {

public static void main(String a[])

throws Exception {

RmeConfigurator c =

new RmeConfigurator();

c.configure();

RemObj o = new RemObj();

RmeNaming.bind("obj", o);

o.activate();

}

}

import rme.*;

import rme.naming.*;

public class Client {

public static void main(String a[])

throws Exception {

RmeConfigurator c =

new RmeConfigurator();

c.configure();

RemInt i=(RemInt)

RmeNaming.lookup("obj");

i.sum(2, 2);

}

}

(c) (d)

Figure 8: (a)Remote Interface. (b)Remote Object. (c)Server. (d)Client.

Some test have been executed in order to evaluate the performance of the RME
implementation. The execution environment consists of a J2ME emulator whose
virtual machine (KVM) can execute 100 bytecodes per millisecond. The server and
the client emulator were executed in two Pentium 4, with 2.0GHz of clock and 512MB
of available memory. The computers were connected by a 10Mb/s Ethernet LAN.
The remote methods used in the test are shown in Figure 9 (a). All those methods
throws ArcademisException, but the declarations have been omitted due to space
constraints. In order to determine an upper limit of efficiency, it was implemented
a socket-based application whose client and server simply exchange packages of the
same size of that used by the RME methods. The average number of requisitions
accomplished per second is presented in Table 9 (b). Each of these values has
been obtained as the average of 10 series of 50 remote calls. Because the emulator
executes to few instructions per time unit, the serialization of structured types
takes considerable time; hence, the methods that pass and return more complex
objects are slower than the corresponding upper bound. A comparation between
the Java RMI and a implementation of RME for the J2SE environment can be
found at [Pereira, 2003]. When processing simple calls, Java RMI is more efficient
than RME; however, the presented system surpasses the Sun’s implementation when
necessary to handle methods that uses structured types, because serialization can

13

be accomplished faster in RME than in Java RMI.

import arcademis.*;

public interface MethodSet

extends Remote {

public short getShort();

public char getChar();

public int getInt();

public long getLong();

public String getString();

public String[] getStrs();

public String passBytes(byte[] b);

public String passShorts(short[] s);

public String passChars(char[] c);

public String passInts(int[] i);

public String passLongs(long[] l);

public String passStrs(String[] s);

}

método RME socket RME/socket
getShort 5.08 5.11 0.99
getChar 5.05 5.12 0.98
getInt 5.06 5.11 0.99
getLong 5.02 5.07 0.99
getString 4.75 5.01 0.95
getStrs 2.96 5.00 0.59
passArgs 2.57 5.02 0.52
passBytes 4.48 5.05 0.90
passShorts 4.26 5.02 0.85
passChars 4.11 5.04 0.82
passInts 3.93 5.08 0.78
passLongs 3.03 5.04 0.61
passStrs 2.12 4.97 0.43

(a) (b)

Figure 9: (a) Performance results: requisitions/s. (b) General vision of RME.

5 Conclusion

This paper presents Arcademis, a framework for middleware development and one
instantiation of it named RME, a middleware system that provides to the CLDC
configuration of Java 2 Micro Edition a remote invocation service. This research
brings forward actual contributions in both the theoretical and practical fields. First
considering the theoretical contributions, the paper presents an analysis of the main
constituents of object-oriented middleware architectures, which have been grouped
in eleven independent parts. In addition to this, it defines different ways in which
these components can be customized and how such configurations can be accom-
plished in Arcademis. In practical terms, this research yielded a set of Java classes
and interfaces that implement several functionalities required in an object-oriented
middleware platform, and, more important, describe the overall structure of such
systems. Another practical result from this research is the derivation of RME. This
middleware provides to the application developer a high level of abstraction with all
the benefit and power of the object-oriented programming style while making him
unaware of objects’ real location. In the literature there is no reports about other
complete implementation of a remote invocation service for CLDC/J2ME, although
there is a RMI optional package for CDC/J2ME [Sun, 2003b].

Arcademis is a general and flexible framework. General because it allows the
development of object-oriented middleware for the three main platforms of the Java
language: J2ME, J2SE and J2EE. In order to evince this fact, two versions of
RME have been implemented: one for J2ME, presented in this paper, and another
targeting J2SE. In addition to this, Arcademis can be used to derive middleware
platforms pertaining to paradigms other than the object-oriented. For instance, a
complete discussion of how Arcademis can be used in the implementation of PeerS-
paces [de Oliveira Valente et al., 2003], a tuple Space-based middleware is presented
in [Pereira, 2003, pages 105–106]. Arcademis is flexible because every instance of
this framework is ultimately defined by a set of independent object factories as-
sociated to the ORB. It is possible to alter a whole aspect of the middleware by
just changing the factory that creates the components responsible by that beha-
vior. For instance, RME provides several options that can be configured this way,
such as the call semantics, the transport protocol and the invocation strategy. The

14

factory-based design has also the advantage of allowing the middleware to use just
the components it will effectively need. This design allows the use of Arcademis in
scenarios where more monolithic platforms are not be operational. RME, for ins-
tance, is used in a environment where the traditional implementation of Java RMI
can not be employed.

Different research threads may be originated from Arcademis. One possible di-
rection of future work is to derive from the framework middleware platforms that do
not follow the object-oriented model, such as tuple space-based or message-oriented
systems. A second research topic is the parameterization of different distributed
garbage collection algorithms in Arcademis. There are several different techniques
for garbage collecting unused memory in distributed systems, and it is desirable to
allow the middleware developer to choose, from a collection of algorithms, the one
which best suits his needs. Regarding RME, the natural sequence of the present
research is to provide this system with asynchronous method invocation, and to test
it in actual devices, because, until now, all the experiments on this platform have
been accomplished in emulators of mobile devices. The code of Arcademis and RME
can be freely downloaded in the URL:

http://www.dcc.ufmg.br/llp/arcademis

References

[Champion et al., 2002] Champion, M., Ferris, C., Newcomer, E., and Orchard, D.
(2002). Web Services Architecture. W3C.

[Coulouris et al., 1996] Coulouris, G., Dollimore, J., and Kindberg, T. (1996). Dis-
tributed Systems - Concepts and Design, volume 1. Addison-Wesley, 2nd edition.

[de Oliveira Valente et al., 2003] de Oliveira Valente, M. T., Pereira, F. M. Q.,
da Silva Bigonha, R., and Bigonha, M. A. S. (2003). A coordination model for
ad hoc mobile systems. In EURO-PAR 2003 - International Conference on Pa-
rallel and Distributed Computing, pages 1075 – 1081. Lecture Notes in Computer
Science.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).
Design Patterns – Elements of Reusable Object-Oriented Software. Addison-
Wesley.

[Johnson, 1997] Johnson, R. E. (1997). Components, frameworks, patterns. In ACM
SIGSOFT Symposium on Software Reusability, pages 10–17.

[OMG, 1999] OMG (1999). CORBA IIOP 2.3.1 Specification. Technical Report
99-10-07, OMG.

[Pereira, 2003] Pereira, F. M. Q. (2003). Arcademis: Um arcabouço para construção
de sistemas de objetos distribúıdos em java. Master’s thesis, Universidade Federal
de Minas Gerais. To be published.

[Pereira et al., 2003] Pereira, F. M. Q., de Oliveira Valente, M. T., Bigonha, R. S.,
and Bigonha, M. A. S. (2003). Chamada remota de métodos na plataforma
J2ME/CLDC. In V Workshop de Comunicação sem Fio e Computação Móvel.
SBC.

15

[Riggs et al., 2001] Riggs, R., Taivalsaari, A., and VandenBrink, M. (2001). Pro-
gramming Wireless Devices with the Java 2 Platform, Micro Edition. Addison
Wesley, 1th edition.

[Román et al., 2001] Román, M., Kon, F., and Campbell, R. (2001). Reflective
Middleware: From Your Desk to Your Hand. IEEE Distributed Systems Online,
2(5).

[Schmidt, 1996] Schmidt, D. (1996). Acceptor-connector – an object creational pat-
tern for connecting and initializing communication services. In European Pattern
Language of Programs Conference.

[Schmidt and Cleeland, 1999] Schmidt, D. and Cleeland, C. (1999). Applying Pat-
terns to Develop Extensible and Maintainable ORB Middleware. IEEE commu-
nications Magazine – Special Issue on Design Patterns, 37(4):54 – 63.

[Singhai, 1999] Singhai, A. (1999). Quarterware: A Middleware Toolkit of Software
RISC Components. PhD thesis, University of Illinois.

[Singhai et al., 1998] Singhai, A., Sane, A., and Campbell, R. H. (1998). Quar-
terware for middleware. In ICDC’98. IEEE.

[Sun, 2003a] Sun (2003a). Java RMI home page. http://java.sun.com/j2se/1.4.1/-
docs/guide/rmi/spec/rmiTOC.html – última visita: Dezembro de 2003.

[Sun, 2003b] Sun (2003b). Rmi optional package specification version 1.0.
http://java.sun.com/products/rmiop/ – última visita: Dezembro de 2003.

16

