
Global Register Allocation Based on Live Range Growth and
Register Coalesce

Luciana L. Ambrosio
�

, Mariza A. da S. Bigonha
�

,
Roberto da S. Bigonha

�
�
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais, Brazil

leal@dcc.ufmg.br, mariza@dcc.ufmg.br, bigonha@dcc.ufmg.br

Abstract. Register Allocation is the compiler pass that determines which pro-
gram values should be assigned to machine registers. Frequently, there are
less machine registers than necessary, and consequently, some values should be
spilled to memory. An efficient register allocation reduces the number of me-
mory access instructions in the code. However, this is a NP-problem, making it
solved through heuristics. The heuristic commonly used is graph coloring. The
work presented in this paper implements a new heuristics for register allocation,
based in Live Range Growth.

1. Introduction
Register allocation is one of the most important problems in code optimization. Registers
are small, expensive and fast memories, that exist inside the CPU, and keep the most
frequently used values of the program being executed. Register allocation is the compiler
pass that decides which values should be kept in the registers. Usually, there is few
registers in the machine, less than the necessary. Because of this, some values kept in
registers must be spilled to memory. To spill a value to memory means that at least one
access to memory will be necessary to access this value, which increases the runtime of
the program. The problem of finding an optmal register allocation is NP-hard, making it
solved through heuristics.

The most widely used solution to the problem is by graph colorint [3]. This approach
represents the conflicts between live values1 with a given number of colors, which rep-
resent the avaible number of registers in the machine. The values that have not a color
assigned to it, are spilled to memory. In spite of being the most widely used solution, the
graph coloring has some problems. For example, to calculate the spill cost of a value,
the graph coloring method considers only one basic basic, it does not consider the control
flow graph analysis and the data analysis of the program (only the liveness variable anal-
ysis). Because of this, the method does not produce an efficient code in some situations.
That is the reason why more efficient register allocation technics are being researched and
developed [1, 7, 2, 4, 13, 12].

This article presents the research and implementation results of a new register allo-
cation heuristic developed by the algorithm proposed by Ottoni and Araújo [12], which
presents a new formulation to solve the global register allocation problem that uses a tech-
nic called Live Range Growth. This technics tries to solve the graph coloring problems,
implementing: (a) control flow graph analysis, (b) liveness variable analysis, and (c) data

1values that will be referenced by the program

analysis called Register Consistency Reachability. A load/store RISC architecture, where
all the computations are via registers, except the load and store instructions, are the basis
of the implementation.

2. Register Allocation
Several register allocation technics [3, 1, 2, 4, 13, 7, 12, 10, 8] were developed. Despite
of this, the widely adopted method in the last decades is the Graph Coloring Method,
developed by Chaitin [3]. This approach offers a simplified abstraction of the register
allocation problem. In the method, a graph called interference graph is built, in which the
nodes represents the register allocation candidates and the edges represent interferences
between the candidates. It is said that two candidates interfere if the are both live at the
same point in a procedure, and because of the interference, they can not be allocated to the
same register. Suppose k is the number of avaiable registers in the machine. If the graph
nodes could be colored with k or fewer colors, in such a way that a pair of nodes connected
by an edge receives different colors, then the coloring corresponds to the allocation. If a k
coloring could not be effected, the code will be modified to try a new coloring. This work
was extended by several contributions, for example [1, 7].

Briggs [1] work adds many improvements and extensions to Chaitin [3] work, and
the most important one can be described as Optimistic Coloring. Chaitins̀ approach pes-
simistically assumes that every node with a level higher than the number of avaiable colors
will not be colored, and will be spilled. Briggs optimistically assumes that the higher level
nodes will also receive colors, reaching smaller spill costs.

The algorithm proposed by George and Appel [7], in spite of being an improvement
of Chaitins̀ algorithm, also improves the Briggs performance. The coalesce heuristic
developed by Chaitin might turn the graph not colorable. Briggs proposed a conserva-
tive coalesce heuristic, a colorable graph before the heuristic application, continued to
be colorable after the application of the conservative coalesce heuristic. But the Briggs
algorithm is too conservative, leaving many copy instructions in the code of the program.
George and Appel method intercalates the simplification pass with the Briggs coalesce
heuristic, making the algorithm more aggressive. This method is called Iterated Register
Coalescing, and has five phases:

1. Interference graph construction: separates each node like being move related (tar-
get or source of a move instruction) or not.

2. Simplification: removes the not move related nodes, whose level are smaller than
the number of avaiable registers.

3. Coalesce: realizes the conservative coalesce heuristic in the graph obtained by
the prior phase. After the nodes junction, if the resulting node is no longer move
related, it becames avaiable for the next execution of the simplification phase.
The simplification and coalesce phases are repeated until only significant-degree
or move-related nodes remain in the graph.

4. Freeze: if neither simplification nor coalesce apply, the move related nodes are
looked. The move in which this node is involved are freezed: this node is not con-
sidered a move related node. The simplification and coalesce phases are resumed.

5. Selection: selects colors to the graph nodes.
This algorithm has a better performance than Briggs, eliminates more moves instructions
and garantees that no adicional spill will be introduced in the code.

3. Register Allocation Based in Live Range Growth
The solution based in Live Range Growth was proposed by Ottoni and Araújo [12] for spe-
cialized embedded processors like Digital Signal Processors, DSPs, to solve the problem
of allocating address registers to array references in loops using auto-increment address-
ing mode. Our proposal is to use this method for the global register allocation in general
processors. To facilitte the understanding of our implementation, the algorithm for Global
Register Allocation Based in Live Range Growth proposed by Ottoni and Araújo is de-
scribed in details in the rest of this section.

The central problem for obtaining a solution based in Live Range Growth (LRG) for
Global Register Allocation, is the calculation of the smallest cost associated with a given
live range. A live range is a set of variables attributed to the same register, having the
effect that all the uses and definitions of those variables are done by this register. A web
is the combination of du-chains (definition-use chains) that intercept, that have a common
use [11]. In the beginning of the implementation, each web corresponds to a live range.
A heuristic algorithm, called Live Range Growth is then used, suquencially joins pairs
of live ranges, until the total number of live ranges is equal to the number of avaiable
machines registers in the given architecture. To decide which pair of live ranges will be
joined at each iteration, all the combinations of pairs will be evaluated, and the one that
results in the smallest cost will be the chosen one. The cost of a live range is measured
by the number of loads and stores necessaries to ajust the register. This way, the central
problem of this technic is the determination, for a given live range, of the number of the
instructions to keep the register with the correct variable during the program runtime.

In this technic, each reference2 must be preceded by an unique other reference to a
variable that belongs to the same live range. This property is important to determine,
at each program point, which variable will be attributed to the register allocated to the
variables of this live range, independently of the executed path. To satisfy this property,
the program is transformed in a representation based in a form called Single Reference
Form (SRF). This form was proposed by Cintra e Araújo [5] and it is an adaptation of
the Static Single Assignment [6] (SSA) form that has the property that each reference can
only be preceded by an unique other reference. Another important concept to understand
the technic is related to

�
function.

�
function is a special form of attribuition that receives

as the argument a set of definitions ��� � , ..., ����� of a variable x that achieves a junction
point (a node with more than one predecessor) in the Control Flow Graph (CFG) of the
program and produces a new attribution �	��
 � to the variable x [5]. This way, it is said that����
 � =

�
(� � , ... , ���).

The first pass of the Global Register Allocation Algorithm Based in Live Range
Growth is the inserction of

�
function in the beginning of each basic block that belongs

to the iterated dominance frontier3 of the basic blocks that use or define some variable
that belongs to the live range. It is necessary because an use or definition of a variable
forces it to be allocated to the register. In the model proposed by Ottoni and Araújo, two
informations are crucial:

1. the determination of which variable that belongs to the live range is attributed to
the register associated to this live range in each point in the program;

2. to determine if the variable attributed to the register has an equal or a different
value compared to its value stored in the memory. When the values are equal, we

2reference is defined as the use or definition of a variable
3iterated dominance frontier are the blocks with more than one predecessor or the last block

say that this value is consistent, otherside it is inconsistent. This information is
important because a store instruction could be saved if the values in the register
and in the memory are equal, and it is necessary that this register be allocated to
another variable that belongs to the same live range, in a point in the program.

The next algorithm pass is the calculation of the two information explained above. To
calculate the variables attribution to the register associated with a live range in each point
in the program and its consistency with the memory, it is used a data flow analysis called
Register Consistency Reachability. Suppose V is the set of variables that belongs to the
live range, C the consistency with the memory, I the inconsistency with the memory, and
X the ignorance if the value stored in the register is consistency or not with the memory;
the RCR analysis itens are pairs (v, e) where v is a variable that belongs to the live range
and e is the consistency state, in which:
 v � V ������������� , where � means that no variable is allocated to the register;
 e ��� C,I,X ������� .

The
�

function result must also be formed by a pair, constituted by a variable V and
a consistency state C or I. However, to knowing the solutions of

�
functions, the RCR

results are very important to know which registers states reach a given
�

function and
this way, to avaliate its best solution. So, suppose the sets ��� = ������� and ��� = �! "��� ,
the solution of a

�
function is the pair (�#� , "�). The �$� s and "� s are the variables of the

optimization problem that decrease the number of load and store instructions. This way,
we want to choose the solutions of

�
function that minimizes the cost of the live range.

A set of itens is calculated for each point between two references in the program. For
example, in a instruction like x := y + z, if x and y are variables that belong to the live
range, we consider a calculation point before the reading of y, another one between the
reading of y and the writing of x, and another one after the writing in x. As z does not
belong to the same live range, its use is ignored in the caculation of the item related to this
live range. For each reference r, the set of RCR elements that reach its beginning is given
by all the elements that reach the ending of some reference p that can precede r in the
program control flow, or in[r] = %$&�&('*),+"' out[p]. We define that the first program reference
is empty and its consistency state is X, in[-!.] = � (� ,X) � . The fact that, in all the points
that preced a reference, the set of RCR itens contains an unique element of the same live
range is very important. It is the result of the insertion of

�
function, and it is analogous

to the fact that, in the SSA form, each use of a variable is reached by an unique definition
of this variable.

According to Ottoni and Araújo [12], there are three cases to obtain the elements that
reach the ending of a reference r, depending on the type of the reference: use, definition
or
�

function. Suppose LR is the given live range and s some consistency state:
 Case 1: r: x:= ... / x � LR
out[r] = � (x, I) � ;
 Case 2: r: ... := x / x � LR

0!1�2�3 -!4	5
678 79 �;:<�>=@?!A@�B= CEDGF�H 3 -�4I5J�;:K�>=@?!A@�B=MLN?�;:<�>=(OPA@�B=QCEDGF�H 3 -�4I5J�;:SR	=@?!A@�B=TRU�V:,�W�������XA#YZ���[�B=\LN?�;:<�>=^]_A(�B=`CEDGF�H 3 -�4I5J�;:<���a=T "�<A@�B=b���>�����

 Case 3: r:
� �

out[r] = � (��� , ��) �

In Case 1, there is a definition of the variable x. After this reference, the register
contains the variable x with a value that is inconsistent with the value of variable x int the
memory, because a new value was just defined.

Case 2 is subdivided in three cases, depending on the item that precedes the reference.
In the first subcase in[r] is constituted by a state in which x is allocated to the register,
or x was kept in the register before the given reference. An use of x will keep x in the
register with the same consistency state as before. The second subcase happens when
in[r] has another variable y, which belongs to the same live range as x, allocated to the
register or the register is empty. In this case, no matter the consistency of y, a load x is
necessary before the reference r, this way, the register now will contains x with a value
that is consistency with the value in the memory, because it has just been loaded from
memory. The third subcase happens when the reference r is reached by a

�
function. In

this case, we can only garantee that the register contains the value of x, in a not determined
consistency state, which will depend on the chosen solution of

�
funcion. This solution

could be, for example, the same variable x.
Case 3 deals with

�
functions, which can be considered a special type of reference

that leaves the register in a state given by the solution chosen for the function.
Expressions for the sets in e out can be used to calculate, iteratively, these sets for

all the program points, the same way as the expressions for others data flow analysis are
solved, as for example, the liveness analysis.

Taking for granted the property that, after the insertion of
�

functions, all the reference
to some variable that belongs to the live range is reached by an unique register state,
the minimum set of necessary instructions to adjust the content of the register can be
calculated for each reference that does not depend on the solutuion of

�
functions. This

is the next pass of the algorithm. Suppose cKF�dfe!�g� [r] is the set of live variables in the point
before the reference r, the following cases, defined by Ottoni and Araújo [12] identify the
instructions that does not depend on the solution of

�
functions:

1. Case: r: x:= ... / x � LR, in[r] = � (v, e) �
(a) Case (v � V - � x �) and (e = I) and (v � live �g� [r]:

the necessary instruction before r is store v. In this case, the register con-
tains a variable v different of x, that is inconsistent and live in this point in
the program, therefore, its value must be stored. As the reference to x is a
definition, its value does not have to be loaded from memory.

(b) Otherwise, no instruction is necessary, or its necessity depends on the so-
lution of some

�
function.

2. Case: r: ... := x / x � LR, in[r] = � (v, e) �
(a) Case v = � :

the necessary instruction before r is a load x. The register is empty, con-
tains no variable, and the reference to x is a use, so it is necessary to load
the value of x from memory.

(b) Case (v � V - � x �) and ((e ��� C,X �) or ((e=I) and (v h� live �g� [r]))):
the necessary instruction before r is load x. The register contains a variable
v different from x, that is consistent or its consistency state is undefined,
or it is inconsistent but is not live in this point in the program. This way, it
is not necessary to store the value of v. The reference to x is a use, then its
value must be loaded from memory.

(c) Caso (v � V - � x �) and (e=I) and (v � live �i� [r]):
the necessary instructions are store v; load x. The register contains a vari-
able v different from x, that is inconsistent and live in this point of the
program, therefore the value of v must be stored. The reference to x is an
use, so its value must be loaded from memory.

(d) Otherwise, no instruction is necessary, or its necessity dependes on the
solution of some

�
function.

After the insertion of load and store instructions that do not depend on
�

functions,
the instructions which depend on the solutions of

�
functions must be inserted. This is the

final pass of the iteration of the algorithm. The
�

functions must be solved, the variable
attributed to the register and its consistency state must be decided in each point in the
program where a

�
function was inserted.

Given a function
� � = (��� , "�), to calculate the cost of a solution (�#� , ��) = (w,f), we

must analyse all the references in the program that:

A1. are reached by
� � , or have (��� , "�) in its in set; or

A2. are reached by the register with a variable in an undefined state due to the
� � solution;

or
A3. reach

� � .
To solve the A1 and A2 Itens, the solution of

� � function must be propagated, the same
way it is done in the RCR data flow analysis, and the case analysis presented before must
be used to emit instructions that does not depend on the

�
functions, since the register

states in the beginning of hte references will be well determined.
The references in Item A3 are the ones contained in in[

� �]. Then, to evaluate the
cost of

� � related to each one of this references r, according to [12], the following case
analysis must be done, where the solution of

�
will be compared to each (v, e) that belongs

to in[
� �]:

B1. (w = �) and (v � V) and (e=I) and (v � live �g� [� �]):
the necessary instruction after r is store v. The solutuion of

� � is to have no variable
allocated to the register. A variable v that is live and inconsistent and is allocated
to the register, must be stored in memory.

B2. (w j5Z�) and (v = w) and (f=C) and (e=I):
the necessary instruction after r is store v. The register contains the necessary
variable, but it is inconsistent with the memory. The solution demands that the
variable be consistent with the memory, so a store instruction is necessary.

B3. (w j5Z�) and ((v= �) or ((v � V - � w �) and ((e=C) or (v h� live �g� [� �]))):
the necessary instruction after r is load w. The register is empty, or contains a
variable v different of the solution w, but v is consistent or it is not live in this
point in the program. Therefore, it is not necessary to store v in the memory, but
w must be loaded from memory. Even if f=I, the result of this instruction will be
v consistent with the memory, with no additional cost.

B4. (w j5Z�) e (v � V - � w �) e (e=I) e (v � live �g� [� �]):
the necessary instructions after r are store v; load w. The register contains a vari-
able v different of the solution w, and v is inconsistent and live in this point in the
program. Then, it is necessary to store v in memory, and load w from memory.
Even if f=I, the result of these instructions is v consistent with memory, with no
additional cost.

(a) (b) (c) (d) (e)

Figura 1: Example of live range growth

B5. Otherwise, no instruction is necessary.
A situation in which the value of a

� � function depends on another
�"k

function might
happens. To solve a

�
function, in this case, a gluttony strategy that orders the

�
function

using some criterion and then solves then using the ordering can be used. For each
�

function, we can try all of their possible solutions and choose the one that results in the
smallest cost. To calculate the costs of a given

� � function, the solutions of others already
solved

�;k
functions which

� � depends can be used. The others
�

functions not solved yet,
and which

� � depends, must be ignored.
An alternative is to use a dependence

�
graph (DG �) to calculate the dependences

between the
�

functions. The DG � graph is an indirected graph, in which there is one
node associate to each

�
function, and there is an edge (l � , l k), between two nodes l �

and l k , if and only if, l � is a
�

function of l k or otherwise. If the graph is acyclic, the
LRO [12] algorithm can be used to determine, in an efficient way the solution to all the

�
functions.

The complexity of solving the
�

functions efficiently makes this a NP-hard problem.
Then, there is no general, efficient method to solve this functions.

3.1. Example
To ilustrate Ottoni and Araújo method, Figure 1(a) presents a part of a code in the form of
a control flow graph. In the iteration explained in the following, we want to join the live
ranges b and i. After the constrution of the live ranges and the insertion of

�
functions,

the first pass of the algorithm is the Register Consistency Reachability. After the RCR
analysis, we have the itens presented in Figure 1(b).

The next phase of the algorithm is the emission of instructions that do not depend
on

�
functions. In the basic block 3, the first instruction defines b. The second one

defines i. As b and i will be joined, they will ocupy the same register. By RCR analysis,
before the definition of i in the second instruction, the register allocated to the union of
b and i contains the variable b, inconsistent with the memory and live in this point of
the program, because it is used in basic block 6. Then, we fall in Case 1.a of the case

analysis presented for the emission of instructions that do not depend on
�

functions,
which demands a store b instruction before the definition instruction of i. In the basic
block 6, in the last instruction, variable b is used. However, by RCR analysis, the register
contains the variable i, but i is no longer live at this point in the program, so we fall in
Case 2.b of the case analysis of emission of instructions that do not depend on

�
functions,

which demands a load b before the instruction that uses it.
The next phase of the algorithm is the construction of the

�
dependences graph for the

live ranges to be joined. The form of the graph is shown in Figure 1(d). There is an edge
that connects m	n"F � , presented in basic block 4, with

��o
, presented in basic block 6. This

edge exists because
�Io

depends on the solution of
� � , since the RCR item that reachs

��o
,

i has a consistency state X, that depends on the chosen solution for
� � .

For the solution of
�

function presented in basic block 4, we have to analyze the
references of the program that are reached by

�
, the ones that are reached by the register

with a variable in an undefined state because of the solution of
�

and the ones that reach�
. In the first case, the reference reached by

�
is i in the instruction x := i + top. In the

second case, all references to i in the basic blocks 4, 5 and 6 are reached by the register
with a variable, in this case i, in an undefined state (X) because of the solution of

�
. At

last, in the third case, the item (i, I) reaches
�

. If the solution of
�

is to have no variable
using it, as the item that reaches

�
is (i, I) and i is live at this point in the program, we

have a cost of one store i. If the solution of
�

is to have i allocated to the register, in a
state C, consistent with the memory, we also have a cost of one store i. If the solution is b
in an inconsistent state I, as b and i are live at this point in the program, we have a cost of
one store i and one load b. Finally, if the solution is i in an inconsistent state I, we have a
zero cost. Then, this last solution is the chosen one, because the cost for it is 0.

To solve the
�

function of basic block 6, we have that this
�

function depends on the� � function in basic block 4, which is already solved as (i, I). So, this is the reference that
reaches

�
. The reference reached by

�
is an use of i in the instruction h := i + 1. The ones

that are reached by the register with a variable in an undefined state because of
�

function
is an use of b in the following instruction. The case analysis to choose the

�
function is

equally to the one done for the solution of the prior
�

function, then the solution of this
�

function is (i, I), which has a cost of zero. After allocating the register r to the union of b
and i, and emiting the instructions, we have the resulting code shown in Figure 1(c).

4. Proposed Algorithm
The LRO [12] heuristic used to determine in an eficienttly way the solution for all the�

functions when the DG � graph is acyclic, was not explored in this version of the im-
plementation. Despite its effectiveness, it is only used when the solution of a

�
function

depends on another
�

function and when the DG � graph is acyclic. These situations do
not cover all the possible cases. Then, just the brute force heuristic was implemented.

First of all, we implemented an algorithm that, for the solution of
�

function, uses the
last case analysis for the references that are reached by

�
, as described in Section 3.

To analyze the references being reached by
�

, in order to save one visit to the code of
the program, the references in the

�
function successors instructions that have a register

with a variable in an undefined state (X) due to the solution of
�

or have (�p� , "�) in their
in set are searched.

This implementation of the algorithm did not produce efficient results when the joined
live ranges were simultaneous live and their references were intercalated inside a basic

block. To solve this problem, we have proposed to insert interferences between live vari-
ables, and live ranges that interfere with each other cannot be joined.

5. Implementation Environment
In order to test the Global Register Allocation Based in Live Range Growth method,
we have implemented it in the Machine SUIF [9] (MachSUIF), a flexible and extensible
structure to the construction of compilers back-ends. In MachSUIF, a minimum back-
end is composed of: generation of low level code, generation of machine specific code,
register allocation, ending of generation of machine specific code, generation of assembly
code. Several optimizations pass can be inserted during this sequence, as for example,
scheduling, constants folding, generation of code in the SSA form. MachSUIF allows the
development of new optimization passes and the introduction of new architectures in an
easy way.

The Register Allocation method used by MachSUIF is the method of George and Ap-
pel [7]. This method intercalate the simplification phase with the Briggs coalesce heuris-
tic, making the allocation algorithm more aggressive. This method is called Iterated Reg-
ister Coalescing. This compiler pass of register allocation implemented in MachSUIF was
substituted by the method implemented in this paper, based in Live Range Growth. The
resulting code of the two methods were compared and the result is presented in Section 6.

The target processor for the experiments was Alpha. It has a load/store RISC architec-
ture, with 64 machine registers, which 54 are allocable. Inside these 54, 23 are genereal
proposal registers and 31 are floating-point. The used benchmark were: bubsort, res-
olution of fibonacci series, bubsort, eratostenes crive, matrix multiplication, depth-first
seek, among otheres. These programs are very used applications and garantee the cov-
ery of several cases of control flow graphs, number of candidates variables to allocation
and dependences among

�
functions. The comparison criterion between both methods

of Register Allocation, one based in Live Range Growth and the other based on George
and Appel technic, was the number of intructions that access the memory (load and store)
inserted in the resulting code of these allocations.

6. Results Evaluation
In the implementation, the choice of which pairs of live ranges will have their union tested
is very important. For example, it is interesting to choose one live range of each path in
the control flow graph that reachs the basic block that contains the

�
function, so, this

way, we try to garantee the possibility of the joined live ranges will be not live at the same
point in the program, which produces a smaller possibility of insertion of instructions that
access the memory. The Figure 1(e) illustrate this fact, in this figure, the basic blocks 13
and 15 are antecessors to basic block 14, which contains the

�
function. If a live range

that has a reference in 13 and another one that has a reference in 15 are chosen to have
their union cost calculated, we are choosing a live range of each path in the control flow
graph that reachs the basic block that contains the

�
function. In our implementation, that

was the chosen approach, observing that the variables contained in the live ranges must
be of the same type and they cannot interfere with each other. A variable interfere with
another one if both of them are operands in the same instruction. When this happens, they
cannot share the same register, because, this way, they would be using the same register at
the same time. If this choise of live ranges to have their union tested cannot be possible,

all the live ranges of the same type and that does not interfere with each other are tested,
independently of the path in the control flow graph.

The first important observed result was the fact that the algotithm of Ottoni and
Araújo [12], despite of Chaitin allocation, does not implement the transformation known
as Register Coalesce. This transformation is a variation of the copy propagation, and
eliminates copies from one register to another one. In this transformation, register copies
instructions are searched in the intermediary code in such a way that, the copies instruc-
tions have the form ? krq ?s� , and ?s� and ? k does not interfere with each other, and ? k
and ?�� are not stored in memory between the copy attribution and the end of the rotine.
After these instructions are found, the Register Coalescing look for the instruction that
wrote in ?s� and changes it to put its result in ? k in the place of ?�� , and removes the copy
instruction [11]. This way, ?�� does not exist anymore in the program code.

We have observed that the number of live ranges were large in the implemented
method, besides that, the code generated by this method contained many unnecessary
register copies instructions. Therefore, we have decided to implement the Register Co-
alesce transformation in the Allocation Based on Live Range Groth Method. The trans-
formation was implemented in the beggining of the algorithm, after the webs and the live
ranges were calculated (they were necessay to check the existency of interferences be-
tween the possible candidates to the coalesce). After the transformation, the webs and the
live ranges are recalculated. The result was very good, reducing the number of live range,
in average, in tvuvw . We could observe, this way, that this transformation is very important
to this method, not just by the elimination of unnecessary copies instructions, but also by
the reducing of the number of live ranges.

For example, in the quicksort algorithm, before the Coalesce transformation was im-
plemented, the method of Allocation Based in the Live Range Growth identified 109
live ranges, and besides of that, the generated code contained may unnecessary copies
instructions, as the total, there were 156 instructions in the generated code. After the im-
plementation of the Register Coalesce, the number of live ranges identified diminished to
64. The generated code contained 112 instructions, so, the Register Coalesce eliminated
44 unnecessary copies instructions.

The second important observation was the fact that, in some situations, the code that
the method based in live range growth generated contained load and store instructions,
while the one generated by the coloring graph method did not have instructions of these
kind. This situations ocorred every time that the union of the smallest cost was a union of
two live ranges in which:

1. at least one of them was presented in both paths that were considered;
2. the references to the live ranges were intercalated in the basic block that contained

them;
3. one of them remained live at the end of the basic block.

For example, in the code shown by Figure 1(e), the iteration of the algorithm will join
the live ranges that contain x and w. To solve the

�
function presented in the basic block

14, the references that reachs it and the ones that are reached by it are considered. The
references (to the live ranges in question) that reach

�
are a definition of x in the basic

block 13 and an use of x in the basic block 15, antecessors blocks of basic block 14. The
reference to the live ranges in question that is reached by

�
is an use of x in the basic

block 14. So, analyzing the cost of the possible solutions of
�

, we find that the one with
the smaller cost is the pair (x, I), the variable x in a state consistency of I, generated by its

definition, which has a cost 0. However, in the next iteration of the algorithm, after x and
w are joined, in the phase of emission of instructions that do not depend on the solution of
a
�

function, we have that, in the end of basic block 14, the register allocated to the joined
live range, with x and w, contains the x variable in a state inconsistency with the memory.
The next reference to one of the variables presented in the live range is a definition of w
in the beggining of basic block 15. As the register contains x in an inconsistent state, and
x is live, we need to insert an instruction of store x before the instruction that defines w.
After the definition of w, there is an use of it, and after this use, there is an use of x. The
register now, contains w in an inconsistent state with the memory. As w is no longer live,
it is necessary to insert an instruction of load x before its use, because we have to load the
value of x from the memory to the register, so it can be used. So, the union of x and w
had a cost of 2 instructions of access to memory, that were not captured in the resolution
of the

�
function. This cost was just captured in the next iteration, in the emission of

instructions that do not depend on the
�

functions phase.

The solution of
�

function related to this union in the first implementation of the
algorithm, did not retreat the cost of the inserted store and load instructions because, for
the solution of a

�
function, the references analyzed and considered are the references

that reach and that are reached by the
�

function, and this represents the last references
in the basic block that are predecessor to the one that contains the

�
function or the first

instruction in the proper basic block or their sucessors that use or define the live range in
question. The fact is, in this case, that the predecessor basic block, the sucessor one or
the basic block itself contained both live ranges intercalated, but only the last reference
to one of these live ranges is considered for the solution of

�
function, in the case of the

predecessor block, and the first reference to one of these live ranges is considered in the
case of the sucessor block or the block itself. This way, the cost of the change of variables
in the live range to ocupy the register is not analyzed. Therefore, this situation happened
when the variables belonging to the joined live range were lives at the same time.

To solve this problem, interferences between live variables were inserted. Live ranges
that interfere among each other cannot be joined. For example, in the Figure 1(e), as x
and w are lives at the same time, an interference between them is inserted, so these live
ranges cannot be joined. This solution eliminated this problem, and the code generated
by the method became efficient also in this situation. The problem with this solution is
that, this way, the method becomes closer to the graph coloring method, which works
with interferences between live variables.

To solve this problem, we have also implemented the extension of the analyzis of the
cost of the resolution of the

�
functions to all the basic blocks in the program, according as

the resolution of itens A1 and A2, and not just to the references that reach or are reached
by

�
. So, the phase of the emission of instructions that do not depend on the resolution of a�

function is performed, considering that the live ranges that are having their union tested
is already joined. If some instruction is inserted, the number of these inserted instructions
is added to the cost of the union of the live ranges. This way, the cost of the intercalation
of the variables will be computed, the cost of the union will become larger, and possibly
this union will not be the chosen one. In the Figure 1(e), the cost of the union of x and w
is 2, because the phase of the emission of instructions that do not depend on

�
functions

if x and w are joined is considered, so, the costo of the insertion of a store x and a load
x in the basic block 15 is considered. Probably, there will be another union whose cost

is smaller, and this one will be the chosen one. This solution surely increases the cost of
the compilation, but it solves the problem explained above without becoming closer to the
solution adopted by the graph coloring. This solution was implemented and tested in the
Allocation Method Based in Live Range Growth, and the generated code became more
efficient.

The most important observation was the fact that the Register Allocation Algorithm
Based in Live Range Growth achieved more efficients results than the Graph Coloring
Algorithm in some situations, for example, in the presence of a lots of nested loops and
when global variables remained lives and very referenced in all the program code, also
being very referenced inside the loops. In the case of the nested loops, their bounds were
spilled to memory, as long as many registers were not allocated inside the loop. In the
case of the global variables lives and very referenced inside loops, besides the indexes and
the bounds of the loop, the global variables which were most referenced were also spilled
to memory. In these cases, the live ranges that represent the global variables have a spill
cost larger due to the many interferences that exist between them and others variables
in the interference graphs and due to the fact that they are referenced inside the loops.
The allocator, then, spills the live ranges with a smaller cost, which are the bounds of the
loops. In some situations, this is not enough, and some global variables are also spilled.

Load and Store Live Ranges
Algoritmo CG 1CDA 2CDA 3CDA SC CC

test 0 0 0 0 21 12
fibonacci 0 0 0 0 19 8
bubsort 0 4 0 0 109 81

quicksort 2 0 0 0 109 64
bfirst 4 2 0 0 140 66

integer 0 2 0 0 142 102
knight 0 0 0 0 171 99
float1 0 0 0 0 41 20

matrixmul 7 0 0 0 149 83
matrixmul2 21 0 0 0 199 127

point2 0 0 0 0 132 70
rsieve 0 0 0 0 55 27

whetsto 70 4 0 0 102 64
whetsto3 139 - 6 6 198 134

gauss-seidel 3 0 0 0 167 97
Table 1: load and store instructions and number of live ranges before and after the Register

Coalesce
Table 1 shows, for each one of the tested algorithms of the benchmark, the number of

load and store instructions obtained: I) by the method of graph coloring (CG), II) by the
first implementation of the method based in the live range growth, without considering
all the basic blocks in the calculation of the cost of

�
(1CDA), III) by the implementation

of the method based in the live range growth with interferences between live variables
(2CDA), IV) by the implementation of the method that considers all the basic blocks in the
calculation of the

�
cost [12] (3CDA). The last two columns show the number of identified

live ranges in the implementations without (SC) and with (CC) the transformation of
Register Coalesce.

We did not do comparisons between the two methods (graph coloring and based in live
range growth) in relation to the run time, due to the fact that the graph coloring method

is optimized, while the method base in live range growth is not optimized, its studies has
just begun.

7. Conclusions
We evaluated, with this work, the effectiveness of the Global Register Allocation Method
Based in Live Range Growth. Throughout their implementation and tests compared to
the Global Register Allocation Based in Graph Coloring, we have discovered deficiencies
and proposed and implemented solutions to them. The generated code has become more
efficient with the proposed improvements, but the method is more expensive than the
graph coloring method, because at each iteration it visits at least three times the code
of the program: to do the RCR Analysis, to the emission of the instructions that do not
depend on the

�
functions, to the solution of the

�
functions for each pair of tested live

ranges. And also it visits the code of the program to constructed the dependence graph
between

�
functions (DG �).

The most important result obtained by this work was the fact the the Algorithm Based
in Live Range Growth is more efficient than the Algorithm Based in Graph Coloring in
situations which there are many nested loops and many global variables which remained
lives during all the program and are referenced inside loops, nested or not. While the
allocator based in graph coloring generates a lot of spills, the allocator based in live range
growth does not generate instructions that access the memory in these cases. This happens
because of the fact that the spill decisions of the graph coloring are estimated, we do not
know for sure what will happen after these spills, even because there are no flow control
analysis in this method. Therefore, the method based in live range growth, besides doing
flow control analysis, knows exactly what will happen if two live ranges is joined, so their
spill decisions are more realistic, they are based in real measurements.

We also concluded that the Method Based in Live Range Growth is more efficient
than the Method of George and Appel in the cases explained above. There is, however, a
relation effectiveness versus cost between these two methods.

Referências
[1] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University,

Houston, Texas, 1992.

[2] David Callahan and Brian Koblenz. Register allocation by hierarchical tiling. Proceedings
of the ACM SIGPLAN91, 1991.

[3] G. J. Chaitin. Register allocation and spilling via graph coloring. IBM Research, 1982.

[4] Fred C. Chow and John L. Hennessy. Register allocation by priority-based coloring.
Proceedings of the ACM SIGPLAN84, 1984.

[5] Marcelo Silva Cintra. Alocação global de registradores de endereçamento usando cober-
tura do grafo de indexação e uma variação da forma ssa. Master’s thesis, Universi-
dade Estadual de Campinas, 2000.

[6] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Denneth Zadeck.
An efficient method of computing static single assignment form. Proceedings of the
ACM SIGPLAN89, 1989.

[7] Lal George and Andrew W. Appel. Iterated register coalescing. Proceedings of the ACM
TOPLAS96, 1996.

[8] Rajiv Gupta, Mary Lou Soffa, and Tim Steele. Register allocation via clique separators.
PLDI89, 1989.

[9] Glenn Holloway and Michael D. Smith. Machine suif, 2000.
http://www.eecs.harvard.edu/hube/research/machsuif.html.

[10] Kathleen Knobe and F. Kenneth Zadeck. Register allocation using control trees. Technical
report, Dept. of Comp. Sci., Brown Univ., Providente, RI, 1992.

[11] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

[12] Guilherme Lima Ottoni. Alocação global de registradores de endereçamento para re-
ferências a vetores em dsps. Master’s thesis, Universidade Estadual de Campinas,
2002.

[13] Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and speed in linear-scan
register allocation. Proceedings of the ACM SIGPLAN98, 1998.

