
The MIR Architecture: An Infrastructure for Implementing
Compilers for Concurrent Abstract State Machine Languages

Kristian Magnani 1 , Mariza A. S. Bigonha 1 , Roberto S. Bigonha 1 , Vladimir O. di Iorio 2

1Laboratório de Linguagens de Programac¸ão - Departamento de Ciˆencia da Computac¸ão
Universidade Federal de Minas Gerais

2Departamento de Inform´atica
Universidade Federal de Vic¸osa

kristian@ufmg.br, vladimir@dpi.ufv.br, {mariza, bigonha}@dcc.ufmg.br
Abstract. The MIR Architecture is is a infrastructure designed to serve as basis
for abstract state machine (ASM) compilers. It provides concurrent execution
capabilities, which are usefull to implement concurrent algorithms. This paper
presents an overview of the MIR architecture, its approach for concurrency and
the main features of its implementation.

1. Introduction

This paper describes a new model for specifying concurrent systems based on ASM and
proposes an infrastructure, called MIR, to implement concurrent ASM compilers. We
begin by reviewing the basic concepts relative to the ASM model, and then we present
the adopted approach for concurrency.

1.1. The Abstract State Machine Model

Abstract State Machines (ASM) is a formal semantic method introduced by Yuri
Gurevich in order to provide operational semantic for algorithms ([Gurevich, 1995],
[Gurevich, 1991]). ASMs are abstract machines whose states are algebraic structures.
These algebraic structures can be viewed as abstract memories. The arguments of the
functions in the algebra are the locations of the memories, whereas the values of the func-
tions are their contents [B¨orger and St¨ark, 2003].

Vocabulary and states A vocabulary or signature Σ is a finite collection of function
names, each with a fixed arity. Astate U for Σ is a nonempty set called thesuperuniverse,
denoted by[U], together with interpretations of the function names ofΣ. A basic function
with arity r is a [U]r → [U] function. Whenr = 0, a function is calleddistinct element.
The superuniverse always contains the distinct elementstrue, false and undef, defined
as logical constants. The elementundef is used for representing partial functions, for
example,f(a) = undef means that functionf is undefined for tuplea.

Locations and Update Sets A location of U is a pair(f, (a1, . . . , an)) wheref is a
function name anda1, . . . , an are elements of[U]. An update for U is a pair(l, v), where
l is a location andv is an element of[U]. An update set is a set of updates. Anupdate
set U is consistent if, for any locationl and elementsa, b, it is true that if(l, a) ∈ U and
(l, b) ∈ U thena = b.

The result offiring a consistent update setU in a stateU is a new stateU + U
where, for every locationl:

(U + U)(l) =

{
a if (l, a) ∈ U ;
U(l) if there is noa such that(l, a) ∈ U.

Transition Rules A transition rule is very similar to a program written in an imperative
language, although some important differences can be observed. For instance, there is
no iteration command. This absence is justified by the intrinsic cyclic execution of an
ASM. Given aninitial state, the transition rule is applied to it, leading to a new state, over
which the transition rule is applied again. This process repeats over and over, until no
modifications are observed in the state. Although the vocabulary stays unchanged along
the execution, its interpretation is modified by the transition rule, from state to state.

The execution of ASM transition rules produces update sets. The update set pro-
duced by the execution of a transition ruleR in a stateU is denoted by[[R]]U . Basic rules
areupdate rule, block constructor andconditional constructor.

An update rule is an expressionf(t) := t0, wheref is the name of a function,t
is a tuple of terms whose length equals the arity off andt0 is another term. Terms have
no free variables and are recursively built using names of distinct elements of[U] and the
application of function names to other terms. The result of the execution of an update rule
is

[[f(t) := t0]]
U

= {((f, t
U
), tU0)}

i.e, an update set with a single update, built with the evaluation of the terms involved in
the stateU .

A conditional constructor is an expression with the following format:

if g0 then R0 elseif g1 then R1 . . . elseif gk then Rk endif

The semantics is: the ruleRi, 0 ≤ i ≤ k, will be executed if the boolean termsg0, ..., gi−1

evaluate tofalse andgi evaluates totrue, in a stateU .

A block constructor is a set of rulesR0, R1, . . . , Rk. The result of the execution
of a block rule is:

[[R0, R1, . . . , Rk]]
U =

k⋃
i=0

[[Ri]]
U

Programs and Runs A program is a transition rule. Arun is a sequence of states. Each
state is generated by firing an update set in the previous state. IfS0 is the initial state,
then

S0
U0⇒ S1

U1⇒ S2,
U2⇒ · · · , whereSi+1 = Si + Ui, i = 0, 1, . . .

1.2. Concurrent Abstract State Machines

In a sequential ASM, update sets are generated by the execution of a single transition
rule. In adistributed ASM, several agents may be running different programs. Accord-
ing to Zambonelli ([Zambonelli et al., 2003]), anagent is a software entity that exhibits
autonomy, situatedness andproactivity. Agents interact between themselves through co-
operation, coordination or negotiation. This kind of interaction is calledsociality.

The program associated with an agentA is denoted byP (A). An agent is said to
be active if it is executing its transition rule.

In adistributed run S0, S1, . . ., asubset of the active agents in each stepi is chosen
to contribute to the update setUi. We will call choice(i) this subset of active agents, in
a similar way to the one adopted in [Sch¨onfeld, 1998]. Ifchoice(i) = {A1, A2, . . . , Ak}
then the update setUi is defined as:

Ui = [[P (A1)]]
U1 ∪ [[P (A2)]]

U2 ∪ . . . ∪ [[P (Ak)]]
Uk

At the stepi of a run,Ui is the union of the update sets produced by the execution of the
programs associated with agentsA1, A2, . . . , Ak, in statesU 1,U2, . . . ,Uk, respectively.
For j = 1, 2, . . . , k, each stateU j is equivalent to a stateSq of the run, with the following
restrictions:

1. q ≤ i, i.e.,U j is one of the previous states of the run.
2. j �∈ choice(r) for all r ∈ {q + 1, . . . , i− 1}, i.e., if an agent is chosen in a step of

the run, it must “update” its “knowledge” about the global state before it is chosen
again in a future step of the same run.

Important points of these definitions are:

• Only asubset of the active agents is used to produce a new global state, implying
non determinism.

• The contributions of different agents for the update set may be based on different
states, which means that agents have different “knowledge” about the global state.

Our intention is to model systems with agents with different speed of execution. When
the update set of an active agent is processed, it means that the agent has had enough time
to execute the associated transition rule. In a distributed system, the delay may be also
associated with the time for information transmission.

1.3. Related Work

Del Castillo introduces in [Del Castillo et al., 1996] the concept of anevolving al-
gebra abstract machine (EAM) as a platform for developing ASM tools and
[Del Castillo, 2000] presents an inplementation called ASM-Workbench. The ASM-
Workbench ([Del Castillo, 1998], [Del Castillo, 2000]) introduces a system that is able
to transform an ASM specification to a C++ program. The source language is called
ASM-SL, and it is a typed ASM specification language based in functional programming
language ML. The ASM-Workbench is an important implementation, but optimization
was not one of its features. It is also given a formal definition of theEAM ground model
in terms of a universal ASM. [Diesen, 1995] (apud [Del Castillo et al., 1996]) performs
a description of a functional interpreter for ASM, with applications for functional pro-
gramming languages. Some extensions to the language of ASM are proposed, as well.
[Kappel, 1993] (apud [Del Castillo et al., 1996]) presents a Prolog interpreter for ASM
specifications that are made in a particular language.

The AsmGofer is an ASM programming environment presented by Schmidt
([Schmidt, 2001], [Schmidt, 1999]), which extends the Gofer functional language. It pro-
vides an interpreter, and therefore it is not so fast as a compiled specification would be.
On the other hand, it is usefull in order to build prototypes.

Anlauff presents in [Anlauff, 2000] the XASM, an ASM language, together with
a compiler for it. This compiler makes use of an optimization, namely, the efficient rep-
resentation of dynamic functions using hash tables. A formal definition of the laguage
is given by Kutter in [Kutter, 2002]. Although this is a very relevant issue in the ASM
model, no futher optimizations are provided, nor even an environment where other opti-
mizations could be easily developed.

Figure 1: The Context of MIR.

Finally, Visser have developed the EvADE compiler ([Visser, 1996]), which im-
plements an optimization: the common sub-expression elimination. However, this is the
only optimization, and it does not belong exclusively to the ASM model.

Most of these systems are concerned with only a few optimizations, and none of
them addresses the concurrency issue or even mention an intermediate representation with
features for disttributed ASM. The infrastructure presented by this paper aims to properly
address the concurrency issue, using an intermediate representation language, and it is
also binded with an optimization environment, in order to produce efficient code.The
infrastructure proposed and how these results are achieved are explained in the remaining
of this text, which is organized as follows: Section 2 presents the MIR Architecture.
Section 3 addresses some important features of the MIR implementation. The context of
optimization of MIR is introduced in Section 4. Finally, Section 5 concludes the paper.

2. The MIR Architecture

The idea of developing a general infrastructure for ASM compilers arised from the pur-
pose of doing some experiences with languages oriented by the ASM model. It would
be helpful to have a general infrastructure available, which could be the basis of com-
pilers aiming at different ASM oriented languages. The MIR Architecture was designed
in order to answer this need. Moreover, it provides the concurrent execution capability,
which is usefull to implement concurrent algorithms. MIR stands for Mach˘ına Interme-
diate Representation, because originally it was used as an intermediate representation for
the Mach˘ına language. For details of its contructions see [Oliveira et al., 2004a]. The
Machı̆na language and a compiler for it is presented by Tirelo in [Tirelo, 2000]. MIR
project has grown up and nowadays it consists of a entire separated project, which aims
its own purpose: to serve as the basis of compilers for ASM oriented laguages. A new ver-
sion of the Mach˘ına front-end compiler is under development by Lobato ([Lobato, 2005]),
and it will make use of the MIR Infrastructure.

Figure 1 shows MIR usage context. The main feature of the MIR Infrastructure is
to produce ANSI C code from a MIR specification and thus allowing rapid development
for ASM compilers.

Another remark worthy mentioning about MIR is that it is designed to beopti-
mized, as shortly introduced in Section 4. These optimizations do not overlap with those
who are normally performed by the C compiler. Rather, they belong exclusively to the
ASM model.

Before we proceed with the presentation of MIR Architecture itself, it is neces-
sary to make some preliminary remarks.MIR Infrastructure means all the classes and
software components that compose the infrastructure presented in this paper and its im-
plementation. The expressionMIR Architecture refers to the general structure of an ASM
specification using the MIR Infrastructure . It can be viewed as the “language” of the

Figure 2: The MIR Architecture.

Figure 3: A Module of MIR.

infrastructure. Finally, if the MIR Architecture is a language, aMIR Specification is a
“program” written in that language.

2.1. Agents, Modules and Other Elements

A MIR specification is basically composed by a set ofagents, each of them of a given
type, and acommon Global Name Space, which is accessible by each agent belonging to
that MIR specification. This picture is depicted in Figure 2. The Global Name Space is
defined as tables forstatic, derived, external anddynamic functions, and for theactions,
as well. Static functions are those which can not have values in points of their domain
changed by update rules. These functions are defined by parameterized expressions, and
remain unchanged during the whole execution of the MIR architecture. It is not allowed
to call a dynamic function inside its definition, as well. A derived function is similar to
a static function, except by that this last restriction is banished. By contrast, dynamic
functions can have values in points of their domain changed or even defined by update
rules. External functions are functions defined outside the MIR architecture definition,
and only its signature and return type are known inside it. They are usefull to model
interaction with the environment. Finally, actions are the abstraction of agents. They
allow the implementation of the notion ofsubmachine ([Tirelo, 2000]), as pointed out
by Tirelo. The static and derived functions are grouped together, as their definitions are
closely related.

The type of an agent is amodule. Figure 3 presents the structure of a module in
MIR. A module contains atransition rule augmented with some support structures: the
update lists and theLocal Name Space. Like the global one, the Local Name Space is the
tables for static, derived, external and dynamic function, and for the actions, as well.

The transition rule is a tree of rules. The nodes of such a Rule Tree are given
by the basic rules and by the rules constructors of the MIR Architecture. ARule Tree is
recursively defined through the grammar presented in Figure 4. Basic rules areupdate
rule, create rule, destroy rule, stop rule, action call rule andλ rule. Basic rules appears

R ::= I := E
| if E R1 R2

| forall (I1 : E1, . . . ,In : En) R
| choose (I1 : E1, . . . ,In : En) R
| create I : esclarecer...
| destroy I
| stop
| let (I1 : E1, . . . ,In : En) R
| case (k1 : R1, . . . ,kn : Rn, Rotherwise)
| with E (I1 : T1 : R1, . . . ,In : Tn : Rn, Rotherwise)
| actioncall I(E1, . . . ,En)
| λ
| R1, R2

Figure 4: The recursive definition of a rule.

T ::= bool | char | int | real | string
| enum
| (T1,. . . ,Tn)
| set T
| list T
| T1 ∪ . . .∪ Tn

Figure 5: The recursive definition of a type.

always in the leaves of a rule tree. On the other side, rule constructors are used in order to
build rules from other ones. Rule constructors of MIR Architecture areconditional rule,
forall rule,choose rule, let rule,case rule,with rule andblock rule.

The static and derived functions table is a list whose entries have three compo-
nents:Function Name, Function Type andFunction Definition, as depicted in Figure 6.
The function type is a tree of types, whose root is possibly a functional type node, except
when the function is nullary. AType Tree is a tree whose nodes are either basic types
or type constructors. The definition of possible type trees are given by the grammar of
Figure 5. High order functions are not allowed. The Function Definition is a tree, as well,
and it can be recursively constructed following the productions of the grammar presented
in Figure 10.

The entries of the dynamic functions table have also three components. The dif-
ference between the static and derived functions table is that the third component, the
Function Definition, leads to a dynamic mapping between points in the function domain
and their values. The dynamic functions table is illustrated at Figure 7.

Figure 6: The static and derived functions table.

Figure 7: The dynamic functions table.

Figure 8: The external functions table.

As the external functions are defined outside the MIR architecture definition, the
entries of the external functions table have just two components: the Function Name and
the Function Type. External functions are written in C, and the communication protocol
and the parameter mapping policy are defined in Section 2.3. The external functions table
is depicted in Figure 8.

The action table represents the table of agent abstractions, and its entries are pairs
whose first component is the Action Name and whose second component is the Rule Tree.
This table is presented in Figure 9.

2.2. The MIR Approach for Concurrency

In the MIR Architecture, the scope of a function or action may be declared eitherlocally
or globally. Local declaration means that such an element belongs to a specific module,
and therefore this element is accessible just inside that module. Conversely, a global
declared function or action can be accessed by each agent at execution in the context of a

Figure 9: The action table.

E ::= literal
| unop E
| E1 binop E2

| funcall I(E1, . . . ,En)
| agregate esclarecer
| if E E1 E2

| let (I1 : E1, . . . ,In : En) E
| case (k1 : E1, . . . ,kn : En, Eotherwise)
| with E (I1 : T1 : E1, . . . ,In : Tn : En, Eotherwise)
| self

Figure 10: The recursive definition of an expression.

MIR specification. Global elements are declared at the top-most level, namely, the MIR
specification outside the modules. Name conflicts between elements of both scopes are
not allowed.

Every agent in a MIR specification is executed concurrently, and each of them has
local copies of the global dynamic functions it makes use of. The local copies are used by
the transition rule of the agent, and occasionally a synchronization window opens and the
local copies and their global correspondents are updated. As argued in [Lamport, 1978],
in a concurrent system, it is sometimes impossible to say which one of two events ocurred
first, and therefore the relation “happened before” is only a partial ordering of the events
of the system. This is particulary true for the event of synchronization in the MIR ap-
proach for concurrency, since the synchronization is made by each agent at the end of the
execution of its transition rule, and it is not possible to assure that every agent will be
going to finish it at the same time.

The execution of an agent transition rule gives rise to three types of updates,
namely: thelocal updates, theimport updates and theexport updates. These updates
are maintened in three corresponding groups inside the MIR module, and each group is
employed in the proper situation.

The local updates are related to the update rules that act over local defined dynamic
functions. They are fired at the end of every execution of the transition rule. The entries
of the local update list are cleaned up after they are fired, and then the new execution of
the transition rule will fill in it again. This gives the local update list a transient, dynamic
feature. The import and export updates, however, are associated with globally defined
dynamic functions.

The import updates are fired every time the local copy of a global dynamic func-
tion needs to be refreshed. This happens at two occasions:

1. the import is done when the execution of an agent starts;
2. it is also done in the every moment a synchronization of the agent with the global

name space has to happen.

The entries of the import update list of a module are all those updates of local
functions with the values of global dynamic functions used asright hand side values by
the transition rule of the module. This list is permanent, as it can be construted from
the analysis of the transition rule. The export updates take effect when the local copy
of a global defined dynamic function is to be uploaded into its global counterpart, hence
its local value becoming available to other agents which imports that dynamic function.
The entries of the export update list of a module are all those updates of global dynamic
functions used asleft hand side values by the transition rule of the module.

MIR Type Correspondent C Type
bool short
char char
int int

real double
string char*

(T1,. . . ,Tn) struct
list of T T[]

Table 1: Type mapping in the MIR Native Interface.

According to Lamport ([Lamport, 1978]), a distributed system may be defined as
a collection of processes which are somehow separated, and they communicate with each
other by exchanging messages. If inside a system the message transmission delay is not
negligible comparing to the time between events in a single proccess, then such a system
can be considered distributed. The concurrent MIR approach follows the above definition.
More specifically, each agent performs a synchronization at the end of each iteration of its
transition rule, and it is at this very moment that the agent updates its knowledge about the
external world. Between two consecutive synchronizations, the agent gets its transition
rule executed, which takes an unbounded period of time. This time differs from each
agent to agent since it depends upon several factors, like the size of the rule, the parts
of this rule that are executed in fact, processor speed and other hardware resources, and
so on. Meanwhile, the external environment can be modified by other agents, but these
changes are perceived by an arbitrary agent only at its next synchronization, and this time
is not negligible. As it occurs with real life distributed systems, the perception of reality
may differ depending on the moment of observation.

2.3. MIR Native Interface

MIR Architecture allows the existence ofexternal functions, also known asoracle func-
tions, to be written in ANSI C code. The external functions are present in the ASM model
since the beginning and they provide a way to specify interaction with the environment.
As argumented by Gurevich in [Gurevich, 1995], an oracle function does not need to be
consistent between different execution steps of a transition rule. But the oracle should be
consistent at different uses in the same execution step of the transition rule. This effect
can be achieved by caching the accesses of the external functions at the same iteration,
and that is done in MIR Infrastructure. In order to get the external functions written in C
to be called from the MIR specification properly, it is required that they obey some con-
ventions. These conventions are calledMIR Native Interface, or MNI, for short, and they
determine a common protocol upon which both the MIR specification and the C external
function can rely.

In the external functions written in C it is not allowed the void return type, as they
are indeed not procedures, but functions, and so some value is expected from them. On
the other side, the function can be a nullary one. The mapping from the types of MIR
and the correspondent C types are presented in Table 1. They are the only types allowed
both in the signature and as return type of the C functions used as external ones. Due to
implementation restrictions, the type of a parameter must be a basic type, a tuple, or a list
of basic types.

Figure 11: The features of the MIR implementation.

3. Highlights of MIR Implementation

The architecture proposed in this paper is implemented as C++ classes and they are made
available as a dynamic linkage library. This implementation attempts to address some
needs, as detailed in the following paragraphs and in Figure 11.Visitors are provided in
the current implementation in order to improve it with the desired capabilities. According
to Gamma et al. ([Gamma et al., 1995]), a visitor is a design pattern that represents an
operation to be performed on the elements of an object structure without changing the
classes of the elements upon which it operates.

Serialization MIR implementation allows its serialization through XML files, accord-
ing to a specific format determined by a DTD. This serialization may happen in both
ways: it is possible to get a MIR object from a serialization file, as well as a MIR object
can be serialized in such a file. The main advantages of this represention are: XML files
are just plain text files, so they can be edited using many alternatives according to the
needs of the programmer; XML files are easily readable not just by humans, but also by
machines, as it is relatively simple to build parsers for them, and even some libraries are
available in order to automate this work; and finally, an XML representation is quite easy
to produce from the hierarchical structure of the MIR architecture.

Compilation to ANSI C Code MIR implementation provides a visitor in order to ob-
tain C code that reflects the architecture under definition. The generated code matches the
ANSI C standard, so it is possible to compile it into different machines and different op-
erating systems. Additionally, the adoption of C as target language allows the generation
of efficient, fast code, which is essential in many scenarios. The existence of several C
compilers, some of them available without charge, frees the user of the MIR Infrastructure
of being dependent upon specific compilers and vendors.

Direct Execution MIR implementation allows its direct execution. In other words, the
MIR objects can be executed in a interpreted fashion, without the need of being converted
to C code and then compiled. This is usefull, for instance, in building step-by-step sym-
bolic debbugers. The visitor that provides this feature can be viewed as a virtual machine
for executing MIR specifications, a concept used nowadays and that offers some advan-
tages, as providing an abstraction layers over different machines and operating systems.

Figure 12: The optimization proccess of a MIR specification by using the
k�ar framework.

Visualization It is also possible to obtain a visual representation of a MIR specifi-
cation through the generation of its description in the DOT language. The DOT lan-
guage is a language designed for description of graph-like structures, and it is used in
GraphViz software. This program and the definition of the DOT language can be found
at [GraphViz, 2005].

4. MIR and Optmization

It is not enough to a modern compiler to get executable code; this code should be also
optimized. For the target language of the MIR Infrastructure, namely, C code, there are
several compilers that address this request with efficiency. However, there are some op-
timization possibilities that belong exclusively to the ASM model, and therefore they are
not caught by the existing C compilers, as argumented in [Oliveira et al., 2004b] and in
[Tirelo and Bigonha, 2000]. These possibilities are the ones we are interested in.

In order to address this special situation, it has been under development the
k�ar framework ([Magnani, 2005]). This framework provides the proper environment
to optimize MIR specifications, as depicted in Figure 12. The optimizations are easily
added or removed as plugins, which facilitates the development of new optimizations.
Results of this tool are expected soon.

5. Conclusions

After a brief review of the ASM model and the explanation of the concurrent model
adopted, this paper has presented the MIR Architecture, which consists in a infrastructure
for developing concurrent ASM oriented languages. The main motivation of the MIR is
the desire of doing some experiences with the proposal of languages oriented by ASM
model. We believe that this desire can be shared with other researchers all over the world,
and therefore MIR Architecture can contribute providing the basis for concurrent abstract
state machine compilers. Its current implementation was presented, and its main fea-
tures were pointed out. Thek�ar environment, under development, will complement the
environment with the optimization capability.

References

Anlauff, M. (2000). XASM – An Extensible, Component-Based Abstract State Machines
Language. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, editor,Ab-
stract State Machines: Theory and Applications, volume 1912 ofLNCS, pages 69–90.
Springer-Verlag.

Börger, E. and St¨ark, R. (2003). Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag.

Del Castillo, G. (1998). The ASM Workbench: an Open and Extensible Tool Environment
for Abstract State Machine. In28th Annual Conference of the German Society of
Computer Science.

Del Castillo, G. (2000).The ASM Workbench: A Tool Environment for Computer-Aided
Analysis and Validation of Abstract State Machine Models. PhD thesis, Universit¨at
Paderborn.

Del Castillo, G., Durdanovi´c, I., and Glässer, U. (1996). An Evolving Algebra Abstract
Machine. In Büning, H. K., editor, Proceedings of the Annual Conference of the
European Association for Computer Science Logic (CSL’95), volume 1092 ofLNCS,
pages 191–214. Springer.

Diesen, D. (1995).Specifying Algorithms Using Evolving Algebra. Implementation of
Functional Programming Languages. Dr. scient. degree thesis, Dept. of Informatics,
University of Oslo, Norway.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-Wesley.

GraphViz (2005). The GraphViz Homepage: www.graphviz.org. Consulted in February
2005.

Gurevich, Y. (1991). Evolving algebras: An attempt to discover semantics.

Gurevich, Y. (1995). Evolving Algebras 1993: Lipari Guide. In B¨orger, E., editor,Speci-
fication and Validation Methods, pages 9–36. Oxford University Press.

Kappel, A. M. (1993). Executable Specifications Based on Dynamic Algebras. In
Voronkov, A., editor,Logic Programming and Automated Reasoning, volume 698 of
Lecture Notes in Artificial Intelligence, pages 229–240. Springer.

Kutter, P. (2002). The Formal Definition of Anlauff’s eXtensible Abstract State Machines.
TIK-Report 136, Swiss Federal Institute of Technology (ETH) Zurich.

Lamport, L. (1978). Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565.

Lobato, M. C. C. (2005). Proposta de Dissertac¸ão: Um Arcabouc¸o para Compilac¸ão de
Linguagens de Especificac¸ão ASM.

Magnani, K. (2005). Proposta de Dissertac¸ão: k�ar - Um Arcabouc¸o para Otimizac¸ões
em Máquinas de Estado Abstratas.

Oliveira, F., Magnani, K., Bigonha, M., and Bigonha, R. (2004a). MIR: Mach˘ına Inter-
mediate Representation. Technical Report RT001/04, Laborat´orio de Linguagens de
Programac¸ão - Departamento de Ciˆencia da Computac¸ão - Universidade Federal de
Minas Gerais.

Oliveira, F. F., Bigonha, R. S., and Bigonha, M. A. S. (2004b). Otimizac¸ão de Código
em Ambiente de Semˆantica Formal Exeut´avel Baseado em ASM.Proceedings of 8th
Brazilian Symposium on Programming Languages, pages 172–185.

Schmidt, J. (1999). Executing ASm Specifications with AsmGofer.

Schmidt, J. (2001). Introduction to AsmGofer.

Schönfeld, W. (1998). Interacting Abstract State Machines. InProceedings of the 28th
Annual Conference of the German Society of Computer Science. Technical Report,
Magdeburg University.

Tirelo, F. (2000). Uma ferramenta para execuc¸ão de um sistema dinˆamico discreto
baseado eḿAlgebras evolutivas. Master’s thesis, Universidade Federal de Minas
Gerais.

Tirelo, F. and Bigonha, R. S. (2000). T´ecnicas de Otimizac¸ão de Programas Baseados em
Máquinas de Estado Abstratas.Proceedings of 4th Brazilian Symposium on Program-
ming Languages, pages 144–157.

Visser, J. (1996). Evolving algebras. Master’s thesis, Faculty of Technical Mathematics
and Informatics, Delft University of Technology, Zuidplantsoen 4, 2628 BZ Delft, The
Netherlands.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003). Developing multiagent
systems: The gaia methodology.ACM Trans. Softw. Eng. Methodol., 12(3):317–370.

