
A Powerful LR��� Error Recovery Mechanism in the Compiler
Implementation System Environment

Mariza A� S� Bigonha�

Roberto S� Bigonha �

Abstract

This paper presents a scheme for error recovery in the context of LR��� parsers based on the
method proposed by Burke�Fisher ���� The purpose of this method is the diagnosis of all syn�
tactic errors found during the syntactic analysis without presenting misleading messages� The
recovery process automatically issues error messages with the possibility of substitution	 deletion
or insertion of terminal or nonterminal symbols in the parser stack or in the input stream� The
error recovery is conducted before and independently of any semantic analysis of the program�
Nevertheless	 the approach does not perclude the use of semantic information in the process of
error recovery� This automatic syntactic error recovery strategy is integrated into the parser
generator system developed at UFMG �SIC ��
	 ��	 ����� It is entirely transparent to the user
and it produces good quality results without increasing signi�cantly the size of the compiler�
This method does not introduce any constraints on the use of default reductions�

Key Words

Compilers	 Compiler Generators	 LR Parser	 Syntactic Error Recovery�

�DSc �PUC�RJ � ������ Department of Computer Science	 Federal University of Minas Gerais	 Belo Horizonte
� MG � Brazil	 E�mail
mariza�dcc�ufmg�br

�PhD� �UCLA�USA ������ Department of Computer Science	 Federal University of Minas Gerais	 Belo Hori�
zonte � MG � Brazil	 E�mail
 bigonha�dcc�ufmg�br�



The Powerful LR��� Error Recovery Mechanism in the
Compiler Implementation System Environment

Abstract

This paper presents a scheme for error recovery in the context of LR��� parsers based on the
method proposed by Burke�Fisher ���� The purpose of this method is the diagnosis of all syn�
tactic errors found during the syntactic analysis without presenting misleading messages� The
recovery process automatically issues error messages with the possibility of substitution	 deletion
or insertion of terminal or nonterminal symbols in the parser stack or in the input stream� The
error recovery is conducted before and independently of any semantic analysis of the program�
Nevertheless	 the approach does not perclude the use of semantic information in the process of
error recovery� This automatic syntactic error recovery strategy is integrated into the parser
generator system developed at UFMG �SIC ��
	 ��	 ����� It is entirely transparent to the user
and it produces good quality results without increasing signi�cantly the size of the compiler�
This method does not introduce any constraints on the use of default reductions�

Key Words

Compilers	 Compiler Generators	 LR Parser	 Syntactic Error Recovery�



� Introduction

Before the advent of interactive systems for development of programs	 the availability of some
syntactic error recovery method in commercial compilers was essential� This occurred because
it is unacceptable for a compiler running in batch mode to abort the compilation process in the
presence of the �rst syntactic error� With the increasing popularity of interactive systems	 it
becomes reasonable to have a compiler without syntactic error recovery mechanism� Compilation
can then be interrupted after the detection of the �rst error	 and the user provides the necessary
corrections and then reinitiates the compilation� If the compiler is su
ciently fast	 the cost of
recompilation is perfectly acceptable� However	 this approach presents as a drawback the fact
that the compilation can not continue even when the user thus desires� In addition	 the absence
of mechanism of syntactic error recovery in the compiler a�ects negatively the quality of its
error messages� In summary	 even though there exist applications where it is possible to have
compilers without syntactic error recovery	 the availability of this mechanism is certainly very
helpful	 because at least it makes possible to improve the quality of the messages issued and
makes the operations of these systems more �exible�

With the objective of developping an automatic syntactic error recovery mechanism which is at
the same time e
cient	 practical and applicable within the general context of syntactic analysis
based in the viable pre�x property ���	 we have studied several approaches ��	 ��	 ��	 ��	 ��	 
�	

�	 

	 
�	 
�	 
�	 
�	 
��� From the study of these methods	 we decided	 as a starting point	 to
use Burke � Fisher�s method	 which was adapted in order to �t in a LR��� syntactic analysis
based on table compression ���	 ���

� General Description

Burke�Fisher�s method supposes a context where the LR parser maintains an input bu�er and
two stacks	 called PS and PE� The bu�er may have part or all of the input stream of terminal
symbols not yet processed	 and possibly stack symbols� The PE stack is used as a scratch store�
The PS stack is used to store parser states	 such that the current state is always on its top�

The error recovery routine is activated when	 given the current state and the next input terminal
symbol	 there is no legal syntactic action to be done� In this case	 the terminal symbol or current
symbol is the one that caused the error detection� The heart of this approach is to determine
the nature of the error� A simple error is one which can be corrected by changing only one
symbol of the input stream� This modi�cation of the input may be an insertion	 a deletion
of a symbol or a substitution of a terminal symbol by another one� This type of correction is
called a simple correction� If the error is not simple	 its correction may involve the deletion
or insertion of a small piece of program� The program piece removed may precede	 follow or
be around the symbol �agged as error� The symbol inserted consist of a sequence of terminal
symbols that are needed to close one or more scopes� This kind of recovery is called scope
recovery� Scope means nested constructions	 such as procedures	 blocks	 control structures and
parenthesized expressions� Scopes are delimited by opening and closing symbols	 which are
symbols that begin and �nish	 respectively	 syntactic construct� For instance	 the pairs ���� 	
��� �	 ��begin� 	 �end� �	 ��if� 	 �end if� � are typical scope delimiters�

Error recovery of Burke � Fisher is composed of three phases� The �rst one treats simple
corrections� The second one treats correction made by scope recovery� In the third phase	 the



correction is made by removing a piece of program code in conjunction with insertion	 deletion
or substitution of a terminal symbol� Before beginning each phase	 a copy of the contents of PS
is saved into the scratch stack PE�

��� First Phase of Error Recovery

The process of trying to correct an error in a given point of the program is called a trial� The
corrections or strategies tested in one trial can be insertion of a symbol	 deletion of a symbol
and replacement of a symbol by another� On insertion	 a terminal or nonterminal symbol may
be placed before the current one� On substitution	 only the current terminal symbol may be
removed�

Initially	 the error recovery mechanism tries to insert	 delete or replace only a single symbol�
However	 if there is no possible correction	 symbols are popped of the PE stack and put back in
the input bu�er� For each one of these symbols the recovery mechanism tries the three strategies
described above� This process continues until a correction is found or an scope opening symbol
appears in the PE stack top� In this case	 the scope opening symbol found marks the end of a
syntactic construct that has been detected as syntactically wrong� As the text to be corrected
is inside this piece of code	 there is no need and nor it is desirable to pop more elements o� the
stack�

The set of symbols which will be used as candidates for insertion or substitution are those that
can be read from the current parser con�guration	 i�e�	 the lookahead symbols of the current
state� The approach used to determine whether a correction is successful is based on the distance
that the parser advances in the input stream� In this implementation the maximum distance
analyzed is given by the constant MAXCHECK�

While testing a set of candidates for insertion	 all candidates that allow the parser to advance
up to the maximum distance MAXCHECK are considered valid and reported� However	 only one
is selected� It is possible that no candidate makes the parser advance a MAXCHECK distance� In
this case	 the candidate chosen	 if there is one	 is that which makes the parser to advance over
more symbols	 given that the parser also advances at least the distance MINCHECK�

The minimum and maximum distances are de�ned according to the context in which the error
occurs� The minimum distance can not be too small and must be such that the parser is
guaranteed to advance through the input stream after the recovery� Since errors can appear
near each other	 the maximum distance must not be too big� The values � for MINCHECK and 
�
for MAXCHECK have produced good results ��	 �
��

����� Strategy �� Insertion

Suppose that the programmer made a mistake by omitting a symbol� To test this hypothesis
the following is done� each lookahead symbol in the current con�guration of the LR��� parser
is inserted in the bu�er just before the current input symbol and a trial to advance in the
syntactic analysis is attempted� If the distance advanced with the insertion of this symbol is
greater than or equal to the distance recorded for other lookahead symbols	 then it is kept as the
best candidate for correction so far� As an example	 consider the toy language whose grammar
is described in Section �� The messages produced by the error recovery algorithm is shown in
Figure ��



������������������������������������������������������������������

� P� procedure�i � integer�

� a� boolean

� begin

� i �	 
 �

� end


�� Q� procedure�h� integer�

�� j � integer


�� i � integer


�� R � procedure�i � integer�

����������������






 Symbol �id� inserted before symbol �
� on line �






 Other possible corrections�






 Insert nonterminal symbol �cte�






 Delete terminal symbol �
�






 Replace �
� with terminal symbol ���

Figure �

��������������������������������������������������������������������

����� Strategy �� Symbol Deletion

In this strategy	 suppose that the programmer has made a mistake by writing an extra symbol�
To test this hypothesis the following strategy is used� �rstly	 a test is done to check if the current
symbol is a terminal� Only terminal symbols may be removed from the input stream� In the
next step	 starting with the symbol right after the current one	 a trial to advance in the input
stream is performed� If	 when advancing at least a minimal distance MINCHECK is achieved	
the symbol is considered as a candidate for correction� Figure 
 illustrates the error messages
produced for the syntax analysis of a program piece�

��������������������������������������������������������������������

�� begin

�� i �	 j


�� if h 	 � then P�j�

�� else if h 	 � then then P�i�

�� else R�k�

�� end

�� begin

�� i �	 �


�� j �	 �


�� k �	 �


�� Q�k�


�������������������������������






 Symbol �then� deleted just before symbol �id� on line ��

Figure �

��������������������������������������������������������������������

����� Strategy �� Symbol Replacement

In this strategy	 suppose that the user has made a mistake by writing a symbol in the place
of another� To test this hypothesis	 the current symbol is replaced	 in turn	 by each lookahead
symbols	 and they are tested as in the case of insertion� For instance	 the syntactic analyser



of the program in Figure � produces the following error messages corresponding to the error
recovery for this strategy�

��������������������������������������������������������������������

�� Q 	 procedure�h� integer�

�� j � integer


�� i � integer


��

�� R � procedure�i � integer�

�� b � integer

�������






 Symbol �	� replaced by symbol ��� on line ���

Figure �

��������������������������������������������������������������������

��� Second Phase of Error Recovery

The second phase of the error recovery mechanism is activated when the �rst phase is not
successful� This phase implements scope recovery	 i�e�	 forces the closing one or more scope
opening symbols by inserting appropriate sequences of closing symbols� The set of scope opening
symbols and their corresponding scope closing symbols is language dependent and must be
defered for each language�

In this strategy	 suppose that the programmer made a mistake by forgetting one or more scope
closing symbols	 which must now be inserted� The closing of one or more scopes is done in
the following way� in the �rst place	 the set of possible scope closing symbols is determined for
each scope opening symbol in the PE stack� Each one of this closing symbol is a candidate for
correction� The parser rejects a candidate if it cannot advance over it� On the other hand	 if
the parser advances at least a minimum distance	 �MINCHECK�	 the closing symbol can be used
to correct the text� If the parser advances only over the candidate	 then it must recursively
try to close the next scope opening symbol present down in the stack� This process is repeated
until there are no more scope closing symbols to the given opening symbol� For instance	 for the
small piece of program in Figure �	 the error recovery mechanism produces	 for this strategy	
the messages shown�

��������������������������������������������������������������������

�� R� procedure�i � integer�

�� b� integer

�� begin

�� i �	 i � �


�� b �	 �

��

�� begin

��������������






 Symbol �end� inserted just before line ��

to close symbol �begin� on line ��

Figure �

��������������������������������������������������������������������



��� Third Phase of Error Recovery

This phase is activated only if the second one has not been successful� This phase resembles the
�rst one described in Section 
��� The di�erence between them is that now both the elements
from the stack and those from the input bu�er are discarded� Thus	 this phase does not return
poped symbols into the bu�er	 and it removes terminal and nonterminal symbols from the bu�er
in an attempt to recover from the error�

Starting with the terminal symbol that caused the error �the current symbol�	 it is checked
whether the parser is able to recover simply by deleting the PE stack top element in conjunction
with one of the strategies� insertion	 deletion or substitution� If not	 then more PE stack
elements are popped without putting them back in the input stream� This process is repeated
until �nd a scope opening symbol on top of PE top or a correction occurs� As in the �rst phase	
the scope opening symbol serves as a �ag	 stopping the popping process from the left context� It
is important to notice that	 for this phase to be more e
cient	 the parser is allowed to advance
up to the minimal distance MINCHECK��� If no correction is possible with the current symbol	
then it is deleted	 i�e�	 the next symbol in the input bu�er becomes the current symbol and
the stack is reset to the initial con�guration� The process is then repeated as described above�
Figure � illustrates messages issued in this phase of error recovery�

��������������������������������������������������������������������

�� Q 	 procedure�h� integer�

�� j � integer


�� i � integer


��

�� begin �
 comments are not allowed in this language 
�

�� i �	 j


�� if h 	 � then P�j�

�� else if h 	 � then P�i�

�� else P�k�

��������������������������������������������������������������






 Text deleted from line �� column �� until line �� column ��






 Symbol ��� deleted just before symbol �id� on line ��

Figure �

��������������������������������������������������������������������

� The Error Analysis

The process of error recovery requires reading portions of the input stream several times in order
to determine the most appropriate correction� When a syntax error is found	 the parser must
only report the error situation	 activating the error recovery mechanism	 and then resume the
analysis� The semantic routines are never activated during error recovery� In order to have a
more e
cient syntactic analysis during recovery a new parser was created	 whose objective is
to determine the distance achieved in each trial of error correction� This parser is essentially a
syntactic analysis LR��� without the mechanism to defer reductions �see Section �� and with a
method for identifying transaction labels eliminated by default reductions�



��� Candidate Chosen for Correction

It may happen that more than one symbol or more than one strategy would make the recovery to
succeed	 as shown in Section 
��� If the �rst encountered candidate is a candidate for insertion	
deletion or substitution then this strategy is chosen� Other candidates	 if they exist	 are indicated
as other possibilities for error correction� However	 if the �rst candidate is obtained from the
scope recovery strategy	 all scope closing symbols successfully inserted are reported as possible
corrections� In this case	 only one candidate is chosen by the method� It has been observed
that the best order to attempt to correct a syntax error is� �rst insertion	 then deletion and
then substitution ���� When substitution has preference over insertion	 the recovery achieved
is in general not as good� Experience showed that changing the order of the three strategies
reduces the quality of error recovery and messages generated� The possible cause for this is that
the most frequent error is omission of symbols� Nevertheless	 more studies are needed on this
subject in order to support this claim�

��� Insertion and Substitution of Nonterminal Symbols

Insertion and substitution of nonterminal symbols may simplify the recovery� However	 only
some nonterminal symbols should be considered in order not to degrade the quality of the error
messages issued by the compiler� Speci�cally	 only substitution or insertion of nonterminals
authorized by the user are permitted�

� E�ects of Error Recovery on the Parser

Since reductions in the parser stack may be done even in the presence of a syntax error in the
input stream	 and given that default reductions are used by table compactation methods ����	
some problems appear�

�a� How to restore the stack parser to the con�guration after the last �shift	� considering
that reductions may have been done prematurely� In other words	 how to neutralize
the e�ects of these reductions in order to have a more precise error recovery�

�b� How to recover information about transaction labels eliminated from reduction states
in the compacted parse table� The labels of these transactions are necessary on
attempts to recover from a syntactic error�

A solution for problem �a� is to defer reductions	 as done by Burke and Fisher ���� during parsing	
reductions are deferred until the syntactic analyser is able to read the next input symbol� The
technique used to defer reductions will be discussed in detail in Section ����

The solution for problem �b� is to recover the eliminated labels by analyzing the �nite state
automaton corresponding to the canonical collection of LR��� items ��
�� This is possible because
labels of transitions to reductions states ���� are also labels to states transitions that can be
reached after a sequence of default reductions� In other words	 these labels are symbols that
must necessarily be read after the reductions have taken place� Therefore	 to recover eliminated
labels by the introduction of default reductions	 the parser must advance by performing default
reductions until it reaches a read state� The labels of transitions which leave all the states



Sm

PE

Sm

PS

Syntax

Analyser compacted

table

Input

a1 ai an $

STACKS

top1 top

MINTOP

Sm Sm

...

(including the buffer)

Figure �� New LR��� Syntax Analysis

the parser has traversed belong to the set of desired labels� To determine the �rst read state
achieved after default reductions	 it is enough to insert in the input one especial terminal symbol
not belonging to the language and to activate the error analysis� When a syntax error is detected
and the o�ending symbol is exactly that special symbol	 the current state on top of the stack is
the desired state and the states visited are exactly the ones desired�

��� New LR��� Parser

The LR��� parser shown in Figure � incorporates the e�ects of LR��� table compression and
implements the technique of deferring reduction until the next symbol is pushed� The PE stack
is used as a scratch stack� As with the PS stack	 it is used to store the parser states	 so that the
current state is on its top� During syntax analysis the PE stack presents exactly the situation
of the analysis� On the other hand	 the PS stack is updated only when a symbol is pushed into
the stack� It presents the stack con�guration immediately after the last symbol pushed� So	 this
stack does not show always the current situation of the analysis�

When a reduction action is detected	 the production number which de�nes the reduction must
be properly stored	 and the PE stack shows immediately the result of the application of this
reduction� However	 the reduction is not applied to the parser stack	 PS	 and the semantic
routine is not activated either	 i�e�	 it is deferred�

When a shift action is detected	 all reductions stored since the last shift and its respective
semantic actions performed on the parser stack PS must be performed so as to make PS equal
to PE� It is important to remember that all read symbols are pushed simultaneously on both
stacks PE and PS�

When an situation of a syntaxe error is detected	 the parser must go back to the con�guration
that existed at the moment the symbol preceding the terminal which caused the error was pushed	
i�e�	 PE must be restored to the con�guration of PS� Making PE equal to PS corresponds to
undoing the reductions performed after the last push	 so eliminating the e�ects of the default
reductions included�



� Evaluation of the Error Recovery Strategy

Recently	 P� Degano and C� Prianni �
�� made a comparison of syntactic error handling in
LR parsers� They compared several methods and di�erent techniques	 for instance� minimum
distance techniques ��	 ��� phase�level recoveries ���	 ��	 ���� local recovery ��	 �	 �	 ��� global
recovery ���	 

� etc�� and interactive recovery ���� etc� They consider a correction to be
excellent if it repairs the program as a programmer would have� A correction is poor if more
spurious errors are introduced�

Regarding local recovery� which is the technique we are interested in since we implemented one
of these methods	 their studies make it clear that the method of Burke�Fisher �
� is characteri�
zed by better correction than the other types of techniques� Besides that	 in the evaluation of
performance degradation due to error�recovery routines they found that the only performance
degradation is caused by keeping its auxiliary data structures consistent with those of the par�
ser� The method of Burke�Fisher uses two stacks	 as stated before	 due of the deferred action
mechanism� but they claim that the degradation caused by the use of the second stack is no
greater than ��� in their strategy� But	 if stack PE �Section 
� is activated only after the de�
tection of the �rst error	 there is no performance degradation� As a consequence of performance
degradation more space is needed to store information on the stacks PE and PS because more
data structures should be updated� However	 the better correction quality of Burke�Fisher�s
method repays the memory overhead�

	 Conclusion

The method proposed by Burke�Fisher was used as the basis for the implementation of a mecha�
nism of error recovery in the System for Implementing Compilers �SIC� developed at UFMG	
��
	 ��	 ���� The part of this system which corresponds to error recovery contains ���� lines of
Pascal code� SIC users need only specify the grammar of the language for which they desire
to implement a compiler� The user does not have to worry about syntax errors and respective
messages� The error recovery and the messages are all generated automatically�




 Grammar De�nition used in the Examples

program 	 proghead dcls cmdc


proghead 	 �program� 


dcls 	 dcl 


dcls 	 dcls �
� dcl 


dcl 	 �id� ��� �integer�

� �id� ��� �boolean�

� prochead ��� par ��� dcls cmdc 


par 	 �id� ��� �integer�

� �id� ��� �boolean� 


prochead 	 �id� ��� �procedure� 


cmdc 	 �begin� cmds �end� 


cmds 	 cmd

� cmds �
� cmd 


cmd 	 �id� ��	� exp

� �id� ��� exp ���

� �if� cond �then� cmd �else� cmd

� �while� cond �do� cmd

� cmdc 


cond 	 exp 


exp 	 exp �
� exp � exp ��� exp � exp ��� exp �

� exp �

� exp � exp ��� exp � ��� exp � ��� exp ���

� �id� � �cte� 


References

��� Aho	 Alfred V� and Sethi	 R� and Ullman	 J� D�	 Compiler Principals	 Techniques and Tools	
Addison Wesley Publishing Company	 ����

�
� Burke	 M�	 Fisher Jr�	 G�A�		A Practical Method for Syntatic Error Diagnosis and Recovery	
pages� �������	 ACM Transactions on Programming Languages and Systems	 Vol� �	 No�
	
April �����

��� Burke	 M�	 Fisher Jr�	 G�A�		A Practical Method for Syntatic Error Diagnosis and Recovery	
pages� ����	 ACM ���
�

��� Aho	 A� V� and Peterson	 T�J	 A minimum distance error�correction parser for context�free
languages	 pages� ������
	 SIAM J� Comput�	 ����	 ���
�

��� Aho	 A� V� and Johnson	 S�C�	 LR parsing	 ACM Computing Surveys	 ��
�	 ����
�	 �����

��� Tai	 K� C�		 Syntactic Error Correction in Programming Languages	 IEEE Trans� Software
Engineering	 SE�� ���	 �����
�	 �����

��� Boullier 	 P� and Jourdan	 M�	 A New Error Repair and Recovery Scheme for Lexical and
Syntactic Analysis	 Science of Computer Programming	 �	 
���
��	 �����

��� Charles	 P�	 An LR�k� Error Diagnosis and Recovery Method	 Second International Works�
hop on Parsing Technologies	 �����	 February �����

��� Bigonha Roberto S� � Bigonha	 Mariza A�S�	 A Method for E�cient Compactation of
LALR��� Parsing Tables	 to be published in �����



���� Bigonha	 Mariza A	S�	 Bigonha	 Roberto S�	 Russo	 Valeska	 Costa	 Marco	 An Environ�
ment for Language Implementation called SIC	 Anais do �nd� Congreso Argentino de

Ciencias de la Computacion	 ��� de novembro�����	 p�aginas� ��
��
��

���� Bigonha	 Mariza A� S�	 Bigonha	 Roberto	 S�	 SIC � Uma Ferramenta para Implementa�c	ao
de Linguagens	 Trabalho vencedor do III Pr�emio Nacional de Inform	atica ����


Categoria Software	 Anais do XXI Congresso Nacional de Inform�atica	 SUCESU	 Rio
de Janeiro	 RJ	 �
�����	 �����

��
� Bigonha	 Mariza A� S�	 SIC
 Sistema de Implementa�c	ao de Compiladores	 Tese de

Mestrado	 Departamento de Ci�encia da Computa c!ao	 UFMG	 julho������

���� Bigonha Roberto S� � Bigonha	 Mariza A�S�	 Um M�etodo de Compacta�c	ao de Tabe�
las LR���	 Anais do III Semin	ario sobre Desenvolvimento Software B	asico	 Soci�
edade Brasileira de Computa c!ao	 Rio de Janeiro	 RJ	 �������	 �����

���� Druseikis	 F� C�	 Ripley	 G�D�	 Error Recovery for Simple LR�k� Parsers	 Proc� Nate�

Conf� of ACM
 Houston
 TX
 �����

���� Feyock	 S�	 Lazurus	 P�	 Syntax�directed Correction of Syntax Errors	 Software Practice

and Experience	 Vol� �	 �����

���� Fisher C� N� and Mauney	 J�	 Determining the Extent of Lookahead in Syntactic Error
Repair	 ACM TOPLAS	 �� ���	 �������	 �����

���� Wilcox	 T� R�	 The Design and Implementation of a Table�driven Interactive Diagnostic
Programming System	 CACM �� ����	 �������	 �����

���� Graham	 S�	 Rhodes	 S�P�	 Practical Syntatic Error Recovery	 CACM	 November �����

���� Graham	 S�	 Haley	 C�B�	 Joy	 W�N�	 Practical LR Error Recovery	 Sigplan Notices	 Au�
gust �����

�
�� Johnson S� C�	 YACC � Yet Another Compiler Compiler	 Bell Laboratories
 Murray
Hill	 �����

�
�� Krol	 J�S�	 Simple Error Recovery Scheme for Optimized LR Parsers	 TR ��
���	 March
�����

�

� Levy	 J� P�	 Automatic Correction of Syntax Errors in Programming Languages	 Acta

Informatica �	 
���
�
	 ����	

�
�� Mickunas	 M�D�	 Modry	 J�A�	 Automatic Error Recovery for LR Parsers	 CACM
 june

����
 Vol� ��
 Number ��

�
�� Poonen	 G�	 Error Recovery for LR�k� Parsers	 Information Processing	 August �����

�
�� Rohrich	 Johannes	 Methods for the Automatic Construction of Error Correcting Parsers	
Acta Informatica ��	 �������	 �����

�
�� Setzer	 V�W�	 and Melo	 I�S�H	 A constru�c	ao de um Compilador	 Livros Cient	�ficos e

T	ecnicos	 Editora Campus Ltda	 �����

�
�� Wirth	 Nicklaus	 Algorithm � Data Structures 
 Programs	 �����

�
�� Wirth	 Nicklaus and Ammann Pascal � The Language and its Implementation	 Edited by

D�W� Barron	 �����

�
�� Degano	 Pierpaolo and Priami	 Corrado	 The Comparison of Syntactic Error Handling in
LR Parsers	 Software�Practice and Experience	 
����	 �������	 June �����


