
A Method for E�cient Compactation

of

LALR��� Parsing Tables

Roberto da Silva Bigonha

�bigonha�dcc�ufmg�br�

Departament of Computer Science� Federal University of Minas Gerais

Caixa Postal� ���

	��
�
 � Belo Horizonte � Minas Gerais � Brazil

and

Mariza Andrade da Silva Bigonha

�mariza�dcc�ufmg�br�

Departament of Computer Science� Federal University of Minas Gerais

Caixa Postal� ���

	��
�
 � Belo Horizonte � Minas Gerais � Brazil



Summary

A new compactation method for LALR�
� parsing tables is presented and discussed� The

proposed method is based on intrinsics properties of the parsing method� and allows

LALR�
� tables needs of space to be substantially reduced without compromising the

table accessing time�

Keywords� Parsing tables� compactation� LALR�
� methods�

Introduction

An SLR�
�� LALR�
� and possibly LR�
� table 
�� �� for a programming language of

real size like PASCAL has more than 	�� rows �states� and 
�� columns �terminal and

nonterminal symbols�� Assuming� as an example� a grammar with 
�� productions� at

least 

 bits would be necessary to encode each entry of the LALR�
� table�

The resulting 	��x
�� matrix would require at least 		����� bits� which is about ��

Kbytes of working memory� In practice� the required memory would be even greater

because the size of each entry is not necessarily multiple of the smallest addressable me�

mory unit of most existing architectures� In this paper� we present a method for encoding

LALR�
� parsing table that allows an expressive reduction on memory requirements wit�

hout compromising accessing time�

LALR��� Parsing Structure

LALR�
� parsers consist of a driver program� a stack and a parsing table� The stack is

used to store states of the parser� The LALR�
� parsing table is a bi�dimensional array�

where the row�s indices represent states names� usually integer numbers� and the column�s

indices are terminal and nonterminal symbols of the underlying grammar�

Usually� these grammar symbols are also represented as integer numbers to increase

array indexing e�ciency in real implementations� For technical reasons� LALR�
� tables

are divided in two parts� namely� ACTION and GOTO 
	�� In the ACTION part�

indices of columns represent terminal symbols� and in the GOTO part� they represent



ACTION GOTO

a b d e f � A B C

� s� s� 
 � 	


 s� acc

� r� s� r� r�

	 r� r� r� r�

� s� s� � � 	

� r� r� e� r�

� s� s� � 	

� s� s� 
�

� s� s



� r
 s� r
 r



� r	 r	 r	 r	



 r� r� r� r�

Figure 
� LALR�
� Parsing Table

nonterminal symbols� Each entry in the ACTION part may be one of the following

actions�


� shift s� where s is the number of a state� This action means push state s�

�� reduce p� where p is the number of a production of the form A � �� A is a non�

terminal symbol and � a sequence of grammar symbols� This action means reduce

according the pth production�

	� accept� which indicates successful completion of the parsing�

�� error� which indicates syntactic error and is represented by a blank entry in the

table�

The entries in the GOTO part of the LALR�
� table contains either a state number

or is empty� Figure 
 shows an LALR�
� parsing table� where a� b� d� e� f are terminal

symbols� A� B� C are nonterminal symbols� and � is a special symbol� which denotes the

end of input �le� sk represents the shift k action� rp� the reduce p action � where p is

the number of a production� and acc is the accept action�



Figure � presents the basic parsing algorithm which assumes that the LALR�
� table

is stored as the two matricesACTION and GOTO� The procedure Lex returns� at each

invocation� the next symbol of the input as a pair �u� v�� where u identi�es the symbol

and v denotes its associated value�

Encoding of LALR��� Parsing Tables

LALR�
� tables are generally sparse in the sense that most of their entries are empty�

i�e�� they denote error actions� Thus� a compactation strategy that takes this fact into

account may produce greater space e�ciency� Actually� the problem to be solved is the

design of an encoding scheme that makes possible to represent a sparse matrix A�i�j� in

the smallest amount of memory space possible without compromising accessing time� A

possible solution would be to use a hashing technique� in which the access key would be

the pair �i�j�� Another solution is a ring representation as described by Knuth 
��� These

solutions are certainly feasible� However� the use of the intrinsic properties of LALR�
�

tables leads to better results�

For instance� the compactation scheme proposed by Aho and Ullman 
�� 	� follows

this approach� Aho e Ullman 
�� 	� suggest a method that makes possible to achieve an

expressive reduction in memory requirements with respect to the direct representation of

LALR�
� table as a matrix�

Their method is based on the fact that most of the entries in an LALR�
� table

represents error actions� and that LALR�
� parsers have the viable pre�x property�

A syntactic analysis method is said to have the property of the viable pre�x� if all syntatic

errors are detected as soon as the sequence of terminal and nonterminal symbols formed

by the elements in the parse stack and the next input token does not establish a pre�x of

a valid sentencial form of the language being analised 

�� Strictly speaking� SLR�
� and

LALR�
� parsers do not have this property because after the LR�
� parser has indicated

a syntactic error in a given input� these two methods still can perform some reductions

in the contents of the stack before they detect the error�

However� it can be shown that� even in this case� the input symbol that caused the

LR�
� parser to report the syntactic error is never shifted� So� an error condition detec�

table by an LR�
� parser is not removed if extra reductions are allowed to happen� It is

guaranteed that the �rst shift state �a state containing only shift actions� that follows



var parsing � boolean�

u � token�

v � value�

ACTION � array�state� token� of action�

GOTO � array�state� nonterminal� of state�

SIN � array�� 		 max� of state�

top � � 		 max�

s� k � state�

A � nonterminal�

p � production
number�

begin

top �� ��

SIN�top� �� initial
state�

parsing �� TRUE�

Lex�u�v��

s �� initial
state�

while parsing loop

case ACTION�s�u� of

shift k � top �� top � 
�

SIN�top� �� k�

s �� k�

Lex�u�v��

reduce p � A �� left hand side of production p�

top �� top � size of the RHS of production p�

s �� GOTO�SIN�top��A��

top �� top � 
�

SIN�top� �� s

accept � parsing �� FALSE�

error � error recovery routine

end

end

end

Figure �� LALR�
� Parser



these reductions will detect the error� Therefore� at the expense of possibly complicating

the error recovery algorithm� error entries may be eliminated and replaced by one of the

reduce actions occurring in the state� In fact� in order to save space� the more frequent

reduce action in a given row should be encoded only once� and should be selected only

when any other cannot be applied for a given input symbol�

Moreover� in those states in which there exist only shift actions� error actions can

be encoded just once� provided it is selected only when no other action is aplicable� In

this encoding scheme� the ACTION table is stored by a collection of lists� each of them

corresponding to a state in the table� A list consists of sequence of pairs of the form

�column� action�� which associate terminal symbols to parsing actions� Each list is

ended by a special pair of the form �any� action�� The element column denotes a

�lookahead� terminal symbol� any represents all terminal symbols that are not on the list�

and action describes the associated parsing action� The pair �any� action� speci�es an

action to be accomplished no matter what the current input symbol is� In states containing

only shift actions� a pair of the form �any� error� must end the associated list� and

in states containing reduce actions� the last pair must have the form �any� reduce p��

where reduce p represents the most frequent reduce action in the current row �state��

The high degree of memory space compression achieved with this encoding scheme results

from the fact that� in general� more than ��� of an LALR�
� table entries are error

actions� and that reduce actions in a same row usually refer to a same production� Since

execution of reduce actions does not cause any problems � at least� from the point of

view of syntax � when the next input symbol is syntactically invalid� all occurrences of

the most frequent reduce action in a row can be replaced by a single pair of the form

�any� reduce p�� and no error actions are needed�

Another important opportunity for space optimization� which is explored by this met�

hod� is the elimination of repeated lists� Identical rows are encoded only once� and the

resulting list is shared by the associated states� Although additional memory space is

necessary to store pointers that associate lists to corresponding states or to nontermi�

nal symbols� and to encode row and columns numbers in each pair� the reduction in the

memory occupancy is claimed to be greater than ��� of the area of the original matrix

representation 
���

The disadvantage of this scheme� when compared to the direct method� is related to

the accessing time to the encoded table� Now� each parser transition needs to perform



an indirect addressing operation to obtain the address of the list associated to a state

�or to the nonterminal symbol�� and the lists must be searched sequentially� However� in

practice� the lists are small� and the increase in accessing time represents only a small

fraction of the total compilation time� which is certainly a very low price in view of the

economy of space attained�

The Proposed Method

The new method here proposed for compacting LALR�
� tables takes the Aho and Ull�

man�s scheme as a starting point� and aims to decrease even more memory needs without

a�ecting accessing time� The �rst step consists of removing the pointers that relate states

to lists of pairs� In the direct method� states are used as indices of rows of the LALR�
�

matrix� Consequently� it was convenient to encode states as consecutive integer numbers�

starting from a base value� usually zero� Using lists� on the other hand� all that is needed

is that from a given state the address of the its associated list could be determined�

Since each state corresponds a unique list� and if one guarantees that each list corres�

ponds to a unique state� addresses of lists can be used to identify states� This guaranty

can be easily achieved if repeated lists are not eliminated from the encoded representation

of the parsing tables� In addition to expressive economy of space that results from the

elimination of the pointers� there also exists an extra gain regarding the access time to

the lists� since a level of indirect addressing has been abolished� In fact� a yet bigger

reduction in memory demand comes from a property inherent to the underlying parsing

method�

In an LALR�
� parser� every transition reaching a state has the same label �column��

This property� which can be easily derived from the de�nition of the GOTO set 
�� 	��

makes possible to remove labels from transitions� that is� from pairs of the form �column�

shift k�� and to associate them to the corresponding destination states� To reduce

even further the memory requirements� the type of the action �shift� reduce� accept

or error is also removed from the transitions� and a way to retrieve this information

from the destination state is provided in the sequel� Thus� transitions can be completely

identi�ed by the destination states numbers� which give the associated labels and the type

of action�

Taking into account that� generally� most states of an LALR�
� parser have more



than one predecessor state� the space saved is substantial� The proposed encoding of

LALR�
� matrices consists� basically� of a vector� here named LALR� where lists containing

parsing actions � in fact� addresses of states � are stored� Each list corresponds to a

parse state� and its �rst element always holds the state access symbol� i�e�� the grammar

symbol �or columns� that labels all the transitions reaching the state� The remainded

elements in the list are addresses of successor states� In order to make the encoding process

uniform� and to provide an easy mechanism to determine the type of the actions from the

address of the state� entries containing error and accept are treated as transitions to

the distinguished states E and F� and reduce p are viewed as transitions to special

states� The accept action corresponds to a transition under the token � to the final

state F� whose list contains a single element� the � symbol� All transitions for error

actions always have the same destination state E� In almost all cases� error action is the

most frequent entry in most LALR�
� rows� Thus� transitions to state E are encoded only

once at the end of each list�

In fact� with the goal of keeping the parser algorithm simple� a transition to E will

always be encoded at the end of every list that does not contain reduce actions� In this

fashion� transitions to E will be selected only when no other is eligible�

The list of pairs associated to state E has always a single element� the access symbol�

which must always contain the next input symbol u� The state E is called error state�

A special state contains the transition label associated to a given reduce action� i�e��

the lookahead symbol� and the number of the production involved� Each production p in

the grammar corresponds to one or more special states� one for each entry of the form

reduce p� The successor state of given state s is determined by the piece of code shown

in Figure 	� in which u holds the next input symbol�

Note that� if s is equal to E at the ending of the loop statement of Figure 	� then

a syntactic error was detected� otherwise s contains the address of the successor state�

As discussed before� error actions are entirely removed from the rows containing reduce

actions� In these states� the most frequent reduce action is selected only when no others

are aplicable� The program fragment in Figure 	 assumes the presence of a �ag state

at the end of the list� Consequently� states having reduce actions must also be encoded

according to the same pattern as that used in shift states� For this reason� it was created

another distinguished state� named R� that works in a similar way to E� i�e�� the state R

is encoded at the end of all lists containing reduce actions� but the element that precedes



i �� s � 
� ��� skip access symbol

s �� LALR�i��

while u �� LALR�s� loop

i �� i � 
�

s �� LALR�i�

end

Figure 	� Finding the Successor State

R in the list must always represents the most frequent reduce action of the state� Thus�

if� at the ending of the loop statement in Figure 	� s is equal to R� then the successor

state is in fact the one that precedes R in the searched list� The state R is called default

reduction state� The following statement

if s � R then s �� LALR�i�
� end

must then be added at some point after the loop of Figure 	 to guarantee that s has

the correct value� Since R works as a �ag for the list searching� position LALR�R� must

always contain the next input symbol� Lists do not contain pairs of the form �column�

reduce p� anymore� These pairs were replaced by the addresses of special states� which

themselves store the pairs�

Note that each pair �column� reduce p� needs only be stored once in the present

method� its address may be used in more than one list� The type of the action� i�e��

shift� reduce� error or accept� associated to each transition is implicitly determined

by the parsing from the address of the destination state� as shown in the sequel� There are

�ve types of states in this encoding� the normal states� which are those that correspond

to rows of the original LALR�
� matrix� the error state �E�� which is used as a �ag to

end lists containing only shift actions� the final state �F�� the default reduction

state �R�� which is used as �ag to end lists containing at least one reduce action� and the

special states� which represent pairs of the form �column� reduce p�� These states are

organized in the LALR vector in the way indicated in Figure ��

In the data structure of Figure �� transitions to states� say k� whose addresses are

smaller than E represent actions of the form shift k� transitions to states whose addresses



��� � ���

�normal states � E F R �special states �

Figure �� LALR Vector

are greater than R denote actions reduce p� where p is given by LALR�k � 
�� The final

and error states have known addresses� F and E� respectively� Note that the LALR vector

also incorporates the GOTO part of the LALR�
� table� This was achieved by allowing

nonterminal symbols to be labels of transitions� In another words� in this method� the

ACTION part of the LALR�
� table has been extended to encompass the GOTO part�

whose entries for states numbers k are replaced by actions of the form shift k� In fact�

the GOTO table was created only for e�ciency purposes�

As a matter of fact� the automata from which the LALR�
� tables are constructed have

transitions under terminal and nonterminal symbols� This new way of viewing LALR�
�

matrices implies in a small change in the underlying parsing algorithm with respect to

the semantic of reduce actions� Originally� an action of the form reduce p� where p is a

production of the form A � �� causes the removal of m �size of �� elements from the stack

of states followed by an access to theGOTO table� given the state currently on the top of

the stack and the nonterminal A� to determine next state to be entered� In the proposed

encoding scheme� this mechanism is equivalent to pop m elements from the stack� and to

execute one transition under the nonterminal symbol A� as showed in Figure ��

Note that it can be shown that error entries in GOTO table are never consulted� and

that it is guaranteed that a transition under the nonterminal symbol A always exists for

the state that appears in the top of the stack just after popping the stack� Consequently�

the search always ends successfully�

Finally� it should be pointed out that as a consequence of the fusion of the ACTION

and GOTO tables � the internal codes for terminal and nonterminal symbols must be

disjoint� To conclude� in this encoding scheme� there exists another table� named PROD�

that gives the internal code of left side nonterminal symbol and the size of the right

hand side of each production� The new algorithm of the LALR�
� parser is presented in

Figure �� and Figure � illustrates the encoding of the table showed in Figure 
�



A �� PROD�p�	LE�

top �� top � PROD�p�	SIZE�

i �� SIN�top� � 
�

s �� LALR�i��

while A �� LALR�s� loop

i �� i � 
�

s �� LALR�i�

end�

top �� top � 
�

SIN�top� �� s�

Figure �� Reduce Action

Analysis of the Method

The space e�ciency of the proposed method for compactation of LALR�
� parsing tables

depends on the following conditions�


� The relation number of transitions�number of states should be reasonably greater

than 
� The bigger this relation is� more space e�cient the method is� since it

encodes the label and the type of each transition only once�

�� The relation number of repeated rows�total number of rows should be less than

�a�m	c�� where a is the space needed to store a pointer� m is the average number

of entries per row� and c is the space occupied by an entry in the Aho and Ullman

method� In languages like PASCAL� typical values are� a � �� m � 
� and c � ��

Thus� for these languages� the space occupied by pointers to the lists in the Aho

and Ullman method is compensated by the elimination of repeated lists when the

above relation is greater than 
�
��

	� error is always the most frequent entry in each row�

In the tests performed� LALR�
� tables for which conditions �
� e �	� holds� were

encoded in about �� of its original space requirements� For instance� the compacted



var parsing � boolean�

u � �		imax�

v � value�

LALR � array��		imax� of �		imax�

top � �		imax�

SIN � array��		max� of �		imax�

s� i � �		imax�

A � �		imax�

begin

top �� �� s �� initial
state� SIN�top� �� s�

parsing �� TRUE�

Lex�u�v�� LALR�E� �� u� LALR�R� �� u�

while parsing loop

i �� s � 
� s�� LALR�i��

while u �� LALR�s� loop

i �� i � 
� s �� LALR�i�

end�

if s �� R then �� REDUCE p

if s � R then s �� LALR�i � 
� end

p �� LALR�s � 
�� A �� PROD�p�	LE�

top �� top � PROD�p�	SIZE�

i �� SIN�top� � 
� s �� LALR�i��

while A �� LALR�s� loop

i �� i � 
� s �� LALR�i�

end�

top �� top � 
� SIN�top� �� s

elif s � E then �� SHIFT s ��

top �� top � 
� SIN�top� �� s�

Lex�u�v�� LALR�E� �� u� LALR�R� �� u�

elif s � E then error recovery �� ERROR

else parsing �� FALSE �� ACCEPT

end

end

end

Figure �� The New LALR�
� Parser



parsing table for ADA requires only �Kbytes of memory space to encode all the ���

LALR�
� parser states�

state � state 
 state � state 	
�� 
� � 

 
� �	 A �� �� �	 B 	� �� �� C �� ��

� � 

 
�

state � state � state �
e �� 
� 	� 

 
� �	 a �� �� b �� 
� �	 
� �	

� �� ��

state � state � state � state 
�
d �� 
� �� �	 A �� �� �	 B 	� �� �� C �� ��
	� 	� �	 ��

state 

 E F R r
 r� r	 r� r� r�
f �� �� � b 
 b � b 	 b � b � b �
�� �	 �� �� �� �� �� �� �� ��

Figure �� An Example of LALR Vector

Conclusion

The compactation method described in this paper is based on two properties of LALR�
�

parsers� The �rst one is the property of the viable pre�x� and the second is that all

transitions to a given state always have the same label� The e�cacy of the method depends

on some characteristics of the LALR�
� tables� which� in practice� hold for languages of

interest� Its main source of memory economy is the technique of removing labels of

transitions and types of actions from the state transitions� and encoding them together

with the destination states�

This compactation scheme has been implemented and tested in a compiler generator

system� which was developed at the Computer Science Departament of University Federal

of Minas Gerais 
���



References



� AHO � A� V��and ULLMAN� J� D�� The Theory of Parsing� Translation� and Com�

piling� Vols� 
 e �� Prentice�Hall� Englewood Cli�s� N�J� 
����


�� AHO A� V� and JOHNSON� Principles of Compiler Design� Addison�Wesley Publis�

hing Company Co� �
�����


	� AHO A� V�� SETHI� R� and JOHNSON � Principles of Compiler Design� Addison�

Wesley Publishing Company Co� �
�����


�� KNUTH� D�� The Art of Computer Programming� �nd Edition� Addison�Wesley Pu�

blishing Company Co� �
��	��


�� SPECTOR� David� �Full LR��� Parser Generation�� ACM Sigplan Notices� Vol� 
��

N� �� August 
��
�


�� PAGER� David� �A Practical General Method for Constructing LR�k� Parsers�� Acta

Informatica �� ������� �
�����


�� Bigonha� Mariza A� S� and Bigonha� Roberto S�� SIC� A Tool for Implementation Lan�

guages� �In portuguese�� Proceeding of the XXI Congresso Nacional de Inform atica�

SUCESU���� pages� �����	
� 
����


