
The Solution to the Scalability Problem of Denotational
Semantics

Fabio Tirelo1, Roberto da Silva Bigonha2

1Instituto de Informática – Pontifı́cia Universidade Católica de Minas Gerais
Av. Dom José Gaspar, 500 – Coração Eucaristı́co

30535-610 – Belo Horizonte – MG – Brazil

2Departamento de Ciência da Computação – Universidade Federal de Minas Gerais
Av. Presidente Antônio Carlos, 6627 – Campus Pampulha

31270-901 – Belo Horizonte – MG – Brazil

ftirelo@pucminas.br, bigonha@dcc.ufmg.br

Abstract. Denotational semantics is a powerful technique for the formal defi-
nition of programming languages. However, inherent problems of large scale
languages arise difficulties not yet addressed by current approaches. This paper
categorizes a source of the scalability problem of denotational semantics, and
presents a solution based on context transmission and module transformations.

1. Introduction
Formal semantics of large scale programming languages are inherently complex due to
the large number of crosscutting details that must be coped with. It is then desired that
such specifications be modular and extensible, and may be written in an incremental way,
so that the language constructs are successively added to the definition a core language.
Moreover, this incremental process must not require the redefinition of previously defined
modules, and additionally must require the language designer to understand and use only
simple features and techniques.

Denotational semantics of programming languages [Scott and Strachey 1971] de-
fines the semantics of each construct as its contribution to the program final answer, and
usually is presented as a function from its context to an answer [Wadsworth 1978]. For
instance, for languages having variables and assignments, the context may be composed
by stores and environments; the presence of sequencers requires that context be addition-
ally composed by continuations. In an incremental definition, some context information
should be only identified when it is necessary to define some construct; not anticipating
such problem usually causes the redefinition of previously defined modules, so that the
whole writing/rewriting process becomes a tedious and error-prone activity.

Current approaches for the definition of modular denotational semantics are
based upon the abstraction of context expression [Tirelo 2005]. For instance, Wadler
[Wadler 1990] suggests stores, environments, and continuations be implicitly transmitted
by means of monads [Moggi 1991]. Thus, constructs not directly using variables may not
directly reference current store and environment. Simplifications of the same nature may
be applied in equations not involving the direct use of continuations.

However, large scale programming languages have features which cannot be com-
pletely understood when isolated from other language features, since they can be mutu-
ally interfering. This property directly impacts the modularity of denotational semantics

descriptions, since the description of one construct must contain elements of related con-
structs, which violates the principle of module high cohesion [Meyer 1997]. This prob-
lem, explained in details in Section 2, is not adequately addressed in current denotational
semantics methodologies.

One of the first steps to the modularity of denotational semantics has been made
by Peter Mosses in the Action Semantics [Mosses 1977, Mosses 1992]. Further at-
tempts to improve the modularity of denotational semantics have been made since then,
with highlight to Monadic Semantics [Liang et al. 1995, Moggi 1991, Wadler 1990], and
Monadic Action Semantics [Wansbrough and Hamer 1997]. This work improves the re-
sults of those contributions by presenting a modular mechanism for defining and trans-
mitting context information among programming languages contructs. The Notus lan-
guage (see Section 4) has been inspired on traditional denotational semantics notation
[Mosses 1979, Scott and Strachey 1971]. It differs from those works by allowing syntax
and semantics to be defined in an incremental way by means of extensions and module
transformers (see Section 6).

Module transformation has been inspired in monad transformers
[Liang et al. 1995] and in the weaving process of aspect-oriented programming
[Kiczales et al. 1997, Wand et al. 2004]. The main difference between monad and
module transformers is that the latter may be selectively applied in different function
calls, and can be ignored when necessary. The weaving process of aspect-oriented
programming usually defines an auxiliary language to describe pointcuts and advices;
Notus uses no additional concept to define weaving, and only traditional denotational
semantics functions are necessary. Modular context transmission (see Section 5) has been
inspired in the Wormhole Pattern implemented in AspectJ [Laddad 2003], whose purpose
is to transmit information from a caller module to worker modules in complex tree-based
object structures. By letting the transmission implicit in function calls involving contexts,
language designers do not need to define the protocol of transmission, which usually
leads to untangled definitions.

Section 3 shows how the main current approaches for modularity of denotational
semantics addresses the problem presented in Section 2. Sections 4, 5, and 6 define a
new approach for denotational semantics modularity, which comprehends a technique for
modular context manipulation. Section 7 presents a qualitative evaluation of the presented
approach and contains the final considerations.

2. Contexts in Programming Language Semantics
According to [Parnas 1972], modularity degree in software systems depends on the cho-
sen decomposition technique. Denotational semantics specifications consist of defining
the meaning of each construct of the language’s abstract syntax, so that this must be the
dominant decomposition rule. However, there are language features, such as dynamic
type checking, which are difficult to modularize. These difficulties are present in the form
of tangling and scattering, whose solution by means of aspect-oriented programming is
presented by [Kiczales et al. 1997].

The main reason for this difficulty is the fact that usual features in programming
languages, such as dynamic type checking, error handling, and sequencers, influence the
behavior of others, and such influence must be explicit in their defining semantic equa-

tions. Therefore, language constructs cannot be fully understood when isolated, because
their meanings depend on their context and on general language properties. According to
[Tirelo 2005, Bigonha 2006], besides its constituents, a denotational semantics of some
language construct must consider the following context components: (i) its antecedents;
(ii) its possible destinations; (iii) and its involving structure. Moreover, context informa-
tion derived from general properties in the language design must be taken into account,
so their enforcement appears in the final semantic equations.

The antecedents of a construct comprehend the effects of previous execution steps
and are usually propagated by means of stores and environments. For instance, the an-
tecedents of an expression evaluation contain the mapping of each variable used in the
expression into the last value assigned to it.

The destination of a construct consists of the next step in the execution, and is
usually represented by means of continuations. Some constructs may have more than
one possible destination, which are usually propagated through the environment. As an
example of multiple destinations of a construct, consider the denotation of an arbitrary
command C in an imperative language such as Java. For such construct, there must be
context propagation associated with the next step of C, to be used when C does not
contain sequencers, and another to be used if any of the following sequencers occur in C:
break, continue, return, and throw.

The inclosing structure consists of the construct context in the abstract syntax tree
of a program. For instance, to define the semantics of the break statement in Java, it is
necessary to define if it is inside a repetition statement or inside a switch-case; in addition,
in the case of nested statements, it is necessary to decide which statement the break inter-
rupts. This problem is also found in the definition of exception handling in Java, which is
dependent on methods, since returns may occur inside the command body. In this case,
elements concerning method definition and method return are tangled in the semantic
equation for exception handling statement. Furthermore, method definition scatters the
denotational specification, since its influence in other contexts must be described in loco.

General language properties comprehend language features which may affect the
semantics of several constructs. This category includes dynamic type checking in strong-
typed languages, and error handling. The impact of this sort of information context in
the modularity of denotational specifications may be expressed by: (i) the influence of
those properties are tangled in the semantic equations defining affected constructs; (ii) the
specification of those properties may are scattered through the semantic equations defin-
ing affected constructs. It is also important to highlight that there is not a single section
– or module – in the specification which addresses each property. In other words, the
definition of such properties cannot be modularized since they crosscut several linguistic
constructs.

This work focuses on the unsatisfactory degree of modularity and extensibility
[Meyer 1997] which can be achieved in denotational semantics definitions of large scale
programming languages, due to the lack of adequate mechanisms for the propagation
of context information. As described in Section 3, inclosing structure context and en-
forcement of language properties are not yet addressed in current models for denotational
semantics definition. As a consequence, incremental definition of large scale program-

ming languages is a complex and error-prone process, because including new constructs
into an existing specification may require that modules defining other language feature
be restructured. Another problem associated with these difficulties is the fact that one
of the main purposes of formal semantics, the unambiguous communication of language
constructs meanings, may not be achieved, since it may not be possible to understand the
semantics of a construct in isolation. Yet, another problem is that referential transparency
is not always guaranteed, since equations may depend on data stored in global area, such
as the environment.

Additionally, denotational semantics definitions are not extensible, because small
changes to language may produce widespread changes through the whole definition; for
instance, incorporating sequencers in the specification of a language using direct se-
mantics requires that all semantic equations be rewritten to accommodate continuations.
These problems have direct impact on semantic definition scalability, since the number of
details to be addressed is not proportional to the number of constructs of the language.

On the other hand, crucial information about the language may be obscured by
several details in the semantic equations, which make it hard to fully understand the char-
acteristics of some constructs. This leads to an ever higher complexity of using formal
semantics specifications in the proof of language properties, since interleaved elements in
the equations cannot always be abstracted away.

3. Context Handling in Current Approaches
Several approaches addresses the modularity of denotational semantics, among
which outstand action semantics [Mosses 1992], monadic semantics [Liang et al. 1995,
Wadler 1990], and monadic action semantics [Wansbrough and Hamer 1997].

Action semantics [Mosses 1992] allows writing readable denotational semantics
definitions, since semantic equations resemble informal writing. However, this model
does not adequately address the handling of all context information presented in Section 2,
and for this reason, the definition of some features tends to be tangled in the semantic
equations. Although there are elegant techniques for abstracting away environments and
stores, there is no way of hiding destination and language properties contexts. As a mat-
ter of fact, although assignments and conditional statements are not directly dependent
on continuations, in the action semantics definition of Pascal [Mosses and Watt 1993],
equations for these constructs must consider the existence of continuations. Furthermore,
context propagation of inclosing structure may not be explicitly defined and it is not pos-
sible to separately define dynamic type checking rules.

Monadic semantics [Liang et al. 1995, Moggi 1991, Wadler 1990] elegantly al-
lows the encapsulation of stores, environments, and continuations, and additionally per-
mits the modelling of non-determinism. However, this technique does not offer appropri-
ate mechanisms to handle multiple destinations of constructs, and, as occurs with action
semantics, there is no adequate treatment for inclosing structure and general properties
enforcement.

In monadic action semantics [Wansbrough and Hamer 1997], actions are defined
by means of monads, leading to the modelling of continuations in action semantics, with-
out losing the readability of the model. However, this model shares the boundaries of
action semantics, since it does not provide adequate context handling.

1 module Expressions
2 ignore [\n\r\t]
3 token num = [0-9]+ is asInt
4 exp ::= exp "+" term
5 | term : term
6 term:Exp ::= term "*" factor
7 | factor : factor
8 factor:Exp ::= "(" exp ")" : exp
9 | num

10 function e : Exp -> Int
11 e [exp1 "+" exp2] = e exp1 + e exp2
12 e [exp1 "*" exp2] = e exp1 * e exp2
13 e [int] = int
14 end

Figure 1. Example of construct definition in Notus.

The solutions found in literature only offer mechanisms to handle information
propagated from construction antecedents, and solve in a partial way the problem of mul-
tiple destinations. In addition, inclosing structure context is not modularized, and its
transmission is usually done by means of environments, which leads to high coupling and
low modular cohesion. Furthermore, the enforcement of language properties is not modu-
larized, and usually these features is scattered through the semantic equations. Therefore,
modular propagation of context information remais an open problem in Programming
Languages.

4. Outline of the Solution
The solution to the problem presented in Section 2 comprehends the definition of a new
technique in which: contexts can be modularly defined and propagated; in an incremental
definition, the influence of new constructs on existing equations can be modularly defined.

A domain specific functional language, named Notus [Tirelo and Bigonha 2007],
is currently under implementation, and allows: package and modular organization and
visibility control; lexis, and concrete and abstract syntax definition; syntactic and seman-
tic domains definition; semantic functions e equations definition. Expressions in Notus
are inspired in Haskell. Languages in Notus may be defined in an incremental way, so
that one may start with a small core language, which is successively extended by the in-
clusion of new modules. Each module may define related language constructs, by giving
its syntax and semantics, and may define how to affect existing modules, as explained in
Section 6. Contexts in Notus are special semantic domains, and are defined in Section 5.

Figure 1 shows an example a core language composed by expressions. The lexis
of the language ignores white spaces (line 2), recognizes integer numbers (line 3), and the
operators and parenthesis used in the grammar (lines 4-9). The syntax domain of token
num is Int, which is deduced from the domain of the built-in function asInt. The
concrete grammar (lines 4-9) defines arithmetic operations with numbers, addition, mul-
tiplication, and parenthesized expressions. The syntactic domains are implied from the
grammar by the following rules: since no domain is declared to exp, it is considered to

1 module Functions
2 import Expressions
3 token id = [a-zA-Z]+
4 extend factor ::= id "(" exp +- "," ")" : [id "(" exp+ ")"]
5 function apply : Id -> Exp* -> Int
6 ... // definition of function apply
7 e [id "(" exp+ ")"] = apply id exp+
8 end

Figure 2. Example of language extension in Notus.

be in domain Exp; term and factor are in domain Exp. The rules of the abstract grammar,
are composed from the rules in the concrete grammar, by replacing each variable by its
domain; some rules, such as the rules in lines 5, 7, and 8, must be ignored in the abstract
grammar since they are used to define precedence. Line 10 defines the semantic func-
tion, e, which maps expressions into integer numbers. Lines 11-13 define the semantic
equations for each rule in the abstract grammar.

Figure 2 defines an extension of the language in Figure 1. Line 3 include a new
token, id, in the lexis. Line 4 defines an extension of the grammar by adding a new
rule having factor as its left-hand side; this new rule defines function calls, which
are an identifier followed by list of expressions separated by commas, and enclosed in
parenthesis. The abstract grammar ignores the separators and considers only the identifier
and the list of expressions; parenthesis is kept in the definition for readability purposes.
Line 7 defines the semantic equation for function call, using the auxiliary function apply
to switch the called function.

5. Context-aware Denotational Semantics

Context abstraction and propagation in Notus allows information to be transmitted
through constructs without polluting their semantic equations. Some language constructs,
such as literal values, are independent of the context, which, for this reason, must be trans-
parent in their definition; some constructs, such as conditional statements, just propagate
context information, even without handling them directly.

5.1. Context Domains

In Notus, contexts are semantic domains, and are defined as tuples composed by labeled
context information. A context definition has form:

T = context(label1 : domain1,label2 : domain2, · · · ,labeln : domainn)

where T is a domain name, and each labeli labels context information, whose values
are in domain domaini.

Context information may be classified with respect to its use and propagation.
For input and output sequences and stores, each update cancels the previously associated
value, so that only the new associated value is necessary; such context information is
classified as ephemeral. On the other hand, values associated with environments and
structural context may be used after updates associate new values; for this reason they

are classified as persistent. Optionally, each label in a context domain definition may be
marked with its class, ephemeral or persistent; context information with no class mark
is considered to be persistent. Let L be a language whose context is composed by stores
and environments, as shown in the following definition:

T = context(ephemeral store : S,env : R)

where R e S represent, respectively, domains of stores and environments. In this example,
store is ephemeral and environment is persistent.

5.2. Context Expression and Pattern

Context information may be handled by means of the expressions: context constructor,
context selector, context update, and context occlusion. In addition, the context pattern
may be used in pattern matching expressions.

Context Constructor. The context constructor expression defines a value in a con-
text domain with given initial values, and has the form T(label1 = exp1,label2 =
exp2, · · · ,labeln = expn), where T is a context domain, each labeli is a con-
text label, and expi is an expression whose value is in the domain associated with
labeli. Each label of T must appear at most once in such expression, and they
may appear in any order; non-initialized context information is considered undefined.
For instance, if T is the context domain defined in Section 5.1, then the expres-
sion T(store = \loc->unused, env = \id->unbound) defines a context,
whose store maps all locations to unused, and whose environment maps all identifiers
to unbound.

Context Selector. The context selector expression produces the value associated with
some label in a context value, and has form label t, where t represents a value in a
context domain T, whose labels set contains label. If the information labeled with
label is undefined, then an execution error is issued. For example, let t be in domain
T defined in Section 5.1. The value of expression store t is the value associated with
store in t.

Context Update. The context update expression creates a new context value by updating
some information in an existing context value, and has form

t[label1 ← exp1,label2 ← exp2, · · · ,labeln ← expn]

where t is a value in a context domain T, each labeli is a label in the label set of T, and
each expi is an expression whose value is in the domain associated with labeli. For
instance, let t be a value in domain T, defined in Section 5.1, and s be a value in domain
S. The value expression t[store <- s] is a new context whose store is s and whose
environment is the environment of t.

Context Occlusion. The context occlusion expression operates on two contexts, t1 and
t2, and its purpose is to create a new context t from t1 whose ephemeral information are
updated with values from t2. This expression has form t1 ∗ t2, where t1 and t2 are
contexts in domain T, and the result is a context t, where for each label label in T, the
expression label t evaluates to:

• undefined, if label t1 and label t2 are undefined;

1 V = ... // domain of values
2 Io = context(ephemeral i: V*, ephemeral o: V*|{error})
3 function f : Io -> Io
4 f io[() <- i] = io[o <- error]
5 f io[v:v* <- i, v1* <- o] = io[i <- v*, o <- v1* ++ (v)]

Figure 3. Example of context pattern.

• label t1, if label t2 is undefined, or label is ephemeral;
• label t2, otherwise.

For example, let t1 = T(store = s1,env = r1) and t1 = T(store =
s2,env = r2) be contexts in domain T defined in Section 5.1. The value of expression
t1 ∗ t2 is the context t = T(store = s1,env = r2)

Context Pattern. The context pattern is used in pattern matching expressions, and has the
form patt[patt1 ← label1,patt2 ← label2, · · · ,pattn ← labeln], where patt is
a domain pattern or a context pattern, each labeli represents a label, and each patti is
a valid pattern for the domain of labeli. Let:

• T = context(label1 : domain1,label2 : domain2, · · · ,labeln : domainn) be a
context domain;
• t0 = T(label′1 = value1,label′2 = value2, · · · ,label′m = valuem) be a

value in domain T;
• p = t[patt1 ← label′′1,patt2 ← label′′2, · · · ,pattk ← label′′k] be a pattern

applicable to T.

Pattern p matches value t0 if for each label′′i in p, there is a label′j in t0, such that
label′′i = label′j and patti matches valuej . In other words, the pattern associated
with each label in pattern p must match the corresponding value in t0.

For instance, consider the fragment of code in Figure 3, which defines a domain V,
a context domain Io, representing input and output context, and a function f in Io→ Io,
which echoes in the output sequence the first value in the input sequence. Context Io is
composed by ephemeral information i, representing lists of values, and o, representing
either lists of values or the constant error. The first clause of function f (line 4) defines
that if the input sequence of a context value io is the empty list, then the result is the
context created from io where the output information is error. The second clause (line
5) defines that if the input sequence is a list having at least one element, and the output
sequence is a list of values, then the resulting context appends the first value of the input
in the end of the output.

5.3. Context Expansion

Incremental definitions usually demands the context structure be redefined. For instance,
when sequencers are added to a language, it becomes necessary to include inclosing struc-
ture information (see Section 5.4) in the context domain tuple.

It may be done in Notus by means of the expand clause, whose goal is to add
context information to a given context domain, has the form:

expand T with label1 : domain1,label2 : domain2, · · · ,labeln : domainn

where each domaini is the domain of some new information labeled with labeli. Op-
tionally, each label may be marked with ephemeral or persistent.

For instance, let T = context(ephemeral store : S,env : R) be a context domain.
The following clause adds input and output information, both of them ephemeral and
represented by lists of values in domain V:

expand T with ephemeral input : V*, ephemeral output : V*

Each context label may appear only once in context domain definitions and expansions.
If some label is redefined, an compilation error is issued.

5.4. Structural Context

Inclosing struture context, or just structural context, of a language construct is constituted
by its ancestral nodes in the abstract syntax tree of the program. Each ancestral node
is associated with information present during the evaluation of that node. For instance,
consider the while and break statements in the following C code fragment:

while (condition1) { C1; if (condition2) break; C2 } C3

The structural context of the break statement contains the AST node representing
the inclosing while statement. In addition, that node may be associated with the desti-
nation of the while, represented by statement C3, which is necessary for interrupting the
repetition.

In Notus, context domains have a persistent context information labeled with
structure, which stores information related to structural context. Values associated with
this label are in domain Far∗ and consist of stacks of function application records, which
are elements from domain Far. Each record stores a function name and the arguments of
the application.

For manipulating structural contexts, each context domain T is associated with a
function push : T → Far → T, where push t far is a new context t′ built from t, in
which far is push onto the stack structure of t; function push is defined by:

push t far = t[structure← far : (structure t)].

Function push is implicitly called in every function application whose arguments contain
a context value, so that for any application f α1 · · · αn, the compiler replaces each
context argument, t, by t′ = push t far, where far is the function application record
corresponding to the modified application of f .

Example. Let V be a domain of values, T be the domain of contexts, f , g, and h be
functions, a be an element in domain V , t be an element in domain T . Considering
function f is defined by f v t = g v + h v t, a function application f a t is transformed
by the compiler into the application f a t′, where t′ = push t far, and far represents the
application f a t′.

Context information stored in the stack of function application records may be
accessed by means of the match expression, which has the form match p with e in e′,
where p is a structural context pattern, and e and e′ are expressions. The value of this
match expression is the value of e′ if the value of e is a context value t and pattern p
matches at least one function application record in the stack labeled by structure in t.

If pattern p matches no record in the stack, then an execution error is issued; if it matches
more than one record, only the topmost matched record is considered. Identifiers defined
in p are bound to the values in the matched record, and may be used in expression e′.

Example. Let f : Int→ T→ Int, g : Int→ T→ Int be functions defined by:

f a t = g a t
g a t = 1 + g (a− 1) t
g 0 t = match f b with t in b

The value of function application f a t is given by the application g a t; the compiler
defines that a function application record corresponding to this call is pushed onto the
stack of t. Then, a series of recursive applications of function g is executed, and once the
base of the recursion is reached, it recovers and produces as result the argument in the
application of f .

Structural context patterns in Notus may match single function application
records, or may be composed using the direct origin operator at.

The function application record pattern (far pattern, for short), has the form
f p1 p2 · · · pn, where f is a function name, and each pi represent a pattern which does
not represent a far pattern. For instance, consider the definition of g 0 t in the previous
example; pattern f b matches the most recent application of function f , provided it is
found in the record stack. The direct origin pattern has the form p1 at p2, where p1 e p2

are far patterns. This pattern matches consecutive records, far1 and far2, in the struc-
tural context stack, such that p1 matches far1, p2 matches far2, and far1 immediately
follows far2 in the stack. For instance, the expression match f a at h b with t in a + b
matches applications of function f directly actived from the application of function h; the
argument of f is bound to a, and the argument of h is bound to b, which are used in the
result.

5.5. Example of Semantics Using Structural Context
Consider the fragment specification of the C programming language of Figure 4, in which
E is the syntactic domain of expressions, C is the syntactic domain of commands, T is
the domain of contexts, K = T → T is the domain of continuations, de is the seman-
tic function for expressions, and dc is the semantic function for commands. Auxiliary
function getW (lines 11-13) takes a context t and matches an application of function dc
immediately following an application of function dc to an AST node representing a while
command. The destinations of the while and its body, k1 and k2, along with the while
context, t’, are returned as a tuple in domain W (defined in line 10).

The semantic equations for the while command (lines 15-17) defines its behavior
without considering the existence of sequencers. In line 18, the denotation of the break
command in context t captures the destination of the inclosing while, k’, and its con-
text, t’, from t, and ignores the current continuation, k, by passing to k’ the context
t’ * t; this context is the occlusion of context t’ with t, so that ephemeral infor-
mation, such as the store, come from the context of the break command, and persistent
information, such as the environment, come from the context of the while. The denotation
of continue command is very similar to the denotation of break, having as destination the
execution of the while.

1 module Commands
2 import Expressions
3 c ::= "while" "(" e ")" c : ["while" e c]
4 | "break" | "continue"
5 | ... // other commands
6 function dc : C -> K -> K
7 W = W(K,K,T)
8 function getW : T -> W
9 getW t = match dc c k2 at dc ["while" e c] k1 t’

10 with t in W(k1,k2,t’)
11 dc ["while" e c] k =
12 de e; \v -> if isZero v then k
13 else dc c (dc ["while" e c] k)
14 dc ["break"] k t = let W(k’,_,t’) = getW t in k’ (t’ * t)
15 dc ["continue"] k t = let W(_,k’,t’) = getW t in k’ (t’ * t)
16 end

Figure 4. Fragment of Formal Specification of Commands of the C Language.

6. Module Tranformations

6.1. Transformation Definition

A module transformation function, or module transformer, creates an abstract syntax tree
(AST) from a module AST, by modifying some of its definitions. A simple example con-
sists of adding continuations in a specification. Consider that, in an incremental definition,
a set of modules, M1, M2, · · · , Mk, defines direct semantics of constructs, and that module
Mk+1 defines sequencers, which demand the use of continuations. To avoid rewriting the
existing modules, it is sufficient to apply a module transformer which alters the signature
of semantic functions and the semantic equations to incorporate continuations; it is also
possible to transform semantic domains. The examples throughout this section refer to
this example of adding continuations to an existing definition.

Transformers are ordinary functions which operate on predefined domains repre-
senting Notus constructs. A comprehensive list of modules, domains, and functions are
available in [Tirelo and Bigonha 2007]. A module transformer has domain Module →
Module, where Module is a predefined domain representing modules in Notus. It means
that the effect of such transformation is to create a new module from a given module, by
individually processing its components. Transformers may be defined and applied in any
module in the specification, provided it obeys the rules set in this section.

6.2. Transformer Application

Applications of module transformer are specified in the import lists of modules. For
instance, if module M1 imports module M2, applying transformer f , then the import list
of module M1 contains f M2. Function f may be defined in module M1 or in any other
module it imports. In addition, transformer f is also applied to the modules imported by
M2, to the modules they import, and so ever, which keeps the programmer from listing all
imported modules.

module Ma
function f : A -> B;
f a = ...
...

end

module Mb
function g : X -> Y;
g x = ...
...

end

module Mc
import t Ma, ...;
function t : Module -> Module;
... usage of (f a) ...

end

module Md
import Mc, t Mb, ...;
... usage of (g x) ...

end
XXX

Figure 5. Example of Modules of a Specification.

In the example of Figure 5, module Ma defines function f, and module Mb defines
function g; module Mc defines transformer function t, which is applied to module Ma;
module Md applies transfomer t, imported from module Mc, to its imported module Mb.

6.3. Transformer Graph

Transformer applications in a Notus specification are modeled by a transformer graph,
which is a directed and labeled graph G = (V, E), such that V is the set of modules in the
specification, and the edge set, E, is defined by:

E = {(m1, m2) ∈ V × V | module m1 imports module m2} .

Each edge in E is labeled with the transformer function used in the import, or by the
identity function, if no transformer is applied in the import.

Given a path π = 〈e1, e2, · · · , en〉 ∈ E∗ in G, the transformer of π is the function
fπ = f1 ◦ f2 ◦ · · · ◦ fn, where each fi is the label of edge ei. For instance, the transformer
of the path from Md to Ma of the graph corresponding to the modules in Figure 5 is i ◦ t.

A specification is consistent if for all pair of modules m1, m2 such that the ele-
ments of m1 are used by m2, the elements of m1 are uniquely interpreted in m2. In the
transformer graph, for each pair of vertices m1, m2, such that there are more than one path
from m1 to m2, fπ = fπ′ , for all π, π′ from m1 to m2. By this definition the specification
composed by the modules in Figure 5 is consistent. If a specification is not consistent,
then a compilation error is issued. In a consistent specification, each module m consid-
ers a imported module m′ is the module fπ m′, where π is a path from m to m′. In the
example of Figure 5, module Md uses module (i ◦ t) Ma.

7. Conclusion
A new solution to the scalability of denotational semantics specifications of programming
languages is proposed in this paper. This solution, based on oblivious context trans-
mission and module transformations, improves the readability of semantic equations by
adequately handling interfering language constructs, such as repetition statements and
sequencers. It permits changes to existing equations in order to accommodate context in-
formation transmission, which is required by new constructs in an incremental definition,

using only features with which language designers are familiar. For instance, a trans-
formation from direct to continuations semantics may be achieved by including a single
module in the specification.

The main advantage of the proposed method is that the context modularization
problem, defined in Section 2, is solved in a simple and independent manner. Antecedents
are abstracted away an argument in a context domain, and are only revealed when neces-
sary. The intended use of each context element is made explicit by means of the classifica-
tion of information as ephemeral or persistent. The inclusion of new context information
is done in a uniform way and does not require adapting stores and environments.

Existing approaches for modular denotational semantics also provide techniques
to make antecedents transparent, but at a higher cost. Adapting the kernel of action se-
mantics solution consists of changing a monolithic kernel, whose difficulty is highlighted
by [Wansbrough and Hamer 1997]. In monadic semantics, those changes may require
the definition of new monad transformers, which not always compose in an elegant way,
requiring the definition several new ”lift” functions. In monadic action semantics, the ker-
nel of action semantics is modularized, but its change suffers from the same difficulties
of monadic semantics.

The modularization of structural context of constructs is a problem not solved by
current approaches. The presented solution is based on properties of context domains.
Once a function having a context argument is applied, its context must be stored to be
used when needed in inner constructs. Multiple destinations in constructs, when caused
by the inclosing structure of a construct, are also modularized by this solution. How-
ever, the presented approach does not yet address the problem of modularizing multiple
destinations of labeled goto statements of Pascal and C.

Language properties enforcement usually causes tangled code in semantic equa-
tions. In the proposed approach, this problem is solved by defining a single transformer,
which directs this inclusion to be transparently done by the compiler, this enforcement
may be confined to a single module.

The current stage of this work includes the formalization of Notus, its implemen-
tation, and the solution of the multiple destination problem caused by goto statements.
Future work comprehends the definition of new standards for denotational semantics and
further studies of its properties and consequences.

Because of the inherent complexity of large scale programming languages, the
proposed approach does not completely solve the scalability problem of denotational se-
mantics, but represents an important step forward in the direction of simplifying the prac-
tical use of this method.

References

Bigonha, R. S. (2006). The Scalability Problem of Denotational Semantics. Talk pre-
sented in the Brazilian Symposium on Programming Languages 2006.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming, page 220ff. Springer-Verlag.

Laddad, R. (2003). AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning.

Liang, S., Hudak, P., and Jones, M. (1995). Monad Transformers and Modular Inter-
preters. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 333–343, New York, NY, USA. ACM
Press.

Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall.

Moggi, E. (1991). Notions of computation and monads. Inf. Comput., 93(1):55–92.

Mosses, P. D. (1977). Making denotational semantics less concrete. In Proc. Int. Work-
shop on Semantics of Programming Languages, Bad Honnef, number 41 in Bericht,
pages 102–109. Abteilung Informatik, Universität Dortmund.

Mosses, P. D. (1979). SIS, Semantics Implementation System: Reference manual and
user guide. DAIMI MD30 MD–30, Dept. of Computer Science, Univ. of Aarhus.

Mosses, P. D. (1992). Action Semantics, volume 26 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

Mosses, P. D. and Watt, D. A. (1993). Pascal action semantics, version 0.6. http:
//www.brics.dk/∼pdm/papers/MossesWatt-Pascal-AS/.

Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems into Modules.
Commun. ACM, 15(12):1053–1058.

Scott, D. and Strachey, C. (1971). Toward a mathematical semantics for computer lan-
guages. Programming Research Group Technical Monograph PRG-6, Oxford Univ.
Computing Lab.

Tirelo, F. (2005). Semântica Multidimensional de Linguagens de Programação – Proposta
de Tese de Doutorado. Technical report, Laboratório de Linguagens de Programação,
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais.

Tirelo, F. and Bigonha, R. S. (2007). The Notus Language. Technical report, Laboratório
de Linguagens de Programação, Departamento de Ciência da Computação, Universi-
dade Federal de Minas Gerais, Belo Horizonte, Brazil.

Wadler, P. (1990). Comprehending Monads. In LFP ’90: Proceedings of the 1990 ACM
conference on LISP and functional programming, pages 61–78, New York, NY, USA.
ACM Press.

Wadsworth, C. (1978). Mathematical Background to Denotational Semantics. Lecture
notes on denotational semantics course at UCLA.

Wand, M., Kiczales, G., and Dutchyn, C. (2004). A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Trans. Program. Lang. Syst., 26(5):890–
910.

Wansbrough, K. and Hamer, J. (1997). A Modular Monadic Action Semantics. In Pro-
ceedings of the Conference on Domain-Specific Languages, Santa Barbara, California,
pages 157–170. The USENIX Association.

