
Indentifying object-oriented software metrics thresholds

Kecia A. M. Ferreira, Mariza A. S. Bigonha, Roberto S. Bigonha,
Luiz F. O. Mendes, Heitor C. Almeida, Kecia A. M. Ferreira, Mariza A. S.

Bigonha, Roberto S. Bigonha

Dept. Computer Science – Universidade Federal de Minas Gerais (UFMG), Av. Antônio
Carlos, 6627 - Pampulha - CEP: 31270-010 - Belo Horizonte - Brazil

Abstract

Despite the importance of software metrics and the large number of proposed
metrics, they have not been widely applied in industry yet. One reason for
this may be that for most metrics reference values for measurements are not
known. This paper presents results of a study on the structure of a large
collection of open source software developed in Java, varying size and from
different application domains. The aim of this work is the characterization
of open source software by means of a set of object-oriented software met-
rics, namely: LCOM, DIT, coupling factor, afferent couplings, number of
public methods and number of public fields. The results of the study pro-
vide important insights on the structure of open source software, confirming
the intuitive notion that open source software development emphasizes high-
quality code. The primary conclusion of this work is the identification of
values to be used as reference for the six software metrics. The methodology
used in this study can be applied for other software metrics in order to find
their reference values.

Keywords:
software metrics thresholds, open source software, object-oriented software

1. Introduction

Software metrics allow measurement, evaluation, control and improve-
ment of software products and processes. Much research has been spent in
order to define and evaluate software metrics (Fenton and Neil, 2000; Xenos
et al., 2000; Baxter et al., 2006; Kitchenham, 2009). Despite their importance
and the large number of proposed metrics, they have not been applied widely

Preprint submitted to The Journal of Systems ans Software February 28, 2010

in the industry yet. Tempero (2008) believes that this is due the fact that
for most metrics typical values for measurements are not known. If software
engineers do not know which values of measures of a software metric can
be considered as low, high or acceptable, they are not able to apply it and
software metrics will not be very useful. In particular for object-oriented
software, little is known about simple information, such as the number of
methods in a typical class and the typical number of classes used by a class.
Object-oriented software characterization is important in order to obtain this
type of information.

The aim of this work is to identify thresholds for a set of object-oriented
software metrics. To achieve this goal, we investigated the metrics values
most commonly used in practice. We performed a study on the structure
of a large collection of open source software developed in Java, from dif-
ferent application domains. The main reason why we studied open source
software is the availability of data about this kind of software, including
its source code. There is a great amount of software of this type. Source-
forge (www.sourceforge.net), for instance, has more than 176,000 avalialable
programs. Furthermore, open source software is thought to have more main-
tainability than closed source software, and its development seems to solve
common problems of traditional software development, since it is possible to
produce high-quality software in a brief amount of time (Samoladas et al.,
2004). Since maintainability is one of the most important software quality
factors and is a condition to open source software success, the characteriza-
tion of this type of software can bring important insights about its actual
structure. The observed characteristics of open source software by means of
software metrics in this work reveals that this type of software stresses high
quality: classes are low connected each other, have high cohesion, few public
methods and fields, and also short inheritance tree. This important insight
about open source software leads to consider their measures of metrics as
reference.

The paper is organised as follows. Section 2 discusses relevant related
work. Section 3 describes the methodology used in this research, providing
background of the analysed metrics. Section 4 presents results of this study
and their analysis. Section 5 identifies the software metrics thresholds sug-
gested in this work. Section 6 brings the conclusions and suggested future
works.

2

2. Related Work

A large number of metrics have been proposed (Abreu and Carapuça,
1994; Chidamber and Kemerer, 1994; Xenos et al., 2000; Kitchenham, 2009).
Despite the amount of effort spent in the definition and evaluation of software
metrics, this research area poses great challenges and the typical values of
most software metrics are not known yet (Tempero, 2008). Proper metric
values interpretation is essential to characterize, evaluate and improve the
design of large software, and knowing the typical values of software metrics
is necessary in order to interpret the measures of these metrics. Therefore,
without knowing metrics thresholds, software community will not be able to
apply software metrics in practice (Lanza and Marinescu, 2006). This section
discusses works concerned with software structure characterization by means
of software metrics and with identification of software metrics thresholds.

Attention has been given by researchers to the way software modules
connect with each other. A conclusion drawn by those works is that soft-
ware seems to be governed by power laws (Baxter et al., 2006; Louridas
et al., 2008; Potantin et al., 2005; Puppin and Silvestrini, 2006; Wheeldon
and Counsell, 2003). A power law is a probability distribution function in
which the probability that a random variable X be equal to x is proportional
to a negative power of x, i.e.,P (X = x) ∝ cx−k. A power law distribution
is a heavy-tail distribution. A characteristic of this type of distribution is
that the frequency of high values for the random variable is very low and the
frequency of low values is high. In this distribution, the mean value is not
representative, and so, there is no value that can be considered as a typical
value to random variable. A great number of phenomena can be modeled by
power laws, for instance: use of word frequency, author citations in papers,
phone calls, city populations and some real-world networks, such as in-degree
in Internet nodes (Newman, 2003).

Some researches have identified power laws in graphs that represent rela-
tionships between classes and objects in an object-oriented system. Potantin
et al. (2005) analysed 60 graphs of 35 software systems and concluded that
the geometry of relationship between objects, in execution time, is scale free.
A scale free graph is different from a graph with edges distributed randomi-
cally. In a random graph, mean value of nodes degree is representative, while
in a scale free graph this is not true. Wheeldon and Counsell (2003) identified
power laws in classes relationship in Java programs. Their study envolved
three well-known software systems: JDK (Java Development Kit), Apache

3

Ant and Tomcat, in a total of 6,870 classes. Their work verified power laws
in the following types of connections between classes in object-oriented soft-
ware: inheritance, interface implementation and aggregation, use of a class
in parameter lists and use of a class as return type. In addition, power law
was verified in the following class characteristics: number of fields, methods
and contructors. Louridas et al. (2008) analysed probability distributions
that model in and out-degree of software modules. The sample is from pro-
grams developed in C, Perl, Java and Ruby. A set of 11 software systems was
analysed, among them J2SE SDK, Eclipse, OpenOffice and Ruby. The study
concludes that, regardless of the programming paradigm, in and out-degree
are governed by power law.

The study of Baxter et al. (2006) investigated the structure of a large
number of Java software and it is one of the first studies of this nature. The
data set used in their study is from 56 open source software, with varying size
and from different application domain. They collected and analysed measures
of several metrics and concluded that some metrics fit to a power law and
others do not. For example, the study suggests that in-degree distribution
and number of subclasses are power law, but out-degree, number of fields
and number of public fields are not. This conclusion diverges from findings
of the study of Louridas et al. (2008), that found power law in out-degree
of classes. Findings of Baxter et al. (2006) and Louridas et al. (2008) are
important because they bring information that can allow understanding the
shape of open source software. However, the results are not explored in
order to identify typical or reference values for the analysed metrics, and the
studies did not directly analyse metrics of important quality factors, such as
module coupling and cohesion.

Lanza and Marinescu (2006) identify two sources for thresholds values:
statistical information and the widely accepted knowledge. Statistics-based
thresholds are derived from statistical analisys of data from a population or
a sample of a population. Using statistical analysis, they suggest thresholds
for three software metrics: number of methods per class, lines of code per
method, cyclomatic number per lines of code. They collected these metrics
from 37 C++ systems and 45 Java systems. The diversity of size, application
domain and type (open-source and commercial software) was the basis of the
sample selection. They aim to identify, for those three metrics: the typical
values, that include the interval of values from most systems; the lower and
the higher values of this interval; and a value which can be considered an
outlier, an extreme high value. Considering a normal distribution for the

4

collected data, they applied average and standard deviation in order to find
the thresholds: for each metric, the average is used to define the most typical
value and the standard deviation is used to define the two margins of the
typical values interval and the outlier. They consider a value as an outlier
if it is 50% higher than the highest value of the interval. The methodology
applied in their work is useful only if the values follow a normal distribu-
tion. However, as pointed by the other studies described in this section, a
large number of software metrics follow power law. Then, interpreting these
metrics in terms of average values can be extremely misleading.

This paper presents a research that advances characterization of object-
oriented open source software by means of six software metrics that have not
been studied in this way in previous works: LCOM (lack of cohesion in Meth-
ods), DIT (Depth in Inheritance Tree) (Chidamber and Kemerer, 1994), COF
(coupling Factor) (Abreu and Carapuça, 1994), afferent couplings, number
of public methods and numbeL of public fields. These metrics are described
in Section 3.1. This research investigates probability distributions that fit to
values of metrics used in the study. Considering the fact that open source
software tends to have high-quality (Samoladas et al., 2004), the results are
explored in order to identify values that can be taken as reference for mea-
sures of those metrics. This is an open question in software engineering and
its solution can help providing the effective use of software metrics in software
production.

3. Methodology

Data used in this study are from 40 Java open source software, down-
loaded from SourceForge (www.sourceforge.net), varying size from 18 to 3,500
classes, in their latest version up to June 2008. Program codes are from 11 ap-
plication domains and three types: tool, library and framework. More than
26,000 classes were analysed. Software names, their application domains,
types and size are described in Table 1 and 2. A tool, called Connecta (Fer-
reira et al., 2008), was used to collect measures of the metrics. Connecta
collects measures of object-oriented software metrics from bytecodes of Java
programs. For this reason, a criterion to choose software to be analysed in
this study was the bytecode availability.

Three types of analysis are made on the collected measures: to the entire
data set, by application domain, type and size of software systems. The
hypothesis investigated is whether there is a single distribution probability

5

Table 1: software systems, their application domain, type, size and COF metric

Domain Software Type #Classes #Connections COF

Clustering Essence framework 182 543 0,016

Gridsim tool 214 774 0,017

JavaGroups tool 1061 3807 0,003

Prevayler library 90 137 0,017

Super (Acelet-Scheduler) tool 246 1085 0,018

Database DBUnit framework 289 911 0,011

ERMaster tool 569 2187 0,007

Hibernate framework 1359 5199 0,003

Desktop Facilitator tool 2234 6565 0,001

Java Gui Builder tool 60 126 0,036

Java X11 Library library 318 1146 0,011

J-Pilot tool 142 367 0,018

Scope framework 214 535 0,012

Development Code Generation Library library 226 662 0,013

DrJava tool 2766 9684 0,001

Find Bugs tool 1019 3108 0,003

Jasper Reports library 1233 5610 0,004

Junit framework 154 353 0,015

Spring framework 2116 7069 0,002

BCEL library 373 2111 0,015

that can model measures of a metric, regardless the application domain and
type of software.

This section presents the software metrics analised in this study, the
method of fitting data and the approach used to identify reference values.

3.1. Software Metrics

There is a great number of object-oriented software metrics in the liter-
ature, among them are highlighted the CK metrics, by Chidamber and Ke-
merer (1994), and the MOOD set metrics, by Abreu and Carapuça (1994).
In this study, the following metrics are used:

COF (Coupling Factor): this metric is calculated for the system. It is based
on the concept of client-server relationship between classes. Conside-

6

Table 2: software systems, their application domain, type, size and COF metric

Domain Software Type #Classes #Connections COF

Enterprise Liferay framework 14 14 0,077

Talend tool 2779 3567 0,000822

uEngine BPM framework 708 1774 0,004

YAWL tool 382 1186 0,008

Financial JMoney tool 193 424 0,019

Games JSpaceConquest tool 150 424 0,019

KoLmafia tool 810 5106 0,008

Robocode tool 213 738 0,016

Hardware Jcapi library 21 61 0,145

LibUSBJava library 35 90 0,076

ServoMaster library 55 117 0,039

Multimedia CDK library 3586 14711 0,001

JPedal tool 539 1533 0,005

Pamguard tool 1503 5267 0,002

Networking BlueCove library 142 461 0,023

DHCP4Java library 18 29 0,095

jSLP library 42 156 0,091

WiKID Strong Authentication library 50 27 0,011

Security JSch library 110 226 0,022

OODVS library 171 325 0,011

ring this concept, a class A is client of a server class B if A references
at least one member of B. If A is client of B, then A is connected to
B. In this study, when A is a subclass of B, it is also considered that
there is a connection from A to B. Therefore, a software system can
be modeled as a directed graph. In a software having n classes, the
maximum possible number of connections is n2 − n. COF is given
by c/(n2 − n), where c is the number of actual connections in the
software. This metric is an indicator of the connectivity level of the
system. The higher COF value, the higher the connectivity of the
system and the lower its maintainability (Abreu and Carapuça, 1994).
As asserted by Meyer (1997), in a software architecture,“every module
should communicate with as few others as possible”, otherwise changes

7

and errors may propagate widely in the system.

Number of public fields: this metric is the total number of public fields
defined in a class. Using public fields is not a good practice because it
favors strong coupling between classes.

Number of public methods: this metric is the total number of public me-
thods defined in a class. It is an indicator of the size of a class.

LCOM (Lack of Cohesion in Methods): this metric, defined by Chidamber
and Kemerer (1994), measures the cohesion level of a class by conside-
ring the concept of similarity of methods of the class. Two methods are
similar if they use at least one common field of their class. LCOM is
given by the number of pairs of non-similar methods minus the number
of pairs of similar methods. When the number of pairs of non-similar
methods is less than the number of pairs of similar methods, LCOM is
setted to zero. According to Chidamber and Kemerer (1994), the higher
LCOM value, the lower the class cohesion, however a zero value does not
necessarily mean good cohesion. There is a large number of cohesion
metrics for object-oriented software and LCOM has been critised in
the literature (Briand et al., 1999). In spite of this, we consider LCOM
in our study because there is no consensual conclusion about the best
way on measuring class cohesion. In addition, some cohesion metrics
are based on the same idea of similarity used by LCOM.

DIT (Depth of Inheritance Tree): this metric is given by the maximum
distance of a class from the root class in the inheritance tree of the
system. Inheritance is a powerful technique of software reuse, neverthe-
less Gamma et al. (1994) claim its immoderate use can make software
design more complex. They, then, define a principle: favor object com-
position over class inheritance. In the same vein, Sommerville (2000)
argues that inheritance introduces difficulties in the comprehension of
objects behavior. An empirical study of Daly et al. (1996) shows that
deep inheritance trees makes software maintenance more difficult. DIT
indicates how deep is a class in the inheritance tree. It is considered
by its authors as an indicator of the design complexity of the system
(Chidamber and Kemerer, 1994). The higher the DIT of a class, the
more complex its comprehension, because more classes are involved in
its analysis.

8

Afferent couplings: this metric, defined by Ferreira et al. (2008), is based
on the same concept of client-server relationship between classes used
by COF. If A is client of B, then A is connected to B and, so there is
an afferent coupling in B from A and a corresponding efferent coupling
in A. This metric is the total number of afferent couplings in a class.
Classes having high number of afferent couplings play an important
role in the system, because errors or modifications on them can widely
impact the other ones.

3.2. Data Fitting

A tool, called EasyFit (Mathwave, 2010), was used to make data fitting to
various probability distributions, such as Bernoulli, Binomial, Uniform, Geo-
metric, Hypergeometric, Logarithmic, Binomial, Poisson, Normal, t-Student,
Chi-square, Exponential, Lognormal, Pareto and Weibull. A probability dis-
tribution has two main functions: the pdf (probability density function), f(x),
that indicates the probability the random variable takes a value x, and the cdf
(cumulative distribution function), F (x), that indicates the probability the
random variable takes a value less than x. In the experiment of this study,
the following probability distributions are well fitted to the data: Poisson
and Weibull.

Poisson distribution has pdf, fp(x), and cdf, Fp(x), defined by Equations
1 and 2 respectively. The parameter λ of the distribution is the mean value
of the random variable.

fp(x) = P (X = x) =
e−λ.λx

x!
(1)

Fp(x) = P (X ≤ x0) =

x=x0∑
x=0

e−λ.λx

x!
(2)

Weibull distribution has pdf, fw(x), and cdf, Fw(x), with parameters α
and β, defined by Equations 3 and 4 respectively. The parameter β is
called scale parameter. Increasing the value of β has the effect of decreasing
the height of the curve and stretching it. The parameter α is called shape
parameter. If the shape parameter is less than 1, Weibull is a heavy-tail
distribution and it can be applied in cases in which the random variable
presents left assimetry, i.e., when there is a small number of ocurrences with
high values and a far greater number of ocurrences with low values. In this
kind of distribution, the mean value is not significant.

9

fw(x) = P (X = x) =
α

β
(
x

β
)α−1e−(x

β
)α

, α > 0, β > 0 (3)

Fw(x) = P (X ≤ x) = 1− e−(x
β

)α

, α > 0, β > 0 (4)

3.3. Data Analysis

For each metric, data were collected and two plots were genetared: a
scatter plot, in order to exhibit the frequency of measures, and the same
data in doubly logarithmic scale (log-log scale), in order to observe whether
the distribution shows itself to be a power law. When plotted in a log-log
scale, power law distributions are right-skewed and have an approximately
straight-line form. A power law distribution for a metric indicates that the
frequency of high values for the metric is very low and the frequency of low
values is high. This analysis brings important insigths on the structure of
open source software, by confirming or refuting the intuitive notion that open
source software development emphasizes high-quality code. For instance, if
LCOM measures appear to have power law distribution, then it is possible
conclude that most classes have good cohesion.

Data were fitted to probability distributions and, considering the indica-
tion of best fitting from the used tool and the visual analysis of the fittings,
it was identified the probability distribution with best fit to the data. If the
probabiliy distribution has a representative mean value, like Poisson distri-
bution, this value is taken as typical for the metric, otherwise, we should
work with three ranges of metric values: good, regular and bad. The good
range corresponds to values with high frequency, the bad range corresponds
to values with probability of ocurrence tending to zero, and the regular range
is an intermediate one, that corresponds to values that are not too frequent
neither have very low frequency.

This aproach was employed based on the following judgment: data are
from open source, and development of this kind of software should emphasize
high-quality, specially maintainability. Since, open source software systems
are thought to be constructed in order to facilitate their maintainance and
use, even without documentation or technical supportand, characteristics of
this type of software may be taken as a model, and the measures of their
metrics can be taken as reference values.

We are not able to confirm that all open source software systems possess
high-quality in general. However, some well-known open source software

10

systems are used in this study, among them JUnit, Hibernate and Spring
frameworks, which are widely used in software development industry. We
evaluated two software codes qualitatively: BCEL and Robocode. BCEL
is a library for manipulation of Java classes bytecodes and we used it in
Connecta implementation. We consider BCEL as a well constructed library,
modular and easy to use. Robocode is a popular programming game in
which Java is used to program robots to do battle against each other. Our
evaluation of source code structure of Robocode concludes that its classes
are well constructed, most of them do not have public fields and have few
and short methods. However, qualitative evaluation of software structure is
error-prone, specially for large software systems. Nevertheless, by the results
of this study, discussed in Section 4, the sample used shows itself to possess
good quality in the sense of the factors evaluated by the metrics studied in
this work: classes are low connected each other, have few public fields, short
interface, few superclasses and good cohesion. Therefore, we suggest taking
the measures most commonly used in practice in open source software as
thresholds.

(a) (b)

Figure 1: COF - (a) frequency and (b) fitting to Weibull distribution.

11

(a) (b)

(c) (d)

Figure 2: Afferent Couplings - (a) frequency, (b) frequency in log-log scale, (c) fitting to
Weibull distribution and (d) frequency detailed.

4. Results

In this section, we describe the findings of our study. First, results of
the entire data set are described. Then, we discuss results of the analisys
performed on application domains, types and size of the software systems.

4.1. Data Fitting of Metrics in the Entire Data Set

4.1.1. COF

The COF scatter plot in Figure 1a shows that values less than 0,20
are far more frequent than higher values. COF can be modeled by Weibull

12

distribution, with parameters α = 0, 91927 and β = 0, 01762. Figure 1b
shows fitting data with Weibull distribution. Based on graphic analysis,
more than 80% of the programs have COF less than 0,02, the probability
that COF takes values 0,02 to 0,14 is quite low, and the probability that
COF takes values higher than 0,14 tends to zero. This result points out
that, in most cases, open source software is low connected and this is a fact
that may contribute to its maintainability.

4.1.2. Afferent Couplings

The scatter plot for afferent couplings, shown in Figure 2a, suggests a
heavy-tail distribution. Figure 2b shows the same data plotted in logarithmic
scale (log-log scale). In this plot, distribution shows itself to be linear, that
is the characteristic signature of a power law. There is a small number of
classes with high number of afferent couplings and a far higher number of
classes with few afferent couplings. As shown by Figure 2c, values of this
metric can be modeled by Weibull distribution, with parameters α = 0, 78986
and β = 3, 2228. Afferent couplings distribution is detailed in Figure 2d.
Almost 50% of classes have one afferent coupling at most, the probability
that a class takes 1 to 20 afferent couplings is low, and the probability to
be greater than 20 tends to zero. This indicates that most classes directly
impact only one class at most. This can contribute to maintainabilty and
to software quality in general, because a modification or an error in a class
would impact in a low number of classes.

4.1.3. LCOM

LCOM also is fitted by a heavy tail distribution. Figure 3a shows a
scatter plot of the data set, and Figure 3b shows the same data plotted
in log-log scale. This plot indicates that LCOM values follows a power law.
Values of LCOM can be modeled by Weibull distribution, as shown in Figure
3c, with parameters α = 0, 23802 and β = 1, 465. Figure 3d details LCOM
distribution. Almost 50% of classes have LCOM equals to zero, that means
good cohesion. There are classes with LCOM between 0 and 20 in a low
frequency, less than 12%, and the probability that a class has LCOM greater
than 20 tends to zero.

4.1.4. DIT

The scatter plot in Figure 4a shows distribution of DIT values and Figure
4b shows the same data in a log-log scale. These plots do not suggest power

13

(a) (b)

(c) (d)

Figure 3: LCOM (a) frequency, (b) frequency in log-log scale, (c) fitting to Weibull distri-
bution and (d) frequency detailed.

law characteristics in DIT values distribution. DIT values can be fitted to
Poisson distribution, as shown in Figure 4c, with parameters λ = 1, 6818.
In Poisson distribution, λ gives the mean value of the random variable. By
this finding, in an open source software, the largest distance from a class to
the root in the inheritance tree is 2, in general. This reflects that this kind
of software do not have very deep inheritance tree, which also contributes to
software maintainability by decreseasing software complexity, as asserted by
Gamma et al. (1994), Daly et al. (1996) and Sommerville (2000).

14

(a) (b)

(c)

Figure 4: DIT - (a) frequency, (b) frequency in log-log scale, (c) fitting to Poisson distri-
bution.

4.1.5. Public Fields

The scatter plot of number of public fields, shown in Figure 5a, reveals
that there is a low number of classes with a great number of public fields and,
in most cases, this number is near to zero. Figure 5b shows the data plotted
in a log-log scale, which indicates that number of public fields in classes also
follows a power law.This metric can be modeled by Weibull distribution with
parameters α = 0, 71008 and β = 4, 4001, what is shown in Figure 5c. Figure
5d details the same distribution. Most of 75% of the classes have no public
field. Classes with 1 to 10 public fiels is quite rare, and the probability that
a class has more than 10 public fields tends to zero. This is another sign

15

(a) (b)

(c) (d)

Figure 5: Public Fields - (a) frequency, (b) frequency in log-log scale, (c) fitting to Weibull
distribution and (d) frequency detailed.

of good quality of open source software, because indicates that this kind of
software, in general, is not prone to strong module coupling.

4.1.6. Public Methods

The frequency of number of public methods is shown in Figure 6a and, in
a log-log scale, in Figure 6b. These plots show that number of public methods
follows power law. This metric can be modeled by Weibull distribution, with
parameters α = 0, 85938 and β = 5, 6558, as shown in Figure 6c. The
frequency of number of public methods is detailed in Figure 6d. Graphical
analysis of data shows that there is a low portion of classes with a great

16

(a) (b)

(c) (d)

Figure 6: Public Methods - (a) frequency, (b) frequency in log-log scale, (c) fitting to
Weibull distribution and (d) frequency detailed.

number of public methods and most classes have few public methods. Most
classes have 0 to 10 public methods, classes with 10 to 40 public methods
are rare and the probability that a class has more than 40 public methods
is quite low. By these findings, it could be concluded that, in most of cases,
classes have narrow interface.

17

Table 3: General Thresholds for OO software metrics

Factor Level Metric Reference Values

Connectivity System COF Good: up to 0,02 Regular: 0,02 to 0,14 Bad: greater than 0,14

Class # Afferent couplings Good: up to 1 - Regular: 2 to 20 - Bad: greater than 20

Information hiding Class # Public fields Good: 0 - Regular: 1 to 8 - Bad: greater than 8

Interface size Class # Public methods Good: 0 to 10 - Regular: 11 to 40 - Bad: greater than 40

Inheritance Class DIT Typical value: 2

Cohesion Class LCOM Good : 0 - Regular: 1 to 20 - Bad: greater than 20

5. Software Metrics Thresholds

A large number of object-oriented open source software was evaluated by
means of six software metrics in this study. Findings in this study suggest
that open source software has good quality in general: classes are low con-
nected each other, have high cohesion, few public methods and fields, and
also short inheritance tree. Considering this, the characteristics of this type
of software may be used as target to software development, and measures
of their software metrics can be taken as reference. We, then, propose to
use the most commonly software metrics measures founded in practice as
thresholds. From the achieved results, it is possible to identify three ranges
of reference values to the metrics: good, which refers to the most common
values of the measures of the metric in open source software, regular, which
is an intermediate range that refers to values with low frequency but not
irrevelant, and bad, that refers to values with quite rare occurrences. For
instance, LCOM, which frequency is shown in Figure 3d, is 0 for more than
44% of the classes, values between 1 and 20 occur in a very low frequency,
and values greater than 20 are rare. Therefore, we derive the LCOM thre-
shold: 0 (good cohesion), 1 to 20 (regular cohesion) and greater than 20 (bad
cohesion). The same analysis is performed for the other metrics. References
values suggested for COF, LCOM, DIT, afferent couplings, number of public
methods and number of public fields are sumarized in Table 3. We also
carried out a similar analysis by application domains, type and size of the
software systems. The results of this analysis are described in Sections 5.1,
5.2 and 5.3, respectively.

18

5.1. Thresholds for OO Software Metrics by Application Domains

The software metrics studied in this work were analised for each appli-
cation domain of the software systems listed in Table 1. We founded that
a software metric, in a specific application domain, can be modeled for the
same probability distribution that fits the metric in the entire data set. Using
the same analysis performed to the entire data set, we derived the reference
values by application domains reported in Table 4. There is a slight dif-
ference between the results of the application domains, and these results do
not disagree with that founded to the entire data set. This is true even for
the Financial application that has only one software system analised in this
work. So, we believe that the general result, listed in Table 3, can be used to
software systems in general. However, it is necessary a more detailed analysis
by application domains, since the sample of each application domain is small.

Table 4: Thresholds for OO software metrics by application domains

Application

Domain

Afferent Coupling

(good/regular/bad)

Public fields

(good/regular/bad)

Public methods

(good/regular/bad)

DIT (typical

value)

LCOM

(good/regular/bad)

Clustering 0 - 1 / 1 - 20 / >20 0 / 1 - 7 / >7 0 - 20 / 20 - 45 / >45 2 0 / 1 - 20 / >20

Database 0 - 1 / 2 - 20 / >20 0 / 1 - 8/ >8 0 - 20 / 21 - 50 / >50 2 0 / 1 - 20/ >20

Desktop 0 - 1 / 2 - 20 / >20 0 / 1 - 8/ >8 0 - 20 / 21 - 55/ >55 2 0 / 1 - 15 / >15

Development 0 - 1 / 2 - 25 / >25 0 / 1 - 8 / >8 0 - 20 / 21 - 35 / >35 2 0 / 1-25 / >25

Enterprise 0 - 1 / 2 - 22 / >22 0 / 1 - 11 / >11 0 - 15 / 16 - 35 / >35 1 0 / 1 - 35 / >35

Financial 0 - 1 / 2 - 16 / >16 0 / 1 - 4 / >4 0 - 13 / 14 - 32 / >32 2 0 / 1 - 25 / >25

Games 0 - 1 / 2 - 22 / >22 0 / 1 - 9 / >9 0 - 20 / 21 - 32 / >32 1 0 / 1-35 / >35

Hardware 0 - 1 / 2 - 11 / >11 0 - 1 / 2 - 6 / >6 0 - 20 / 21 - 36 />36 2 0 / 1 - 80 / >80

Multimedia 0 - 1 / 2 - 20 / >20 0 / 1 - 9 / >9 0 - 35 / 36 - 60 / >60 2 0 / 1 - 60 / >60

Networking 0 - 1 / 2 - 20/ >20 0 / 1 - 5 / >5 0 - 15 / 16 - 40 / >40 2 0 / 1-40 / >40

Security 0 - 1 / 2 - 16 / >16 0 / 1 - 8/ >8 0 - 25 / 26-50 / >50 1 0 / 1 - 45 / >45

5.2. Thresholds for OO Software Metrics by Software Types

Measures were analysed for three types of software: tool, framework and
library. Results reveal those metrics have similar behaviour to that detected
in the entire data set analysis, regardless the type of software, what confirm

19

Table 5: Thresholds for OO software metrics by software types

Application

Domain

Afferent Coupling

(good/regular/bad)

Public fields

(good/regular/bad)

Public methods

(good/regular/bad)

DIT (typical

value)

LCOM

(good/regular/bad)

Tool 0 - 1 / 2 - 20 / >20 0 / 1 - 8 / >8 0 - 20 / 21 - 50 / >50 2 0 / 1-35 / >35

Framework 0 - 1 / 2 - 20 / >20 0 / 1 - 10 / >10 0 - 25 / 26-50 / >50 2 0 / 1 - 40 / >40

Library 0 - 1 / 2 - 25 / >25 0 / 1 - 8 / >8 0 - 25 / 26 - 40 / >40 2 0 / 1 - 30 / >30

the hypothesis that there is a single distribution probability that model values
of measures of a metric, regardless the type of software.

• Public Fields: in three cases, more than 80% of classes have no public
fields, the frequency of classes having 1 to 8 publics fields is very low,
and frequency of classes having more than 8 public fields is near to
zero.

• Public Methods: results of this metric are also similar in frameworks,
libraries and tools. There is a slight difference in tools, whose distribu-
tion curve is a little more left concentrated, what indicates that tools
have less public methods than frameworks and libraries. This makes
sense because both are service providers, while tools are not.

• LCOM: this metric has a very similar distribution in the three cases.
As the same result found to the entire data set, 50% of classes have
LCOM equal to zero.

• DIT: this metric can be modeled by Poisson distribution in the three
cases. There is a little diference in mean values: 1,68 in frameworks,
1,74 in tools and 1,96 in libraries.

• Afferent Couplings: in frameworks, libraries and tools, 20% of classes
have no afferent coupling, most of them have 1, frequency of classes
with 1 to 20 afferent couplings is low, and classes with more than 20
afferent couplings are rare.

Using the same analysis performed to the entire data set, we derived the
reference values by type of software system (tool, framework and library)
reported in Table 5.

20

Table 6: Thresholds for OO software metrics by software size

Application

Domain

Afferent Coupling

(good/regular/bad)

Public fields

(good/regular/bad)

Public methods

(good/regular/bad)

DIT (typical

value)

LCOM

(good/regular/bad)

6100 0 - 1 / 2 - 20 / >20 0 / 1 - 10 / >10 0 - 20 / 21 - 30 / >30 2 0 / 1 - 25 / >25

101 - 1000 0 - 1 / 2 - 20 / >20 0 / 1 - 8 / >8 0 - 25 / 6 - 50 / >50 2 0 / 1 - 20 />20

>1000 0 - 1 / 2 - 15 / >15 0 / 1 - 5 / >5 0 - 30 / 30 - 60 / >60 2 0 / 1 - 20/ >20

5.3. Thresholds for OO Software Metrics by Software Size

We grouped the software systems analised in this work in three sets ac-
cording their size: up to 100 classes, 101 to 1000 classes and more than 1000
classes. The software metrics studied in this work were analised for each set.
We founded that a software metric can be modeled by the same probability
distribution that fits it in the entire data set, regardless the software system
size. Using the same analysis performed to the entire data set, we derived
the reference values by software system size reported in Table 6. There is
a slight difference between the results founded for the sets. An interesting
difference is about the number of public fiels: the higher the software system
size, the lower the number of public fields. This makes sense because public
fields generate strong coupling between modules in a software system and
the larger the software system, the larger the coupling impact on it. Hence
public fields tends to be avoided in large software systems. The results of this
analysis do not disagree with that founded to the entire data set. Therefore,
we believe that the general result, listed in Table 3, can be used to software
systems in general, regardless the software system size.

6. Conclusion

The identification of reference values for software metrics is a question
in software engineering whose solution can make the use of software metrics
effective in the industry. This work presents a study carried out on a large
sample of object-oriented open source software and suggest thresholds for a
set of object-oriented software metrics. A set of 40 programs developed in
Java, including tools, libraries and frameworks, from 11 application domains,
was analysed, in a total of more than 26,000 classes. Six software metrics

21

were used in the study: COF, LCOM, DIT, afferent couplings, number of
public methods and number of public fields. The study concluded that those
metrics, except DIT, can be modeled by a heavy-tail distribution. This means
that, for most metrics, there is a low number of occurrences of high values
and a far higher number of occurences of low values. DIT can be modeled by
Poisson distribution, with 2 as mean value. This observed characteristic of
open source software reveals that this type of software stresses high quality:
classes are low connected each other, have high cohesion, few public methods
and fields, and also short inheritance tree. This important insight about open
source software leads to consider their measures of metrics as reference.

We derived general object-oriented software metrics thresholds, based on
the most commonly measures values founded in practice. We also derived
thresholds by application domains, software system size and type (tool, li-
brary and framework). As the results of this analysis do not disagree with
the general object-oriented software thresholds, we believe that this result
can be used as reference for objetc-oriented software in general. Neverthe-
less, it is necessary a more detailed analysis about this assumption because
the sample used for each application domain, size and type set is small.

The approach used in the study is suggested to be used in future works
to find reference values of other software metrics. The following future works
are identified: to extend the study to other programming languages in or-
der to investigate if there are different reference values depending on the
programming language; to evaluate the proposed reference values table in
a proprietary software development; to extend the study to other software
metrics.

This work was sponsored by FAPEMIG, as part of the project CONNECTA Process: CEX APQ-3999-5.01/07.

Fapemig.

References

Abreu, F. B., Carapuça, R., October 1994. Object-oriented software engineer-
ing: Measuring and controlling the development process. In: Proceedings
of 4th Int. Conf. of Software Quality. McLean, VA, USA.

Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton,
H., Tempero, E., 2006. Undertanding the shape of java software. In: OOP-
SLA’06. Oregon, Portland, USA.

22

Briand, L. C., Daly, J. W., Wüst, J., 1999. A unified framework for cohesion
measurement in object-oriented systems. IEEE Transactions on Software
Engineering 25, 91–121.

Chidamber, S. R., Kemerer, C. F., 1994. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 476–493.

Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M., 1996. An empirical
study evaluating depth of inheritance on the maintainability of object-
oriented software. Empirical Software Engineering 1, 109–132.

Fenton, N. E., Neil, M., 2000. Software metrics: roadmap. In: ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering.
ACM, New York, NY, USA, pp. 357–370.

Ferreira, K. A. M., Bigonha, M. A. S., Bigonha, R. S., 2008. Reestru-
turação de software dirigida por conectividade para redução de custo de
manutenção. Revista de Informática Teórica e Aplicada 15 (2), 155–179.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

Kitchenham, B., 2009. What’s up with software metrics? - a preliminary
mapping study. The Journal of Systems and Software 83, 37–51.

Lanza, M., Marinescu, R., 2006. Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer-Verlag, Germany.

Louridas, P., Spinellis, D., Vlachos, V., Setembro 2008. Power laws in soft-
ware. ACM Transactions on Software Engineering and Methodology 18 (1).

Mathwave, 2010. EasyFit. http://www.mathwave.com/products/easyfit.html,
acesso em Fevereiro de 2010.

Meyer, B., 1997. Object-oriented software construction, 2nd Edition. Prentice
Hall International Series, Estados Unidos.

Newman, M. E. J., 2003. The structure and function of complex networks.
In: SIAM Reviews. Vol. 45. pp. 167–256.

23

Potantin, A., Noble, J., Frean, M., Biddle, R., Maio 2005. Scale-free geometry
in oo programs. Communications of the ACM 48 (5), 99–103.

Puppin, D., Silvestrini, F., 2006. The social network of java classes. In:
SAC’06. Dijon, França, pp. 1409–1413.

Samoladas, I., Stamelos, I., Angelis, L., Oikonomou, A., Outubro 2004. Open
source software development should strive for even greater code maintain-
ability. Communications of the ACM 47 (10), 83–87.

Sommerville, I., 2000. Software Engineering, 6th Edition. Addison-Wesley.

Tempero, E., 2008. On measuring java software. In: ACSC2008 - Conferences
in Research and Practice in Information Technology (CRPIT). Vol. 74.
Wollongong, Australia.

Wheeldon, R., Counsell, S., Setembro 2003. Power law distributions in class
relationships. In: Proceedings of 3rd International Workshop on Source
Code Analysis and Manipulation (SCAM).

Xenos, M., Stavrinoudis, D., Zikouli, K., Christodoulakis, D., 2000. Object-
oriented metrics - a survey. In: FESMA 2000. Madrid, Spain.

24

