Reference Values for Six Object-oriented
Software Metrics

Kecia A. M. Ferreira, Mariza A. S. Bigonha, Roberto S. Bigonha,
Luiz F. O. Mendes, and Heitor C. Almeida

DCC - ICEx — Universidade Federal de Minas Gerais (UFMG)
Av. Antonio Carlos, 6627 - Pampulha - CEP: 31270-010 - Belo Horizonte - Brazil
{kecia,mariza,bigonha,lfmendes,heitorca}@dcc.ufmg.br,
WWW home page: www.dcc.ufmg.br

Abstract. Software metrics allow measurement, evaluation, control and
improvement of software products and processes. Despite the importance
of software metrics and the large number of proposed metrics, they have
not been widely applied in industry yet. One reason for this may be
that for most metrics reference values for measurements are not known.
This paper presents a study on the structure of a large collection of open
source software developed in Java, from different sizes and application
domains. The aim of this work is the characterization of open source
software by means of a set of object-oriented software metrics, namely:
LCOM, DIT, coupling factor, afferent couplings, number of public me-
thods and number of public fields. The results of the study provide im-
portant insigths on the structure of open source software, confirming the
intuitive notion that open source software development emphasizes high-
quality code. The primary conclusion of this work is the identification of
values to be used as reference for the six software metrics. The methodo-
logy used in this study can be applied in other software metrics in order
to find the reference values.

1 Introduction

Software metrics allow measurement, evaluation, control and improvement
of software products and processes. A great deal of researches have been made
in order to define and evaluate these software metrics [1-4, 14]. Despite their
importance and the large number of proposed metrics, they have not been ap-
plied widely in the industry yet. Tempero [12] believes that one reason for this is
that for most metrics typical values for measurements are not known. If software
engineers does not know which values of measures of a software metric can be
considered as low, high or acceptable, they are not able to apply it and software
metrics will not be very useful. In particular for object oriented software, little
is known about simple information, such as the number of methods in a typical
class and the typical number of classes used by a class. Object oriented software
characterization is important in order to obtain this type of information.

Maintainability is a software quality factor that can be improved by internal
software factors, such as low coupling between modules and high cohesion inside

modules. Open source software development should emphasize maintainability
because software can be freely used and modified. There is a great amount
of software of this type. Sourceforge (www.sourceforge.net), for instance, has
more than 176,000 avalialable software. According to Samoladas et al. [11], open
source software development seems to solve common problems of traditional soft-
ware development, since it is possible to produce high-quality software in a brief
amount of time. Since maintainability is one of the most important software
quality factors and is a condition to open source software success, the character-
izantion os this type of software can bring important insights about its quality.
And moreover, measures of metrics collected from open source software can be
used to define an initial reference for values of these metrics. The objective of
this research is the characterization of open source software by means of six soft-
ware metrics. Based on the results of the study, reference values of these metrics
are identified for these metrics.

The paper is organised as follows. Section 2 discusses the most relevant re-
lated works. Section 3 describes the methodology used in this research, providing
background of the analysed metrics. Section 4 presents results of this study and
their analysis. Section 5 brings the conclusions and suggested future works.

2 Related Works

Attention has been given by researchers to the way software modules connect
with each other. A conclusion drawn by those works is that software seems to be
governed by power laws [2,7,9,10,15]. A power law is a probability distribution
function in which the probability that a random variable X be equal to z is
proportional to a negative power of z, P(X = x) oc cx™F.

A power law distribution is a heavy-tail distribution. A characteristic of this
type of distribution is that the frequency of high values for the random variable
is very low and the frequency of low values is high. In this distribution, the mean
value is not representative, and so, there is no value that can be considered as a
typical value to random variable. A great number of phenomena can be modeled
by power laws, for instance: use of word frequency, author citations in papers,
phone calls, city populations and some real nets, such as in-degree in Internet
nodes [8].

Some researches have identified power laws in graphs that represent relation-
ship between software classes and objects in an object oriented system. Potanin
et al. [9] analysed 60 graphs of 35 software and concluded that the geometry of
relationship between objetcs, in execution time, is scale free. A scale free graph is
different from a graph with edges distributed randomically. In a random graph,
mean value of nodes degree is representative, in a scale free graph this is not
true. Wheeldon and Counsell [15] identified power laws in classes relationship
in Java programs. Their study envolved three well-known software: JDK (Java
Development Kit), Apache Ant and Tomcat, in a total of 6,870 classes. Their
work verified power laws in the following types of connections between classes in
object oriented software: inheritance, interface implementation and aggregation,

use of a class in parameter lists and use of a class as return type. In addition,
power law was verified in the following class characteristics: number of fields,
methods and contructors. Louridas et al. [7] analysed probability distributions
that model in and out-degree of software modules. The sample is from programs
developed in C, Perl, Java and Ruby. A set of 11 software was analysed, such as
J2SE SDK, Eclipse, OpenOffice and Ruby. The study concludes that, regardless
programming paradigm, in and out-degree are governed by power law.

A large number of metrics have been proposed [1, 3, 14]. Tempero [12] points
out that knowing the typical values of software metrics is necessary in order to
interpret the measurements. Some researches have been made in order to study
structure of software, but the typical values of most software metrics are not
known yet. The study of Baxter et al. [2] investigated the structure of a large
number of Java software and it is one of the first studies of this nature. The
data set used in the study of Baxter et al. is from 56 open source software,
varying size and application domain. They collected and analysed measures of
several metrics and concluded that some metrics fit to a power law and others do
not. For example, the study suggests that in-degree distribution and number of
subclasses are power law, but out-degree, number of fields and number of public
fields are not. This conclusion diverges from findings of the study of Louridas
et al. [7], that founded power law in out-degree of classes. Findings of Baxter et
al. [2] and Louridas et al. [7] are very important because they bring information
that can allow understanding the shape of open source software. However, the
results are not explored in order to identify typical or reference values for the
analysed metrics, and the studies did not directly analised metrics of important
quality factors, such as module coupling and cohesion.

This paper presents a research that advances characterization of object ori-
ented open source software by means of six software metrics that have not been
studied in this way in previous works: LCOM (lack of cohesion in methods),
DIT (depth in inheritance tree) [3], COF (coupling factor) [1], afferent cou-
plings, number of public methods and number of public fields. This research
investigates probability distributions that fit to values of metrics used in the
study. Considering the fact that open source software tends to have high-quality
[11], the results are explored in order to identify values that can be taken as
reference for measures of those metrics. This is an open question in software en-
gineering and its solution can help providing the effective use of software metrics
in software production.

3 Methodology

Data used in this study are from 40 Java open source software, downloaded
from SourceForge (www.sourceforge.net), varying size from 18 to 3,500 classes.
Program codes are from 11 application domains and three types: tool, library
and framework. In total, 26,202 classes were analised. Software names and their
domains are described in Table 1. A tool, called Connecta [5], was used to collect
measures. Connecta collects measures of object oriented software metrics from

bytecodes of Java programs. Because of this, a criteria to choose software to be
analysed in this study it was the bytecode availability.

Three types of analysis are made on the collected measures: to the entire data
set, by application domain and by type of software. The hypothesis investigated
is: there is a single distribution probability that can model measures of a metric,
regardless the application domain and type of software.

This section presents the software metrics analised in this study, the method
of fitting data and the approach used to identify reference values.

3.1 Software Metrics

There is a great number of object oriented software metrics in the literature,
among them are highlighted the CK metrics, by Chidamber and Kemerer[3], and
the MOOD set metrics, by Abreu and Carapuga[l]. In this study, the following
metrics are used:

COF (Coupling Factor): this metric is calculated to the system. It is based on
the concept of client-server relationship between classes. Considering this
concept, a class A is client of a server class B if A references at least one
member of B. If A is client of B, then A is connected to B. So, software can
be modeled as a directed graph. In this study, when A is a subclass of B, it
is also considered there is a connection from A to B. In a software having n
classes, the maximum possible number of connections is n? —n. COF is given
by ¢/(n? — n), where c is the number of actual connections in the software.
This metric is an indicator of the connectivity level of the system. Higher
COF value, higher the connectivity of the system and low its maintainability

[1].

LCOM (Lack of Cohesion in Methods): this metric is calculated for a class.
It considers the concept of similarity of methods. Two methods are similar
if they use at least one common field of their class. LCOM is given by the
number of pairs of similar methods minus the number of pairs of methods
without similarity. Higher LCOM value, lower the class cohesion [3].

DIT (Depth of Inheritance Tree): this metric is calculated for a class. It is the
maximum distance of a class from the root class in the inheritance tree. It is
considered an indicator of the design complexity, because higher the depth
in the inheritance tree, more complex the behavior of the class, because more
classes are involved [3].

Afferent couplings: this metric is calculated for a class. It is given by the total
number of classes that use services of the class, what involves method in-
vocations, field uses and subclasses. Classes having high number of afferent
couplings play important role in the system, because errors or modifications
on them can widely impact the other ones.

Table 1. software used in the study, their application domain, type, size and COF

metric
Domain Software Type #Classes | #Conexoes COF
Clustering Essence framework 182 543 0,016
Gridsim tool 214 774 0,017
JavaGroups tool 1061 3807 0,003
Prevayler library 90 137 0,017
Super tool 246 1085 0,018
Database DBUnit framework 289 911 0,011
ERMaster tool 569 2187 0,007
Hibernate framework 1359 5199 0,003
Desktop Facilitator tool 2234 6565 0,001
Java Gui Builder tool 60 126 0,036
Java X11 Library library 318 1146 0,011
J-Pilot tool 142 367 0,018
Scope framework 214 535 0,012
Development |Code Generation Library library 226 662 0,013
DrJava tool 2766 9684 0,001
Find Bugs tool 1019 3108 0,003
Jasper Reports library 1233 5610 0,004
Junit framework 154 353 0,015
Spring framework 2116 7069 0,002
BCEL library 373 2111 0,015
Enterprise Liferay framework 14 14 0,077
Talend tool 2779 3567 0,000822
uEngine BPM framework 708 1774 0,004
YAWL tool 382 1186 0,008
Financial JMoney tool 193 424 0,019
Games JSpaceConquest tool 150 424 0,019
KoLmafia tool 810 5106 0,008
Robocode tool 29 16 0,02
Hardware Jcapi library 21 61 0,145
LibUSBJava library 35 90 0,076
ServoMaster library 55 117 0,039
Multimedia CDK library 3586 14711 0,001
JPedal tool 539 1533 0,005
Pamguard tool 1503 5267 0,002
Networking BlueCove library 142 461 0,023
DHCP4Java library 18 29 0,095
jSLP library 42 156 0,091
WiKID Strong Authentication library 50 27 0,011
Security JSch library 110 226 0,022
OODVs library 171 325 0,011

Number of public methods: this metric is calculated for a class. This metric
indicates the interface size of the class.

Number of public fields: this metric is calculated for a class. Using public fields
can generate stronger types of coupling between classes.

3.2 Data Fitting

A tool, called EasyFit, was used to make data fitting to various probability
distributions, such as Bernoulli, Binomial, Uniform, Geometric, Hypergeometric,
Logarithmic, Binomial, Poisson, Normal, t-Student, Chi-square, Exponential,
Lognormal, Pareto and Weibull. A probability distribution has two main func-
tions: the pdf (probability density function), f(z), that indicates the probability
the random variable takes a value z, and the cdf (cumulative distribution func-
tion), F(zx), that indicates the probability the random variable takes a value less
than z. In the experiment of this study, the following probability distributions
are well fitted to the data: Poisson and Weibull.

Poisson distribution has pdf, f,(z), and cdf, F,(z), defined by Equations 1
and 2 respectively. The parameter A of the distribution is the mean value of the
random variable.

€_>‘. T
o) = P(X =) = ©2 (1)

T=x —
O eTANT

o (2)
=0

Weibull distribution has pdf, f,(z), and cdf, F,,(x), with parameters o and
B, defined by Equations 3 and 4 respectively. The parameter 3 is called scale
parameter. Increasing the value of 3 has the effect of decreasing the height of
the curve and stretching it. The parameter « is called shape parameter. If the
shape parameter is less than 1, Weibull is a heavy-tail distribution and it can be
applied in cases in which the random variable presents left assimetry, i.e., when
there is a small number of ocurrences with high values and a far greater number
of ocurrences with low values. In this kind of distribution, the mean value is not
significant.

ful@) = P(X =) = () e a>0,6>0 3)
Fo(z)=P(X <z)=1—¢5"a>0,3>0 (4)

3.3 Data Analysis

For each metric, data were collected and a scatter plot was generated in order
to exhibit the frequency of measures. Data were fitted to probability distributions

and, considering the indication of best fitting from the used tool and the visual
analysis of the fittings, it was identified the probability distribution with best fit
to the data. If the probabiliy distribution has a representative mean value, like
Normal and Poisson distributions, this value is taken as typical for the metric,
otherwise we should work with three ranges of metric values: good, regular and
bad. The good range corresponds to values with high frequency, the bad range
corresponds to values with probability of ocurrence tending to zero, and the
regular range is an intermediate one, that corresponds to values that are not
too frequent neither have very low frequency. This aproach was employed based
on the following judgment: data are from open source, and development of this
kind of software should emphasize high-quality, specially maintainability. Since
open source software are thought to be well constructed in order to facilitate
their maintainance and use, even without documentation or technical support,
characteristics of this type of software can be taken as a model, and the measures
of their metrics can be taken as reference values. Section 4 describes the findings
of this study.

4 Results

This section describes the findings of this study. First, results of COF are
described. Results of the other metrics that evaluate classes are described next.

‘COF modeled by Weibull distribution

oss \
COF Frequency

COF probability

0,
eleeTer)
00000000000000
. Q000! : 0 002 054 005 008 o 032 018
] 5 10 15 20 25 30 E5 40 45 COF

classes O Histogram — Weibull

(a) (b)

Fig. 1. COF distribution - fitting to Weibull distribution.

4.1 COF

COF scatter plot, in Figure 1, shows that values less than 0,20 are far
more frequent than higher values. COF can be modeled by Weibull distribution,
with parameters a = 0,91927 and 8 = 0,01762. Figure 1 shows fitting data with
Weibull distribution. Based on graphic analysis, more than 80% of software have
COF less than 0,02, the probability that COF takes values 0,02 to 0,14 is quite
low, and the probability that COF takes values higher than 0,14 tends to zero.
This result points out that, in most cases, open source software is low connected
and this is a fact that contributes to high maintainability.

Afferent Couplings modeled by Weibul distribution

Afferent couplings frequency il
400

350

300,

280

200

1504

Afferent Couplings

100 1 02

0 0 40 e 10 10 200 20 280 320 360 400
o 05 1 15 2 24 #afferent couplings
#classes x10* O Histogram — Webul

(a) (b)

Fig. 2. Afferent Couplings distribution - fitting to Weibull distribution.

4.2 Metrics for Classes

Afferent Couplings

Scatter plot for afferent couplings, shown in Figure 2, suggests a heavy-tail
distribution. There is a small number of classes with high number of afferent
couplings and a far higher number of classes with few afferent couplings. Values
of this metric can be modeled by Weibull distribution, with parameters o =
0,78986 and 3 = 3,2228. Almost 50% of classes have one afferent coupling at
most, the probability that a class takes 1 to 20 afferent couplings is low, and the
probability to be greater than 20 tends to zero. This indicates that most classes
directly impact only one class at most. This can contribute to maintainabilty

and to software quality in general, because a modification or an error in a class
would impact in a low number of classes.

LCOM

LCOM also is fitted by a heavy tail distribution. Figure 3 shows scatter
plot of the data set. Values of LCOM can be modeled by Weibull distribution,
with parameters « = 0, 23802 and 3 = 1, 465. Almost 50% of classes have LCOM
equals to zero, that means good cohesion. There are classes with LCOM between
0 and 20 in a low frequency, less than 12%, and the probability that a class has
LCOM greater than 20 tends to zero.

LCOM modeled by Weibull distribution

x10° LCOM frequency g

25

LCOM probability

0.5

q 1000 2000 3000 000 000
05 1 15 3 s Leom

classes it 0 Fistogram = Webul

(a) (b)

Fig. 3. LCOM distribution - fitting to Weibull distribution.

DIT

Scatter plot in Figure 4 shows distribution of DIT values and their fitting
to Poisson distribution, with parameters A = 1,6818. In Poisson distribution, A
gives the mean value of the random variable. By this finding, in an open source
software, the largest distance from a class to the root in the inheritance tree is 2,
in general. This reflects that this kind of software has not very deep inheritance
tree, what also contributes to software maintainability by decreseasing software
complexity.

Public Fields

Scatter plot of number of public fields, shown in Figure 5, reveals that there
is a low number of classes with a great number of public fields and, in most

#Public Fields

DIt

DIT modeled by Poisson distribution

. DIT frequency 082
o
5 J
0w
e & 04
b] 03t
£ o
b - 4 2
§ o
5 - 1 5 oz
4 - 1 =
o1
3 = g i
2 A 1 008
oot
1 T g |
: ™
0 . I . pra— o 1 2 3 5 5 7 0 g T
a 05 1 15 2 25 o
classes x10* —Sample —Poisson
(a) (b)
Fig. 4. DIT distribution - fitting to Poisson distribution.
Public Fields modeled by Weibull distribution
Public Fields frequency P I
700 . . ; .
0
BO0 7
0
500 4 z 07
4
400 7 3
$ os
300 . 3 o
z
03
200, &
0
100 d 4
o
B % we w0 e . m @
o 05 1 1.5 2 245 # public fields
classes x 10 O Histogram — Webul

(a) (b)

Fig. 5. Public Fields distribution - fitting to Weibull distribution.

cases, this number is zero. This metric can be modeled by Weibull distribution
with parameters o = 0,71008 and 5 = 4,4001, what is showed in Figure 5.
Most of 75% of the classes have no public field. Classes with 1 to 8 public fiels is
quite rare, and the probability that a class has more than 8 public fields tends
to zero. This is another sign of high quality of open source software, because
it demonstrates that development of these software strictly follow information
hiding.

Public Methods

Frequency of number of public methods is shown in Figure 6. This metric
can be modeled by Weibull distribution, with parameters o = 0,85938 and
£ = 5,6558. Graphical analysis of data shows that there is a low portion of classes
with a great number of public methods and most classes have few public methods.
Most classes have 0 to 10 public methods, classes with 10 to 40 public methods
are rare and the probability that a class has more than 40 public methods is
quite low. By this findings, it could be concluded that, in most of cases, classes
have short interface. This could be related to the fact that most classes in open
source software have high cohesion and, then, they tend to provide less services.

Public Methods modeled by Weibull distribution

Public Methods frequen
700 s

600 A 08

500,

400

300

#Public Methods probability

#Public Methods

200,

100 4
0
5 50 100 150 200

a 05 1 15 2 25 # public methods

classes x10* O Histogram — Webul

(a) (b)

Fig. 6. Public Methods distribution - fitting to Weibull distribution.

4.3 Data Fitting of Metrics in Application Domains and a
Particular Software

Software metrics in a specific application domain can be modeled for the
same probability distribution that fits the metric in the entire data set. It also

happens to measures in a particular software. Figure 7 ilustrates distribution of
afferent couplings in development domain and in Talend (sourceforge.net). This
indicates that observed characteristics in open source software, in general, can
be applied to a particular software, regardless its application domain.

Development - Afient Couplings distrbution # Afrent Couplings distibution - Talend

Affrent Couplings probabilty

‘|‘\|l\
T v B3 0 E3

Fig. 7. Afferent Couplings - Development and Talend.

4.4 Data Fitting of Metrics in Different Types of Software

Measures were analysed for three types of software: tool, framework and
library. Surprisingly results reveal those metrics have similar behaviour to that
detected in the entire data set analysis, regardless the type of software, what
confirm the hypothesis that there is a single distribution probability that model
values of measures of a metric, regardless the application domain and type of
software.

— Public Fields: in three cases, more than 80% of classes have no public fields,
the frequency of classes having 1 to 8 publics fields is very low, and frequency
of classes having more than 8 public fields is near to zero.

— Public Methods: results of this metric are also similar in frameworks, libraries
and tools. There is a slight difference in tools, whose distribution curve is
a little more left concentrated, what indicates that tools have less public
methods than frameworks and libraries. This makes sense because both are
service provider, while tools are not. Figure 8 shows distribution of measures
of this metric in tools and libraries.

— LCOM: this metric have a very similar distribution values in the three cases.
As the same result found to the entire data set, 50% of classes have LCOM
equal to zero.

— DIT: this metric can be modeled by Poisson distribution in the three cases.
There is a little diference in mean values: 1.68 in frameworks, 1.74 in tools
and 1,96 in libraries. Frameworks and tools have close results, what can be
explained by the fact that frameworks represent applications characteristics,
so these characteristics are replicated in applications like tools.

— Afferent Couplings: in frameworks, libraries and tools, 20% of classes have
no afferent coupling, most of them have 1, frequency of classes with 1 to 20
afferent couplings is low, and classes with more than 20 afferent couplings
are rare.

Publc Mathods distrution - Tool # Public Mothods disttution - Libary

02

022

methods probabiity

#publc

006

: S

2]
public methods

oos
; T 06 i s s
R THE TR e

% el
putlic methods

=Sample —sampe

(a) (b)

Fig. 8. Public Methods distribution in tools and libraries

4.5 Reference Values

A large number of object oriented open source software was evaluated by
means of six software metrics in this study. Findings in this study confirm the
intuitive notion that open source software has high quality. Considering this,
the characteristics of this type of software can be used as target to software
development, and measures of their software metrics can be taken as reference.
From the achieved results, it is possible to identify three ranges of reference values
to the metrics: good, which refers to the most common values of the measures of
the metric in open source software, regular, which is an intermediate range that

refers to values with low frequency but not irrevelant, and bad, that refers to
values with quite rare occurrences. References values suggested for COF, LCOM,
DIT, afferent couplings, number of public methods and number of public fields
are sumarized in Table 2.

Table 2. Reference values for OO software metrics

Factor Level | Metric Reference Values

Connectivity System |[COF Good: up to 0,02 Regular: 0,02 to 0,14 Bad: more than 0,14

Class # Afferent couplings [Good: up to 1 - Regular: 2 to 20 - Bad: more than 20

Information hiding|Class # Public fields Good: 0 - Regular: 1 to 8 - Bad: more than 8
Interface size Class # Public methods Good: 0 to 10 - Regular: 11 to 40 - Bad: more than 40
Inheritance Class DIT Typical value: 2

Cohesion Class LCOM Good : 0 - Regular: 1 to 20 - Bad: more than 20

5 Conclusion

This work presents a study carried out on a large sample of object oriented
open source software. A set of 40 software developed in Java, including tools,
libraries and frameworks, from 11 application domais, was analysed, in a total
of more than 26,000 classes. Six software metrics were used in the study: COF,
LCOM, DIT, afferent couplings, number of public methods and number of public
fields. The study concluded that those metrics, except DIT, can be modeled by a
heavy-tail distribution. This means that, for most metrics, there is a low number
of occurrences of high values and a far higher number of occurences of low values.
DIT can be modeled by Poisson distribution, with 2 as mean value. This observed
characteristic of open source software reveals that this type of software stresses
high quality: classes are low connected each other, have high cohesion, few public
methods and fields, and also short inheritance tree. This important insight about
open source software leads to consider their measures of metrics as reference.

This is one of the first studies towards the identification of reference values
for software metrics, an open question in software engineering whose solution
can make the use of software metrics effective in the industry. The approach
used in the study is suggested to be used in future works to find reference values
of other software metrics. The following future works are suggested: to extend
the study to other programming languages in order to investigate if there are
different reference values depending on the programming language; to evaluate
the proposed reference values table in a proprietary software development; to
extend the study to other software metrics.

This work was sponsored by FAPEMIG, as part of the project CONNECTA - Conectividade em Médulos.

Process: CEX APQ-3999-5.01/07. Fapemig - Edital Universal.

References

1. Abreu, Fernando Brito; Carapuga, Rogério. (1994). Object-Oriented Software Engi-
neering: Measuring and Controlling the Development Process. In: Proceedings of 4th
Int. Conf. of Software Quality, McLean, VA, USA, 3-5 October 1994.

2. Baxter, G; Frean, M.; Noble, J; Rickerby, M; Smith, H; Visser, M; Melton, H;
Tempero, E. (2006) Undertanding the Shape of Java Software. In: OOPSLA’06.
Oregon, Portland, USA, 22-26 October 2006.

3. Chidamber, Shyam R.; Kemerer, C.F. (1994) A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering, pp. 476-493, 1994.

4. Fenton, Norman; NEIL, Martin. (2000) Software Metrics: Roadmap. In: Proceedings
of the Conference on the Future of Software Engineering, Maio de 2000.

5. Ferreira, Kecia A. M.; Bigonha, Mariza. A. S.; Bigonha, Roberto. S.(2008)
Reestruturagdo de Software Dirigida por Conectividade para Redugiao de Custo de
Manuten¢do. Revista de Informatica Tedrica e Aplicada. Vol. 15. No 2. Rio Grande
do Sul, Brazil: 2008. pp: 155-179.

6. Ferreira, Kecia A. M.; Bigonha, Mariza. A. S.; Bigonha, Roberto. S.; Almeida, H.
C.; Mendes, L. F. 0.(2009) Valores Referencia de Métricas de Software Orientado por
Objetos. In Proceedings of SBES (Simpdésio Brasileiro de Engenharia de Software).
Fortaleza, Brazil: 2009.

7. Louridas, P.; Spinellis, D.; Vlachos, V. (2008) Power Laws in Software. ACM
Transactions on Software Engineering and Methodology, Vol. 18, No 1, Article 2.
Setembro de 2008.

8. Newman, M. E. J.(2003) The structure and function of complex networks. SIAM
Reviews, Vol. 45. No 2, pp: 167-256.

9. Potantin, A.; Noble, J.; Frean, M.; Biddle, R.. (2005) Scale-Free Geometry in OO
Programs. Communications of the ACM. May 2005. Vol. 48. N° 5. pp. 99-103.

10. Puppin, D.; Silvestrini, F.. (2006) The Social Network of Java Classes. SAC’06.
Abril de 2006. Dijon, Franga. pp. 1409-1413.

11. Samoladas, I; Stamelos, I; Angelis, L; Oikonomou, A. (2004) Open Source Software
Development Should Strive for Even Greater Code Maintainability. Communications
of the ACM. October 2004/Vol. 47. no 10.pp. 83-87.

12. Tempero, Ewan. (2008) On Measuring Java Software. In: ACSC2008. Wollongong,
Australia. Conferences in Research and Practice in Information Technology (CRPIT),
Vol. 74. 2008.

13. Valverde, S.; Ferrer-Cancho, R.; Sole, R.. (2002) Scale-free networks from optimal
design. Europhysics Letters 60, 4. Novembro de 2002. pp 512-517.

14. Xenos, M.; Stavrinoudis, D.; Zikouli, K.; Christodoulakis, D. (2000) Object-
Oriented Metrics - A Survey. Proceedings of the FESMA 2000, Madrid, Spain,
2000.

15. Wheeldon, R.; Counsell, S.. (2003) Power law distributions in class relationships.
In: Proceedings of 3rd International Workshop on Source Code Analysis and Manip-
ulation (SCAM), Amsterdam, Setembro de 2003.

