Software Evolution Characterization

Kecia A. M. Ferreira
Computer Science
Department
Federal University of Minas
Gerais
Belo Horizonte, MG, Brazil

kecia@dcc.ufmg.br

Mariza A. S. Bigonha
Computer Science
Department
Federal University of Minas
Gerais
Belo Horizonte, MG, Brazil
mariza@dcc.ufmg.br

Barbara M. Gomes
Computer Science
Department
Federal University of Minas
Gerais
Belo Horizonte, MG, Brazil

barbarag@dcc.ufmg.br

Roberto S. Bigonha
Computer Science
Department
Federal University of Minas
Gerais
Belo Horizonte, MG, Brazil

bigonha@dcc.ufmg.br

ABSTRACT

The study of software evolution has been the subject of
much researches in the last decades, whose results reveal
that a software system has continuing growth, continuing
changes, increasing complexity and declining quality. How-
ever, the knowledge about how this process occurs is not con-
solidate yet. The present work provides a better understand-
ing of software evolution process by analising it through the
view of networks. A software system can be modeled as
a graph whose nodes represent the software modules and
whose edges represent the relationships between them. The
study was performed on a set of 16 open source software
sytems and a commercial application developed in Java. The
results of this study reveal important facts about the evo-
lutive nature of this type of software, such as: density of
software systems tends to decrease, the diameter of software
networks is short, classes with large in-degree tend to keep
this property and their quality tends to degrade. Our study
also identifies the macroscopic structure of software system
what can support software engineers in the task of manage-
ment and maintenance of software systems.

Categories and Subject Descriptors

D.2.8 [Software Engineering): Metrics—complezity mea-
sures, performance measures

General Terms
Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE 2011 Waikiki, Honolulu Hawaii

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords

software evolution, object-oriented software, complex net-
works

1. INTRODUCTION

The phenomenon of rotting design is a classical problem in
Software Engineering. Despite all the knowledge about high-
quality software construction consolidated in well-known prin-
ciples, criteria, rules, design-patterns and techniques [20,
8, 25], it is known that as a software system evolves and
changes, its architecture becomes more complex and rigid
and, due to this design degradation, the program becomes
increasingly hard to maintain. The Lehman Laws [16] de-
scribe this evolutive nature of software by postulating that a
software system grows and suffer maintenances continuingly,
has increasing complexity and decreasing quality throughout
its evolution.

In the last years, there have been a lot of investments
by researchers in the characterization of software evolution.
Most of this works are concerned in investigating whether
the Lehman’s laws are applied in open source software, es-
pecially in the aspects of growth and complexity. Growth
has been usually evaluated by means of metrics such as LOC
or number of files, while complexity has been evaluated by
means of McCabe or Halstead complexity metric. A few re-
searches have used other software metrics to study software
evolution, for instance: number of deleted/added/changed
files, coupling and cohesion metrics. Most recently, the con-
cepts of complex networks has been timidly applied to un-
derstand the behavior and the nature of software structure.
A common finding of such works is that the in-degree of
nodes in the network of modules within a software system
follows a power-law and this network seems to conform to
the so-called small-world phenomenon. An example of the
potential application of the complex networks analysis is a
study of Zimmerman and Nagappan that identified correla-
tion between the number of defects in Windows Server 2003
and measures from network analysis, such as centrality and
closeness.

These works bring important revelations towards a better

understanding of the real structure of the software systems.
However, there is still a great lack of substantial knowledge
about the evolution of design of software systems. Among
the many open-questions in this topic are the following ones:
the evolution of modules that have high in-degree in terms
of in-degree, internal quality and stability; the behavior of
network measures, such as diameter, density and the size of
the largest strongly connected component; the existence of
a general macroscopic structure of the network of modules
within software systems and its evolution.

In the present paper, we describe the results of an empir-
ical study that aims to investigate those issues. The data
set analyzed in this work is from 16 open source object-
oriented software systems, in a total of 109 versions of the
programs, and from one commercial object-oriented software
system. Our analysis yields valuable insight into the evolu-
tion of software system structure: the classes with higher
in-degree tend to keep this position with the growth of the
software system, tend to gain more methods, and have de-
clining internal cohesion; the network of modules within a
software system has short diameter, has shrinking density,
and its largest strongly connected component enlarges with
the growth of the software system. Even more interesting,
our analysis reveals an intriguing picture of the macroscopic
structure of software systems. The findings of this study are
a step ahead towards a better understanding of the laws that
control the evolution of software systems structures. More-
over, they can be used in order to directing maintenance
tasks and test plans.

This paper is organized as follow: Section 2 provides a
background of concepts used in our study; Section 3 is a re-
view of related works; Section 4 describes the methodology
and the data used in the study; Section 5 reports the exper-
iments and its results; Section 6 brings the conclusions and
indication of future works.

2. BACKGROUND

An object-oriented software system can be modeled as a
directed graph (a network) in which the classes are the ver-
tices and a connection between two classes is an edge. We
consider that a class A is connected to another class B if
A uses a field or a method of B or if A extends B. In this
situation, there is an edge from A to B. In the present study,
software evolution is evaluated by means of software metrics
and network metrics that are described in this section. We
also give a background about the network analysis terminol-
ogy and the concepts used in this work.

2.1 Software Metrics

The following software metrics are used in order to eval-
uate the evolution of classes of a software system:

e Number of public methods: it is the number of public
methods defined in the class.

e Number of public fields: it is the number of public
fields defined in the class.

e Class cohesion: there is several class cohesion metrics
proposed in the literature, however there is no con-
sensual way to measure cohesion yet. In this work we
use the metric Cohesion by Concern (CoCo) [6]. This
metric is given by 1/C, where C is the number of dis-
jointed sets M of methods within the class. Each set

consists of similar methods. Two methods are similar
when they use a common field or a common method
of its class. For instance, if there are 2 sets in a class,
CoCo will result in 0,5. This indicates that the class
has 2 concerns. If there is only one set in a class, CoCo
will result in 1, which indicates high cohesion.

2.2 Network Metrics

The following network metrics are used in order to evalu-
ate the evolution the software systems:

e Network density: in a network with a edges and n
vertices, this metric is given by a/(n(n — 1)) [17]. In
the context of software metrics, this metric is called
COF (coupling factor) [1].

e Diameter: the diameter of a network is the length,
given in number of edges, of the longest geodesic path
within the network. A geodesic path is the shortest
path between two vertices. In a social network, for
example, it is an indicator of how rapidly information
would spread throughout the network [21].

e In-degree: the in-degree of a vertex is given by the
number of vertices from which there is an edge that
reach the vertex. In a software system network, it is
the number of classes that use services of a class or
extend it.

2.3 Complex Networks

The empirical observation of real networks yielded valu-
able comprehension of such networks. The work of New-
man [21] presents a wide review about the advances in this
field called Complex Networks. The study of the proper-
ties of networks includes such concepts as the small-world
phenomenon, degree distributions, scale-free networks and
models of network growth.

A power-law is a probability distribution function in which
the probability of a random variable X takes a value x is
proportional to a negative power of x, denoted by P(X =
x) o cz™". Networks with power-law degree distribution are
referred as scale-free networks. In a scale-free network there
is a great number of vertices with low degree and a small
portion of them with high degree. There has been a spate
of interest in such networks in the literature, since power-
law degree distribution has been observed in a wide range
of networks like the Web, the Internet, metabolic networks,
telephone calls graphs and software system networks [2, 18,
24, 26, 27, 5]. An important property of a scale-free network
is its resilience to the removal of their vertices. TA study
of vertex deletion in the Internet and Web concluded that
such networks are resilient against random failure of vertex
in the network, whereas the target removals at the highest
degree vertices in the network are destructive [21]. Since
software systems networks are also scale-free, this property
can be applied to them: an error or maintenance in a class
with high in degree could widely affect other classes in the
system.

The small-world phenomenon refers to a characteristic of
networks whose most pairs of vertices are connected by a
short path. This characteristic is related to the easiness of
information propagation in the network. Depending on the
kind of the network, information should take different mean-
ing, such as spread of disease in a population, a rumor in a

TENDRILS

U~

Disconnected
TUBES ® o
e

Figure 1: The bow-tie model of the Web

social network and error propagation in a software system
network.

Models of networks help us understand network topology
and the processes taking place on networks. In this work,
we explore the structure of software systems networks by the
light of concepts and characteristics of complex networks.

2.4 The Bow-tie Model

The study of Broder et al. [3] infers that the macroscopic
structure of the Web can be modeled by a picture known
as bow-tie. This picture, shown in Figure 1, suggests that
web pages can be divided into five groups: SCC, in, out,
tendrils, tubes and disconnected. Their analysis reveals that
in the Web graph there is a central core in which all of pages
can reach one another, which they called the giant strongly
connected component (SCC). Another group of pages can
reach the ones in SCC but cannot be reached from them.
This group is called in. Out consists of pages that can be
reached from SCC but cannot link it back. Tendril consists
of pages that cannot reach the SCC and are not reachable
from it; pages in tendrils can be reached from IN or can
reach OUT, without passing through SCC. There is a group
of pages in tendrils that can be reached from in, then be
connected to another tendril, leading into OUT. This group
of pages is called tubes.

In the present work we investigate how well the bow-tie
model fits to the software system network. Our analysis
reveals a simpler picture that can represent the way that
classes in a object-oriented software system connect one to
another.

3. RELATED WORKS

Software evolution has been studied extensively. One of
the most noted works in this field resulted in the well-known
Lehman’s laws that include: continuing change, increasing
complexity, continuing growth and declining quality [16].
Many investigators have recently studied whether the Leh-
man’s laws can be applied to open-source software systems.
A case study carried out by Godfrey et al. [9] with the
Linux kernel concluded that the system grows continually
in a geometric rate. Lee et al. [15] analyzed the evolution
of JFreeChart, an open source library, based on size, cou-
pling and cohesion metrics. The results of the work point
out that the evolution of the target software follows some of
the Lehman’s laws. Mens et al. [19] studied the evolution
of Eclipse by means of software metrics, such as number of

added, changed and deleted files and number of errors. They
found evidences of continuing growth and increasing com-
plexity in Eclipse. It was also found that the added classes
have higher fan-in and lower fan-out coupling comparing to
the removed classes. Israeli and Feitelson [11] used software
metrics in order to analyze the Linux kernel evolution. The
results of their study support most of the Lehman’s laws;
however it was observed that the functions within the pro-
gram have a decreasing average complexity. Xie et al [28§]
evaluated the evolution of 7 open source software systems.
The results of their study demonstrate that the following
Lehman’s laws are applied to open-source software systems:
continuing change, increasing complexity, self regulation and
continuing growth. In addition they observed that most of
modifications occur in a small portion of source code.

Software evolution has been commonly studied by means
of software system growth. Koch [14] analyzed the growth of
a large sample of open source software systems. The results
of the study indicate that the mean growth rate is linear
or tends to decrease over time, but a significant percent-
age of projects exhibit superlinear growth. Herraiz et al.
[10] carried out a comparative study of two software metrics
commonly used for characterizing the evolution of software:
number of lines of code and number of files. They analyzed
a package in Debian GNU/Linux and concluded that both
metrics have the same behavior. The results of the study
also confirm the findings of Godfrey et al.[9].

Other approaches have been used in the study of software
evolution and software characterization. Many researchers
have identified that in-degree distribution in software system
network follow a power-law [13, 2, 18, 24, 26, 27, 5]. Olbrich
et al. [22] investigated the evolution of code smells within
a system and their impact on the change behavior of the
infected system elements. They analyzed two open-source
software systems and considered two code smells: God Class,
which refers to those classes that take too many responsi-
bilities and Shotgun Surgery, that occurs when a change in
the code of the class causes changes in many other classes.
They found that classes infected with these code smells have
a high change frequency. Nevertheless they did not point
out the way those classes suffer changes. Jenkins and Kirk
[12] evaluated software evolution by using complex network
theory. Their study was performed over some released ver-
sions of a component from the Sun Java2 Runtime Envi-
ronment (rt.jar) and concluded that the degree distribution
in the network of software class dependencies follows power
law. They propose an instability metric that they claim
to be conformed with the growth process of the software
system. Zimmermann and Nagappan [29] investigated cor-
relation between measures from network analysis, such as
centrality and closeness, and the number of defects in Win-
dows Server 2003. In their study, they built a dependency
graph of the software system, and then they collected com-
plexity measures and network measures. They concluded
that the network measures used in the study can predict
defects for binaries of Windows Server 2003 and that result
can support managers in the task of allocating resources.

Despite the notable contribution of the works carried out
in order to characterize software evolution, there are still
open questions about this phenomenon. Most of the re-
searches in this field concentrate in studying the growth of
software systems in terms of lines of code and number of
modules or files and some of them evaluate software evo-

Table 1:

Software systems

analyzed in the study

Name Category # downloads/week Time of life #classes #versions #analyzed
versions

JEdit Text editor 9.138 2001 a 2009 377 a 13 13
1124

Dr Java Development 3.837 2002 a 2009 596 a 10 10
3692

Java Groups Cooperation 465 2003 a 2009 696 a 40 13
1137

KoL Mafia Game 1.007 2004 a 2009 39 a 1109 13 13

DBUnit Database 448 2002 a 2009 198 a 369 25 5

FreeCol Game 7.452 2003 a 2010 112 a 27 5
5902

JasperReports Development 5.542 2001 a 2010 525 a 50 5
5304

JGNash Financial 822 2002 a 2010 782 a 40 5
3603

Java msn library Communication 271 2004 a 2010 494 a 872 10 5

Jsch Security 2.304 2004 a 2009 202 a 271 29 5

JUnit Development 1.834 2000 a 2009 78 a 230 18 5

Logisim Education 1.590 2005 a 2009 908 a 28 5
1185

MeD’s Movie Man- Storage 1.169 2003 a 2010 64 a 517 60 5

ager

Phex Network 1.084 2001 a 2009 393 a 26 5
1352

Squirrel sql Database 7.270 2006 a 2010 424 a 26 5
1223

Hibernate Database 12.906 2004 a 2010 956 a 53 5
2446

Commercial - fron- Commercial application - 2005 - 2010 1100 a 18 18

tier layer 1246

Commercial Commercial application - 2005 - 2010 3343 a 18 18

software - model 4031

layer

lution by means of software metrics. The present work is
ailmed at investigating software evolution from the view-
point of complex networks. This approach is not new, since
a few previous works analyzed software system as complex
network. The results of the work described in this paper,
however, lead to a better understanding of the behavior of
the object-oriented software systems and leads to identify a
novel generic macroscopic picture of model software systems.

4. METHODOLOGY

The selection of the open-source software systems ana-
lyzed in the study was based on the following criteria: time
of life, quantity of versions or releases and category. The
data was extracted from www.sourceforge.net, which classi-
fies the programs in categories, such as development, games
and communication. For each category, up to 10 software
systems were selected, by satisfying the following criteria:
they are developed in Java, they have 5 versions or releases
at least and they have 4 years of life at least. Another crite-
rion was the availability of bytecodes because the tool used
to perform the measurements evaluates the compiled code,
not the source code. The initial survey resulted in 108 pro-
grams. Among them, we selected by category those with

biggest number of versions or releases, with biggest time of
life and most popular. Popularity was evaluated by means
of the number of downloads per week. This last selection
resulted in 16 programs whose data are shown in Table 1.
Data were gathered from sourcerforge.net from September
2009 up to April 2010.

In order to observe the existence of relevant difference
between two consecutives versions of a program, we initially
analyzed data from all the versions of three programs: JEdit,
DrJava and Kolmafia. For JavaGroups, that has a large
number of versions, we selected 13 of them: the first one, the
last, and 11 intermediate versions, by observing a period of
release approximately equal between two consecutives ver-
sions. We observed that the results of the subsequent ver-
sions are very close. Due to this, for the other software
systems, it was selected 5 versions: the first one, the last,
and three intermediate versions, by observing a period of
release approximately equal between them.

The commercial software system analyzed in this work is
developed by a Software Engineering laboratory of an impor-
tant Brazilian university. The laboratory provides software
and consulting solutions for different market segments and
most of its clients are Brazilian government organizations.
The software system selected for analysis is one of the oldest

Table 2: Evolution of the open source software systems

Software Version | #°Classes #Connections COF Diameter Software Version | #~Classes #Connections COF Diameter
DBUnit 2.0 198 429 0,011 9 LogSim 2.0.0 908 3294 0,004 13
2.2.1 289 666 0,008 11 2.1.0 993 3940 0,004 14
2.4.0 332 769 0,007 13 2.1.5 1018 4141 0,004 14
2.4.4 347 780 0,006 17 2.2.0 1054 4439 0,004 14
2.4.7 369 815 0,006 16 2.3.3 1185 4609 0,003 14
FreeCol 0.1.0 44 112 0,05900(5 MeD’s Movie 1.6 64 149 0,037 6
0.5.0 416 1899 0,011 12 Manager 1.7 73 168 0,032 6
0.6.0 611 2609 0,007 11 2.0 517 1067 0,004 10
0.8.0 927 5150 0,006 13 2.8 458 1465 0,007 12
0.9.2 1087 5902 0,005 14 2.9.13 608 1845 0,005 13
Jasper Reports 0.4.0 242 525 0,009 8 Phex 0.6 393 1078 0,007 8
1.0.0 574 1316 0,004 9 2.0.0 897 3215 0,004 18
2.0.0 1104 2435 0,002 13 2.8.0 1205 4352 0,003 16
3.0.0 1233 3038 0,002 13 3.0.0 1419 6036 0,003 19
3.7.1 1629 5304 0,002 13 3.4.2 1352 5480 0,003 20
JGNash 1.10.0 743 2757 0,005 16 Squirrel-sql 1.0 424 717 0,004 15
1.11.1 782 2443 0,004 17 2.0 729 1592 0,003 13
1.50.0 942 2659 0,003 12 2.6 940 1765 0,002 14
2.00.0 2716 7374 0,001 24 3.0 1134 2570 0,002 16
2.20.0 3603 12978 0,001 24 3.1 1223 2989 0,002 16
Java msn library 10al 171 494 0,017 10 JSch 0.1.1.4| 80 202 0,032 4
10a2 186 516 0,015 7 0.1.20 83 204 0,028 5
10b1 203 615 0,015 7 0.1.26 94 210 0,024 5
10b2 218 662 0,014 9 0.1.34 109 271 0,023 5
10b3 270 872 0,012 9 10.1.42| 117 385 0,02 5
JUnit 3.4 78 138 0,023 5 Hibernate 3.0 956 2739 0,003 19
3.8 101 182 0,018 6 3.1 1118 3746 0,003 20
4.0 92 197 0,02 6 3.2 1302 4102 0,002 23
4.5 188 352 0,01 8 3.3.0 1690 5707 0,002 21
4.8.1 230 421 0,008 10 3.5.1 2446 5980 0,001 21
JavaGroups 2.2 696 1935 0,004 10 JEdit 2.4 377 1192 0,009 8
2.2.1 849 2880 0,004 10 2.5 422 1474 0,008 8
2.2.5 829 2059 0,003 10 3.1 426 1595 0,009 8
2.2.6 832 2074 0,003 10 3.2 449 1672 0,008 8
2.2.7 857 2201 0,003 10 4.0 554 2059 0,007 9
2.2.8 810 2621 0,004 8 4.1 618 2393 0,006 12
2.2.9 922 2621 0,003 8 4.1-8 646 2550 0,006 12
2.3 959 2756 0,003 9 4.2 805 3255 0,005 10
2.4.1 1013 3075 0,003 7 4.3 810 3276 0,005 10
2.5.1 967 3736 0,004 8 4.3.4 867 3444 0,005 10
2.6.1 1012 3639 0,003 8 4.3.9 954 3671 0,004 10
2.7.0 1041 3688 0,003 11 4.3.13 1008 3885 0,004 13
2.8.0 1137 3875 0,003 9 4.3.18 1124 4261 0,003 12
KolMafia 0.2 39 83 0,056 7 DrJava 1011 596 1773 0,005 10
0.4 75 222 0,04 9 2148 1064 3393 0,003 14
1.0 143 508 0,025 10 1826 1108 3680 0,003 12
2.0 191 726 0,02 11 2304 1512 4569 0,002 18
4.0 342 1399 0,012 12 2332 1622 5259 0,002 19
5.0 334 1780 0,016 11 1750 2036 8287 0,002 21
6.0 388 2102 0,014 10 1406 2187 9562 0,002 23
7.0 498 2970 0,012 12 1942 3003 9732 0,001 17
9.0 616 3410 0,009 11 r4592 3421 117000 0,001 14
10.0 708 4004 0,008 13 r4756 3692 13627 0,001 16
11.0 757 4578 0,008 14
12.0 772 5357 0,009 12
13.7 1109 7373 0,006 13

Table 3: Evolution of the commercial software system

Layer Version | #Classes | #Connections | COF Diameter Layer Version | #Classes | #Connections | COF Diameter
Frontier Vi 1100 2418 0,002 10 Model Vi 3343 28420 0,003 14

V1o 1162 2698 0,002 10 V10 3796 28812 0,002 14

V18 1246 1551 0,001 10 V18 4031 32490 0,002 14

Table 4: In-degree evolution - JEdit 2.4 and 4.3.18

Class in-degree Class in-degree
org.gjt.sp.jedit.EditAction 127 org.gjt.sp.jedit.jEdit 282
org.gjt.sp.jedit. View 124 org.gjt.sp.util.Log 159
org.gjt.sp.jedit.textarea.JEditTextArea 120 org.gjt.sp.jedit. GUIUtilities 135
org.gjt.sp.jedit.jEdit 101 org.gjt.sp.jedit.View 102
org.gjt.sp.jedit. Buffer 66 org.gjt.sp.jedit.Buffer 73
org.gjt.sp.jedit.textarea.InputHandler 52 org.gjt.sp.jedit.MiscUtilities 62
org.gjt.sp.util.Log 46 org.gjt.sp.jedit.io. VFSManagerX 51
org.gjt.sp.jedit.GUIUtilities 33 org.gjt.sp.jedit.textarea.JEditTextArea 49
org.gjt.sp.jedit.MiscUtilities 28 org.gjt.sp.jedit.buffer. JEditBuffer 45
org.gjt.sp.jedit.syntax.TokenMarker 24 org.gjt.sp.jedit.bsh.SimpleNode 44

and the largest made by the laboratory. The program

Table 7: In-degree evolution - Commercial software
1.0 and 1.18

Class in-degree Class in-degree
A 808 A 912
B 558 c 631
c 551 B 595
D 314 X 385
E 291 D 347
F 287 E 341
el 283 F 317
H 271 H 295
I 265 G 291
J 248 Y 285
R - I 275
- - J 258

was built using the three-tier architecture and has more
than 6,000 classes, which are divided into 6 packages. In this
work we analyzed data from two of those packages separately
that implement the frontier layer and the model layer. Data
of the commercial software system are shown in Table 1.

Software measurements were collect by a tool called Con-
necta [4] that generates a file in appropriate format for Pajek
[23], a network analysis tool.

S. EXPERIMENTS AND RESULTS

In this section, we present and analyze the results of our
experiments in the following sequence: the growth of soft-
ware systems, the network density evolution, the network
diameter evolution, the in-degree evolution, the evolution of
classes with high in-degree, and the macroscopic view of the
software network. Data of the software systems evolution
are shown in Table 2 and 3.

5.1 Software Systems Growth

Table 8: Instability of a class of Kolmafia with high-
est in-degree

Version | in- CoCo | # public # public
degree fields methods

0.2 7 0,5 0 18

2.0 69 0,33 0 30

5.0 142 0,143| O T4

11.0 145 0,067| 8 85

13.7 264 0,05 17 78

We analyze the size of a software system by means of the
number of classes. The number of classes in an open source
software system grows drastically. In 50% of the analyzed
programs, the final version has more than twice the number
of classes of the first version. Our findings are according to
others works which claim that continuing growth is a domi-
nant characteristic of open source software system [9, 14, 19,
11]. This characteristic is also observed in the commercial
software system analyzed in this work, however in a smaller
scale. A possible explanation for this fact is that an open
source software system is on an environment that may be
more dynamic than most of the commercial software.

5.2 Software Network Density

Our study points out that the density of the network of
classes within a software system decreases as the software
system grows. In terms of software construction, this means
that a new class inserted in the software system tends to be
connected to a very low number of other classes.

5.3 Diameter

The small-world effect is related to the fact that most
pairs of vertices seem to be connected by a very short path.
This effect has as consequences the determination of some
behaviors of the network. For instance, in a social network
the small-world effect implies that the propagation of infor-

Table 5: In-degree evolution - Kolmafia 6.0 and 12.0

Class in-degree Class in-degree
net.sourceforge.kolmafia. KoLmafia 69 net.sourceforge.kolmafia.KoLmafia 264
net.java.dev.spellcast.utilities.LockableListModel| 34 net.sourceforge.kolmafia.KoLConstants 255
net.sourceforge.kolmafia. KoLRequest 30 net.sourceforge.kolmafia.persistence. Preferences | 226
net.sourceforge.kolmafia. AdventureResult 26 net.sourceforge.kolmafia.utilities.StringUtilities 203
net.java.dev.spellcast.utilities. ActionVerifyPanel | 26 net.sourceforge.kolmafia.Request Thread 193
net.sourceforge.kolmafia. KoLFrame 26 net.sourceforge.kolmafia.AdventureResult 188
net.sourceforge.kolmafia. KoLFrame$KoLPanel 25 net.sourceforge.kolmafia.KoLCharacter 187
net.sourceforge.kolmafia.AdventureFrame 24 net.sourceforge.kolmafia.RequestLogger 165
net.sourceforge.kolmafia.KoLCharacter 20 net.java.dev.spellcast.utilities. LockableListModel| 151
net.sourceforge.kolmafia. KoLSettings 16 net.sourceforge.kolmafia.textui.command.Abstract Q@i mand

Table 6: In-degree evolution - JUnit 4.0 and 4.8.1

Class in-degree Class in-degree
org.junit.runner.Description 12 org.junit.runner.Description 18
org.junit.runner.notification.RunListener 9 org.junit.runners.model.Statement 16
org.junit.runner.Runner 8 org.hamecrest.BaseMatcher 15
org.junit.runner.notification.RunNotifier 8 org.junit.runners.model.FrameworkMethod 15
junit.framework. TestResult 8 org.junit.runner.notification.Failure 11
org.junit.runner.notification.Failure 8 org.junit.runner.notification.RunListener 10
org.junit.runner.Request 7 org.junit.runner.notification. RunNotifier 10
org.junit.runner.manipulation.Filter 6 org.junit.runners.model.RunnerBuilder 9
org.junit.runner.notification.RunNotifier§SafeNotifier | 6 org.junit.runners.model.TestClass 9
junit.framework. TestSuite 5 org.junit.runner.manipulation.Filter 9

Table 9: Instability of classes with in-degree in the
commercial software

Class Version | in-degree CoCo # public # public
fields methods
A 1.0 808 1 0 23
1.18 912 1 0 25
B 1.0 558 0,071 | O 70
1.18 595 0,067 0 85
C 1.0 551 0,045 0 93
1.18 631 0,037 1 114
D 1.0 314 0,036 0 105
1.18 347 0,031 | O 116
E 1.0 291 0,05 0 104
1.18 341 0,048 0 105

mation will be very fast. If the subject of the study of the
network is the spread of diseases, the small-world effect im-
plies the time it takes for a disease to spread throughout a
population [21]. The diameter, which is the length of the
longest shortest path between two vertices in the network,
is a metric that indicates this effect. The results of our ex-
periments reveal that the diameter of a software network
grows slowly as the size of system grows and, thus this kind
of network has small diameter. This revelation leads some
interesting insight about the dynamics of processes taking
place on such networks. An error in a class would spread
very fast through the classes in a software system. Besides,
a modification in a class would rapidly spread, demanding
modifications throughout the entire software system.

5.4 In-degree

The analysis of our results reveals that the classes with
highest in-degree tend to keep this condition as the software
system grows. For all the software systems analyzed in this
study, we verified the behavior of the 10 classes with the
highest in-degree. We observed that this group of classes is
roughly the same throughout the software life. Tables 4, 5, 6
and 7 show the data of evolution of the classes with highest
in-degree in 4 software systems, including 2 applications, 1
library and the commercial system. The conjunction of this
finding with the fact that a new class inserted in the software
system tends to be connected to a very low number of other
classes leads to an valuable revelation about the process of
software system growth: a new class inserted in the system
is preferentially attached to a class that has high in-degree.

5.5 Evolution of Classes with High In-degree

One can argue that classes with high in-degree is stable,
since those classes are provider of services and so should be
well defined, constructed and tested. Stability, here, is de-
fined as the lack of modifications in a class during the life of
the software system. Intuitively it will be possible to con-
clude that if the system is well designed and the open-closed
principle was appropriately applied, those classes will suf-
fer little modifications or none. However our finds shows
that the opposite occurs. Classes with high in-degree are
extremely unstable. We evaluated the modifications of a
class between two consecutives versions by means of three
metrics: the number of public fields, the number of public
methods, and cohesion. Table 8 shows data of a class of
an open-source software system and Table 9 shows data of
a class of the commercial application.In each new version,
the classes with higher in-degree grow in number of public

(a)

Figure 2: Hibernate (version 3.5.1) network mod-
eled by little house

WA
N0

;r“i(fi/

Niw
N i)
{

Figure 3: JUnit (version 4.8.1) network modeled by
little house

methods and sometimes in number of public fields. More-
over, their cohesion decreases over the time. A reasonable
explanation for this process is that, how these classes are
great services providers, the usual practice is to keep them
in this status by including new services in them in order
to attend the new classes. This causes the degradation of
the classes cohesion, that influences the deterioration of the
system.

By those results, we conclude that the process of software
evolution occurs in the following way: as a new class in
inserted in the system, instead of refactoring the system [7],
the common practice is usually to aggregate new services in
the older classes. This leads to the swelling of the classes
that already have lot of clients, and so they become less
cohesive and have its in-degree always growing. The non-
refactoring practice can hence be the cause of the small-
world effect in software systems

5.6 The Macroscopic Structure of the System
Network

For the purpose of investigate whether there is a general

macroscopic structure of the software networks, we first fit-

ted some versions of the software systems analyzed in this

Figure 4: Kolmafia (version 13.7) network modeled
by little house

Figure 5: The frontier layer of the commercial soft-
ware (version 1.18) modeled by little house

(a)

Figure 6: The model layer of the commercial soft-
ware (version 1.18) modeled by little house

TENDRILS

Figure 7: The generic macroscopic structure of sys-
tem software network

work to the bow-tie model. This analysis was carried out
using Pajek, which also generates an image of the network
and allows manipulation of it. Each group from the bow-
tie model corresponds to a component in the network. We
drew the picture of network by grouping the nodes into
their respective components. By manipulating those images,
we find out that the connections between the components
within the network form an interesting image that match
a well-known graph. Figures 2, 3 and 4 show the resulting
images of 3 open-source software systems: a framework, a
library and an application. Figures 5 and 6 show the re-
sulting image of the frontier layer and the model layer of
the commercial application. The macroscopic structure of
software networks that we identified is shown in Figure. We
call it the little house. We preserve the same terminology
of components employed in the bow-tie model. The SCC
is the central core in which every single class reaches the
other ones within the component. IN is the group of classes
that cannot be reached for any class within the system and
can reach classes in SCC, tendril, out and tubes. OUT is the
group of classes that can be reached for all the other compo-
nents but cannot reach any class within the system. Classes
that connect a class within IN to a class within OUT con-
stitute tendril component. This result is massively observed
in the data set evaluated in this work what evidences its
consistence. New questions arise from this finding: the kind
of classes that compose a component; the size of the giant
strongly connected component and the manner it evolves;
the implications of this model in the management and in
the maintenance of software systems.

SCC plays a central role in the system since its classes
are strongly connected one to another, what can make this
component hard to be understood, tested and maintained.
Table shows the growth of SCC in number of classes and in
the percentile of the classes within the software system that
compose SCC. From this data we draw that the number of
classes in SCC tends to increase. 11 software systems of the
sample increased 3 times or more in number of classes and
in 7 of those programs are observed that the percentile of
classes in SCC also increased substantially.

It could be thought that the connections among the iden-

tified components in a software network should be related to
the multi-tier architecture. However we did not found evi-
dences to support this hypothesis from our experiments. A
counter-example of this appears in the analysis of the data
from the commercial software of our study. This system was
constructed under the multi-tier architecture and we ana-
lyzed the frontier layer and the model layer separately. In
both cases, the relationship among classes within the system
can be modeled by the small house.

The macroscopic structure identified in software systems
brings novel information to software engineers about the na-
ture of their work subject, especially in the sense of software
maintenance and test. The presence of a giant strongly con-
nected component emphasizes the need of systematic ap-
proach of maintenance tasks in the classes of this component,
because a modification in a class within this component can
be widely spread throughout the entire system. Knowing
the way that classes are connected one to another can lead
improvements in test techniques in such way that test tasks
can be more efficient. Furthermore the model can be use as
basis to generate artificial data to be used by software engi-
neering researchers that usually face problems with finding
data from software systems to validate their algorithms and
models.

6. CONCLUSION

This paper presented the results of a study about soft-
ware evolution characterization based on software metrics,
and concepts and metrics of network. We analyzed 16 open-
source software systems and 1 commercial application, in
a total of 114 versions. The empirical observation of data
shows that: the density of software network tends to de-
crease as the software grows; the diameter of such networks
is short; the classes with highest in-degree tend to keep this
status; such classes are unstable, since they grows in num-
ber of public methods and sometimes in number of public
fields, and their internal cohesion degrade. Those observa-
tions yield important insight about the nature of software
evolution. How the density tends to decrease and the classes
with highest in-degree tend to have even higher in-degree, we
infer that the common practice is to insert new requirements
into such classes instead of refactor the system in order to
introduce the new requirements. Thus the non-refactoring
practice could be the reason of the small-world phenomenon
in software networks and its implications. The small diam-
eter of the software networks can lead a process in which a
error or a maintenance task performed in class within the
system spreads widely through it.

Our investigations reveal an interesting picture that model
the macroscopic structure of software networks, which we
called the little house. This macroscopic view of the sys-
tems can support software engineers in the management,
maintenance and test tasks. It also can be applied in the
construction of artificial data that can improve researches
in software engineering.

There is much to be done in understanding the processes
taking place in software systems. Further works needs to
be carried out in order to expose details about the nature
of the classes that compose each component in macroscopic
structure identified in this paper as well the forces that make
this kind of relationship among classes appears.

7. ACKNOWLEDGMENTS

This work was sponsored by FAPEMIG-Brazil, as part of
the project CONNECTA Process: CEX APQ-3999-5.01/07.

8.
[1]

[14]

[15]

REFERENCES

R. Abreu, Fernando Brito; Carapuga. Object-oriented
software engineering: Measuring and controlling the
development process. In Proceedings of 4th Int. Conf.
of Software Quality, McLean, VA, USA, Outubro 1994.
G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, and E. Tempero. Undertanding
the shape of java software. In OOPSLA 06, Oregon,
Portland, USA, Outubro 2006.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. In WWW9 Conference,
pages 309-320, May 2000.

K. A. M. FERREIRA. Avaliacdo de Conectividade em
Sistemas Orientados por Objetos. DCC/UFMG, Belo
Horizonte, Junho 2006.

K. A. M. Ferreira, M. A. S. Bigonha,

R. da S. Bigonha, H. Corréa, and L. F. de O. Mendes.
Valores referéncia de métricas de software orientado
por objetos. In Simpdsio Brasileiro de Engenharia de
Software, Fortaleza, Ceard, 2009.

K. A. M. Ferreira, H. Correa, M. Bigonha, and

R. Bigonha. Cohesion by Concern. Technical Report -
Federal University of Minas Gerais, Brazil, 2009.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and

D. Roberts. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley Professional, June
1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

M. Godfrey and Q. Tu. Growth, evolution, and
structural change in open source software. In Proc. of
the IWPSE, pages 103-106, Vienna, Austria, 2001.

I. Herraiz, G. Robles, and J. u. M. Gonzalez-Barahon.
Comparison between slocs and number of files as size
metrics for software evolution analysis. In CSMR ’06:
Proceedings of the Conference on Software
Maintenance and Reengineering, pages 206-213,
Washington, DC, USA, 2006. IEEE Computer Society.
A. Israeli and D. G. Feitelson. The linux kernel as a
case study in software evolution. The Journal of
Systems and Software, 83(3):485-501, 2010.

S. Jenkins and S. R. Kirk. Software architecture
graphs as complex networks: A novel partitioning
scheme to measure stability and evolution. Inf. Sci.,
177(12):2587-2601, 2007.

L. Jing, H. Keqing, M. Yutao, and P. Rong. Scale free
in software metrics. In COMPSAC ’06: Proceedings of
the 80th Annual International Computer Software and
Applications Conference, pages 229-235, Washington,
DC, USA, 2006. IEEE Computer Society.

S. Koch. Software evolution in open source
projects—a large-scale investigation. J. Softw. Maint.
Ewvol., 19(6):361-382, 2007.

Y. Lee, J. Yang, and K. H. Chang. Metrics and
evolution in open source software. In QSIC ’07:
Proceedings of the Seventh International Conference

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

on Quality Software, pages 191-197, Washington, DC,
USA, 2007. IEEE Computer Society.

M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of software
evolution - the nineties view. In Proc. of the Fourth
Intl. Software Metrics Symposium (Metrics’97), 1997.
J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from
Data, 1(1), March 2007.

P. Louridas, D. Spinellis, and V. Vlachos. Power laws
in software. ACM Transactions on Software
Engineering and Methodology, 18(1), Setembro 2008.
T. Mens, J. Ferndndez-Ramil, and S. Degrandsart.
The evolution of eclipse. In Proc. 24th Int’l Conf. on
Software Maintenance, pages 386—-395, October 2008.
B. MEYER. Object-oriented software construction.
Prentice Hall International Series, Estados Unidos, 2
edition, 1997.

M. E. J. Newman. The structure and function of
complex networks. STAM Reviews, 45(2):167-256,
2003.

S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka.
The evolution and impact of code smells: A case study
of two open source systems. In ESEM ’09: Proceedings
of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pages
390-400, Washington, DC, USA, 2009. IEEE
Computer Society.

PAJEK. Networks / Pajek Program for Large Network
Analysis - for Windows. Acesso em Setembro de 2009.
A. Potantin, J. Noble, M. Frean, and R. Biddle.
Scale-free geometry in oo programas. Communications
of the ACM, 48(5):99-103, Maio 2005.

R. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill, 7th edition edition, 2009.

D. Puppin and F. Silvestrini. The social network of
java classes. In SAC’06, pages 1409-1413, Dijon,
Francga, 2006.

R. Wheeldon and S. Counsell. Power law distributions
in class relationships. In Proceedings of 3rd
International Workshop on Source Code Analysis and
Manipulation (SCAM), Setembro 2003.

G. Xie, J. Chen, and I. Neamtiu. Towards a better
undertanding of software evolution: An empirical
study on open source software. In ICSM, Edmonton,
Canada, 2009.

T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In
ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 531-540,
New York, NY, USA, 2008. ACM.

