
An LALR Parser Generator with Conflict
Removal Support

Leonardo Passos1, Mariza Bigonha2, and Roberto Bigonha2

1 Department of Computer Science, Federal University of the Jequitinhonha and
Mucuri Valleys

leonardo.passos@ufvjm.edu.br
2 Department of Computer Science, Federal University of Minas Gerais

{mariza, bigonha}@dcc.ufmg.br

Abstract. Context free grammars are used for numerous purposes, from
the specification of concrete or abstract programming languages syntax
to the definition of exchange formats in component-based software ap-
plications. To decrease the time spent in development time, the process
of writing parsers from context free grammars is automated by the use
of parser generator tools, which often restrict the input grammar to be
LALR. However, due to the presence of conflicts and the constant ab-
sence of means to automatically remove them and high level facilities
to elucidate their causes, writing an LALR grammar becomes a major
bottleneck in software development. To address this problem, we present
an LALR parser generator with automatic conflict removal, along with
its similarities and differences when compared to other approaches, such
as the ones implemented in SableCC and LPG. The proposed tool also
implements a methodology to solve conflicts that cannot be automati-
cally eliminated. In such case, high level conflict debug facilities, such
as derivation trees, are supported. Furthermore, conflicts are listed ac-
cording to an heuristic of removal; once a high level priority conflict is
removed, all the others caused by the presence of the first may transpar-
ently be eliminated.

1 Introduction

Context free grammars are used for numerous purposes, from the specification
of concrete or abstract programming language syntax to the de definition of
exchange formats in component-based software applications [7]. To automate
the process of parser construction, grammars are extensively used as input to
parser generator tools, which output high performance non-backtracking parsers.
Parser generators, however, often restrict input grammars to be LALR.

In case of non LALR grammars, parser generators report conflicts, which
are nondeterministic points resulted from the grammar. Most of the times these
conflicts have no clear indication of their cause if one inspects only the gram-
mar. For that matter, LALR parser generators output log files containing all the
internal details necessary to understand the cause of any given conflict. These

files, however, contain low level data, such as the parsing tables and the LALR
automaton, and tend to be too extensive for practical use. To illustrate the dif-
ficulty of this approach, the removal of the 575 conflicts reported by the CUP
parser generator [4] for the Notus programming language grammar 3 requires
the simulation of the LALR automaton through its 332 states, dumped in a log
file with 790 kb (≈ 12,475 lines) of pure text data. Among the parser genera-
tors that we have investigated (Yacc [11], CUP [4], SableCC [10] and LPG [9])
only SableCC and LPG provide some level of automatic conflict removal. As for
debugging, all tools fail to support any facility other than log files.

As an alternative to this scenario, we propose an LALR parser generator
that supports automatic conflict removal for a subset of conflicts. The proposed
tool also supports a methodology to solve conflicts that cannot be automatically
eliminated. In such case, high level conflict debug facilities, such as derivation
trees, are presented. Furthermore, conflicts are listed according to an heuristic
of removal; once a high level priority conflict is removed, all the others caused
by the presence of the first may transparently be eliminated.

This article is organized as follows: Section 2 discusses the sources of con-
flicts, followed by the explanation of an automatic conflict removal mechanism
in Section 3. Next, Section 4 proposes a methodology for conflict removal. The
adaptations required over the method outlined in Section 3 so as to support
the methodology are presented in Section 5, along with the core implemented
algorithms. Experimental results and related work are discussed in Sections 6
and 7. Section 8 concludes the article and discusses some future work.

2 Conflicts

A conflict reported by an LALR parser generator indicates a non-deterministic
point resulted from the grammar. Suppose, for example, the grammar in Figure
1 to express function headers. From this point on, the following convention is
adopted: nonterminals are written in italics and terminals are typed in bold,
delimited in double quotes or represented as single lower case letters.

func header → stype id “(” fparams opt “)”
fparams opt → λ

| fparams
fparams → fparam section

| fparams “,” fparam section

fparam section → stype ids
stype → float

| int
ids → id

| ids “,” id

Fig. 1. Function header grammar.

The grammar in question is not LALR(1) due to a shift/reduce conflict under the
“,” token, as illustrated in Figure 2. The parser, if produced, having processed the
3 The Notus programming language is a language designed in our laboratory to specify

the denotational semantics of a programming language.

(a) First option: shift the “,”
token.

(b) Second option: reduce stype
ids to fparam section.

Fig. 2. Nondeterminism resulted from the grammar shown in Figure 1 when attempting
to produce an LALR(1) parser. The sentential form processed by the parser is contained
within a polygon. The lookahead token is delimited within a circle.

sentential form stype id stype ids faces two possibilities of execution: (a) consume
“,” and obtain the sentential form stype id stype ids “,”; (b) substitute stype ids
with fparam section, i.e., reduce the sentential to stype id fparam section.

The other type of conflict occurs when two or more reduce items in a state
of the LALR automaton share the same lookahead. To illustrate such conflict,
consider the grammar fragment from the Notus programming language shown
in Figure 3. As illustrated by the derivation trees in Figure 4, the LALR(1)
parser, having processed no sentential form, faces two possibilities under the
domain id lookahead : (a) reduce λ to the visibility nonterminal; (b) reduce λ
to module qualification.

primary domain → domain fname | tuple domain exp
primary domain → domain fname | tuple domain exp
domain fname → module fname “.” domain id | domain id
module fname → module qualification domain id
module qualification → module qualification domain id “.” | λ
tuple domain exp → visibility constructor “(” domain exps “)”
...

Fig. 3. A fragment of the Notus programming language. The ... is used to omit irrele-
vant productions to our example.

Conflicts in non-LALR grammars are caused by lack of right context or
ambiguity. The reduce/reduce conflict illustrated in Figure 4 is an example of
an inappropriate amount of right context. If two lookaheads are used, how-
ever, the parser is able to decide which action to execute: (a) if the right con-

(a) First reduce option: reduce λ to vis-
ibility.

(b) Second reduce option: reduce λ to mod-
ule qualification.

Fig. 4. Nondeterminism resulted from the grammar shown in Figure 3 when attempting
to produce an LALR(1) parser. The sentential form processed by the parser is contained
within a polygon. The lookahead token is delimited within a circle.

text consists of the lookahead string domain-id“.”, then the parser reduces
to module-qualification; (b) if the lookahead string is domain-id“(”, then the
parser reduces to visibility.

However, some conflicts caused by lack of right context may required an
infinite amount of lookaheads. In these cases, the conflict is removed by rewriting
some rules of the grammar without changing the language in question. Consider,
for instance, the regular language L = (b+a) ∪ (b+b). A possible grammar G for
L is:

S → A | B
A → B1 a
B → B2 b

B1 → B1 b | b
B2 → B2 b | b

For this grammar, an LALR(k) parser generator reports a reduce/reduce conflict
involving the items B1 → b� and B2 → b�, being bk the conflict string.
Increasing k does not remove the conflict; in fact, @k capable of it. This type
of conflict can be removed if an equivalent LALR grammar G′ is obtained by
rewriting some grammar rules. In this case G′ definitely exists, for L is a regular
language. Nevertheless, it should be pointed out that this kind of solution is not
always possible.

As for conflicts caused by ambiguity, consider an ambiguous grammar G to
describe the syntax of expressions:

exp → exp “+” exp | exp “-” exp
exp → exp “*” exp | exp “/” exp
exp → id | num | “(” exp “)”

It is well known that the corresponding language can be expressed by a non
ambiguous LALR(1) set of rules, although is more probable that one will first
write an ambiguous specification. The LALR(1) version of G is defined as [6]:

exp → exp “+” term | exp “-” term
term → term “*” factor | term “/” factor
factor → id | num | “(” exp “)”

Ambiguity removal can also be achieved without rewriting the grammar, as it is
the case of the use of adhoc solutions based on precedence and associativity [1].
Some ambiguity conflicts, however, simply cannot be removed from the grammar
without altering the language in question. These conflicts are due to the existence
of inherently ambiguous syntax constructions. An example is any set of rules that
describe the language {ambnck | m = n ∨ n = k} [6].

3 Automatic Conflict Removal

Some conflicts caused by lack of right context, as discussed in Section 2, can be
automatically removed if the length of lookaheads is increased.

A possible solution is to produce LALR(k) parsers with the appropriate value
of k. The difficulty of this approach is that the parsing tables substantially grows
as k increases. The Action table, for instance, has lines indexed by the elements in
M0, the set of states of the LR(0) automaton, and columns represented by tokens
of length k, where each token symbol belongs to an alphabet Σ. The number
of entries is thus given by |M0| × ((|Σ − {$}|)k + |{$}|), where the bars denote
the cardinality of the set being considered and $ stands for the EOF marker.
Table 1 demonstrates the Action table size according to k for five mainstream
languages: C, C#, Java, HTML and Visual Basic .NET. Note that the C# full
LALR(3) Action table requires more than two billion entries.

Grammar |M0| |Σ| k = 1 k = 2 k = 3

C 352 85 29,920 2,484,064 208,632,160

C# 807 141 11,3787 15,818,007 2,214,408,807

HTML 348 129 44,892 57,019,80 729,809,244

Java 632 107 67,624 7,101,784 752,722,744

VB .Net 636 144 91,584 13,006,200 1,859,796,288

Table 1. LALR(k) Action table size as k increases.

Charles [3] proposes an alternative representation of LALR(k) parsers by taking
k not as a fixed value, but as a variable limited by a constant kmax. To explain
how this approach works, consider an entry Action[q, a] = {S2, R5, R6}, where
S2 denotes a shift action to state 2 and R5 and R6 denote reduce actions by
productions numbered 5 and 6, respectively. In the set of actions there are two
shift/reduces ({S2, R5}, {S2, R6}) and one reduce/reduce conflict ({R5, R6}).
Suppose the existence of a procedure P to simulate the execution of the LR(0)
automaton with the goal of calculating the lookaheads that may follow a from
state q if each parsing action is executed. Taking k as 3 results in the following
possibilities: (a) if the shift action is performed, P determines that only the

lookaheads in L1 = {bc, bd} may follow a from state q; (b) if P reduces under
production 5, then only the lookaheads in L2 = {db, cc} may follow a from a
predecessor state of q, to which the parser would have gone under reduction;
(c) if P reduces under production 6, then only the lookaheads in L3 = {dc, da}
may follow a from a predecessor state of q, to which the parser would have gone
under reduction. Putting these possibilities in the form of a tree results in the
DFA depicted in Figure 5. The states q1, q2, q3 and q4 are not in M0; they
exist specifically for the purpose of the DFA. Since L1, L2 and L3 are disjoint
sets, each lookahead string in {a}(L1 ∪ L2 ∪ L3) uniquely identifies one parsing
action to execute, as indicated in the DFA. Note, however, that from q1 each
lookahead token in the strings bc, bd and cc reaches a state whose out degree
is one. Therefore, considering only the first symbol of such strings ({b, c}) is
enough to determine which parsing action to execute. In contrast, the strings db,
dc and da share the lookahead token d as prefix. Following it from q1 leads to
the state q3, whose out degree is two. In this case, if d is found, the parser has
more than one parse action to consider: R5 and R6. Another level of lookahead
enables it to make such decision. The DFA can consequently be simplified by
eliminating states q2 and q4. The length of lookahead strings starting with a,
then varies from 2 to 3. This is exact varying characteristic of k: the produced
parser can look at most k tokens ahead so as to decide which parsing action to
execute. These parsers will be referred as LALR(kv) parsers.

Fig. 5. DFA representing the lookahead string paths that may follow a from state q.
In the DFA, each lookahead string leads to a unique parse action, which causes the
conflict in Action[q, a] to be eliminated.

The mechanism in which LALR parses operate can be altered in order to in-
corporate calculated lookahead DFAs, hereafter referred as LDFAs. For an entry
Action[q, a] with a conflict, the parser must deviate its execution to the corre-
sponding calculated LDFA. To this purpose, Action[q, a] must store a special
kind of entry: a lookahead action to state q1, the first state of the corresponding
LDFA. Lookahead actions differ from shift actions in the sense that no token
is consumed at any moment and LDFA states are not pushed onto the stack
kept by the LALR driver program. Following each lookahead action from q1, the
LDFA continues its execution until a shift, reduce or error entry is reached. In
this case, the parser performs the corresponding action and behaves as an ordi-

nary LALR parser. To facilitate transition from LALR states to LDFA states,
each calculated LFDA has its transition function table appended at the end of
the Action matrix. Altogether, LDFA transition tables comprise the lookahead
table. To illustrate how this works, consider the augmented grammar in Figure
6.

S’ → S $ (0)
S → A1 b c (1)
| A2 b d (2)

A1 → A1 a (3)
| λ (4)

A2 → a (5)

Fig. 6. A non LALR(1) grammar with a solvable shift/reduce conflict if 3 lookaheads
are used.

This grammar results in a shift/reduce conflict {S1, R4} in the first state of the
LALR(1) automaton under the a terminal, as illustrated by the corresponding
parsing tables in Figure 7. Using kmax as 3, the process P that simulates execu-
tion of the LR(0) automaton faces two possibilities: (i) execute S1: P then goes
to state 1 under the a token. In state 1, it performs a reduce under A2 → a�,
which brings it back to state 0 with the transition symbol A2. From 0 under
A2, P reaches state 2. From 2, the only possible transition occurs under the b
terminal, which then leads P to state 8. Again, the only possible action to be
executed is a shift under d to state 9. Since k has now reached 3, P determined
that by executing the shift action the only lookahead string that may follow a
is bd; (ii) execute R4: P reduces under A1 → λ, which brings it back to state
0. Following A1 from 0 leads P to state 3, in which two possibilities arise: (a)
shift b and go to state 5; (b) shift a and go to state 6. Simulating (a), P goes to
state 5, whose only possible action is a shift under c to state 7. From 7, simu-
lation does not go any further because the calculated lookahead string bc, when
appended to a, has length equal to kmax. Following the execution path indicated
by (b), P reaches state 6. At this point, the only possible action to perform is a
reduce under A1 → A1a, which then brings P back to state 0. From 0, it again
follows a transition to state 3 under the A1 nonterminal. This process continues
until the lookahead string aaa is found, which causes simulation to stop.
From this, the conflict {S1, R4} can be removed from Action[0, a]: under looka-
heads aaa and abc the parser reduces under the 4th production; under abd the
parser goes to state 1. From the conflict symbol a, the lookahead string aa shares
no prefix with bc and bd. Therefore, the extra level of lookahead inspection in
aaa is useless; having inspected only aa is enough to identify that S1 is to be
executed. The new Action table, appended with the lookahead table, is given in
Figure 8.

The discussed example shows the intuition of how LALR(kv) are generated
using Charles approach. It is worth mentioning that simulation of the LR(0)
automaton as performed may enter infinite loop if the input grammar G is
circular, i.e., given a nonterminal A, A derives A in one or more steps, or G
results in an LR(0) automaton with cycles whose transition symbols are all

Action Table Goto Table

$ a b c d S A1 A2

0 S1, R4 R4 4 3 2

1 R5

2 S8

3 S6 S5

4 accept

5 S7

6 R3 R3

7 R1

8 S9

9 R2

Fig. 7. Parsing tables for the grammar in Figure 6.

nullable nonterminals. In case of such grammars, hereafter referred as NLALR
grammars, the calculation of LDFAs is stopped. If continuation is performed,
Charles states that termination will never be reached. Stopping the calculation
of LDFAs directly impacts the methodology supported by our parser generator,
as it is discussed in Section 4.

Action Table

$ a b c d

0 L10 R4

· · · · · ·
Lookahead Table

$ a b c d

10 R4 L11

11 R4 S1

Fig. 8. Parsing tables for the grammar in Figure 6. The dots omit the states that are
the same as in Figure 7.

4 A Methodology for Conflict Removal

The proposed parser generator is embedded in a graphical user interface so as to
facilitate the support of a methodology for conflict removal. Figure 9 presents a
screenshot of this GUI, called SAIDE (Syntax Analyzer Integrated Development
Environment). The text editor window is located in the upper left corner, loaded
with a syntax specification. After asking for the validation of the grammar, the
user starts the main cycle of the methodology supported by the tool. This cycle
is divided in two major steps: automatic and manual conflict removal.

In the automatic removal, SAIDE tries to remove all conflicts without user
intervention. The non-removed conflicts are then listed to the user. This listing
is performed using a heuristic that sorts all conflicts considering the order in
which they must be removed. A conflict must be listed before those that appear
possibly as a consequence of the existence of the first. In order to calculate such
removal priority, SAIDE needs to know the whole set of conflicts. In Figure 9,
the listing of conflicts is shown below the editor.

After the listing, the manual removal step starts. According to the method-
ology, to manually remove a conflict one must go through four phases: (i) un-
derstanding; (ii) classification; (iii) editing and (iv) testing.

In the understanding phase, the user tries to deduce the cause of the conflict
using derivation trees. This has the advantage of manipulating a more intuitive
and higher level structure compared to the low level data available in log files.
For expert users, low level content is still available, as can be seen by the LALR
automaton shown next to the editor window, in Figure 9. For each conflict, the
user can also inspect the set of lookaheads used as an attempt to remove the
reported conflict.

In the classification phase the user defines the category in which the conflict
belongs, i.e., determine whether a conflict is due to lack of right context or ambi-
guity. In the latter case, a catalog of some well known ambiguity constructions,
along with their solutions, is available for consulting and can be extended with
user defined entries. At this phase, the user must define a strategy to rewrite the
grammar so the given conflict can be removed. The identification of the conflict’s
category adds confidence, as we expect that a strategy used in removing a past
conflict can be applied many times to other conflicts in the same category.

Next, the user edits the grammar in order to apply the strategy defined in
the last phase and submits the specification to be validated. The main cycle of
the methodology is then restarted and continues until no conflicts are reported.

5 Implemented Algorithms

In this section we discuss the implemented algorithms that support the method-
ology presented in Section 4. Due to the lack of space, we do not present the
algorithms used in the calculation of derivation trees as means to elucidate con-
flicts. For that matter, the reader is referred to the paper by DeRemer and
Pennelo on lookaheads calculation [5], which presents such algorithms.

5.1 Automatic Conflict Removal

Charles calculates the lookaheads necessary to extend a given token by simu-
lating the steps of the LR(0) automaton. When faced with NLALR grammars,
the process of calculating LDFAs is stopped. At this point, there might exist
some non-solved conflicts that will not be reported to the user, resulting in an
incorrect number of reported conflicts. This gives the user a wrong impression of
the total amount of conflicts, disables SAIDE’s capacity to determine the order

Fig. 9. SAIDE’s main window.

in which conflicts should be removed and present the calculated lookaheads used
as an attempt to remove a given conflict. In this manner, SAIDE’s methodology
as originally proposed becomes inapplicable4.

SAIDE overcomes this by establishing the whole set of non-solved conflicts
even in the presence of NLALR grammars. It uses six algorithms, that are the
result of modifications over the originally four proposed by Charles.

The whole process starts with SWEEP, presented in Figure 10. Given a state
p, for each entry Action[p, a] that has at least two actions, SWEEP calls the
FOLLOW-SOURCESA procedure. This procedure, shown in Figure 11, is a façade
procedure to FOLLOW-SOURCESB, presented in Figure 12. Given an initial stack
as kept by the LALR driver program, FOLLOW-SOURCESB simulates the exe-
cution of an action in Action[p, a] in order to define the set of stacks that result
in the reading of a. SWEEP then associates each set of obtained stacks with the
corresponding action by means of a mapping structure called sources. For a shift
action s in Action[p, a], SWEEP makes sources(s) = {([p], a)}, where [p] denotes
a stack with state p as its top and only element and a as the string obtained so
far. In case of a reduce action r by a production A→ α in Action[p, a], FOLLOW-

SOURCESB is called for each possible start stack [p0], where p0 is a predecessor
state of p under the α sentential form in the LR(0) automaton, as returned by
the PRED function. FOLLOW-SOURCESB then continues simulation by making
a transition from p0 to the state q = GOTO0[p0, A], which results in a new stack
[p0q]. GOTO0 stands as the transition function of the LR(0) automaton, defined
over M0 × Grammar Symbol → M0. A simulation path at this stage stops as
soon as a appears as a reading token. While calculating sources(r), if FOLLOW-

SOURCESB , given a current stack and a transition symbol X, reaches a state s

4 For a further discussion, please refer to http://sourceforge.net/projects/lpg/
forums/forum/523519/topic/3413786.

with an item of the form C → γ �X, it checks two situations: (i) if the current
stack has at least |γ| + 1 states, then popping |γ| states makes the predecessor
state of s under γ the top state of the stack; (ii) otherwise, the current stack has
less than |γ|+ 1 states; popping |γ| states would cause underflow. In such case,
let γ = γ1γ2, where |γ2|+1 is equal to the size of the stack. If p0 is a predecessor
state in the bottom of the stack under γ1, reduction is then simulated by creating
a new stack [p0] and following a transition to GOTO0(p0, C), which results in a
recursive call to FOLLOW-SOURCESB.

SWEEP(p)
1 for a ∈ Σ
2 do if |Action[p, a]| > 0 ∧ a 6= $
3 then sources← ∅
4 for act ∈ Action[p, a]
5 do if act is a shift action
6 then sources[act]← {([p], a)}
7 else ASSERT(act = reduce by rule A→ α)
8 for p0 ∈ PRED(p, α)
9 do FOLLOW-SOURCESA(sources[act], [p0], A, a, λ)

10 RESOLVE-CONFLICTS(p, a, sources, 2)

Fig. 10. Main procedure to automatically remove conflicts.

FOLLOW-SOURCESA(sources, stack, X, a, w)
1 ASSERT(stack = [p1...pn])
2 root← node← NODE((p1, λ))
3 for 2 ≤ i ≤ n
4 do node2 ← NODE((pi, λ))
5 ADD-CHILD(node,node2)
6 node← node2

7 SND(VALUE(node))← w
8 FOLLOW-SOURCESB(sources, (pn, X,GOTO0(pn, X)), a, w, root,node, ∅, ∅)

Fig. 11. Façade procedure FOLLOW-SOURCESA.

The first difference when compared with Charles proposal is the presence of two
FOLLOW-SOURCES procedures. Before FOLLOW-SOURCESB starts simulating
the LR(0) steps in order to find all stacks that will lead to the reading of a,
FOLLOW-SOURCESA puts the current stack in a tree format. The idea of using
a tree structure comes from [8] and it is used by FOLLOW-SOURCESB as a
means to prevent infinite loop. Each node in the tree stores, besides its list of
children, a pair (state, z) as its value. Given a node n, the string z stands as the

FOLLOW-SOURCESB(sources, transition, a, w, root,node, visited, roots)
1 stackSize← COUNT(node, root)
2 if stackSize = 1
3 then if transition ∈ roots
4 then return
5 else roots← roots ∪ {transition}
6 else if (ID(node), transition) ∈ visited
7 then return
8 else visited← visited ∪ {(ID(node), transition)}
9 ASSERT(transition = (ts,X, q))

10 for Y ∈ V | GOTO0(q, Y) is defined

11 do if Y
∗⇒λ ∧GET-FROM(node, (q, w)) = nil

12 then node2 ← NODE((q, w))
13 ADD-CHILD(node,node2)
14 FOLLOW-SOURCESB

15 (sources, (q, Y,GOTO0(q, Y)), a, w, root,node2, visited, roots)
16 else if Y = a
17 then node2 ← node
18 list← [FST(VALUE(node2))]
19 while (node2 ← PARENT(node2)) 6= nil
20 do list← list + [FST(VALUE(node2))]
21
22 ASSERT(list = [pn...p1])
23 stack← [p1...pnq]
24 sources← sources ∪ {(stack, wa)}
25 bottom← FST(VALUE(root))
26 for C → γ• ∈ ts | C 6= S
27 do if |γ|+ 1 < stackSize
28 then node2 ← UP(node, |γ|)
29 SND(VALUE(node2))← w
30 ts2 ← FST(VALUE(node2))
31 FOLLOW-SOURCESB

32 (sources, (ts2, C,GOTO0(ts2, C)), a, w, root,node2, visited, roots)
33 else ASSERT(γ = γ1γ2), where |γ2| = stackSize− 1
34 for p0 ∈ PRED(bottom, γ1)
35 do root2 ← NODE((p0, w))
36 FOLLOW-SOURCESB

37 (sources, (p0, C,GOTO0(p0, C)), a, w, root2, root2, visited, roots)

Fig. 12. Procedure FOLLOW-SOURCESB .

Fig. 13. Subgraph of a LR(0) automaton with a parsing cycle. Reproduced from [3].

string processed by the LR(0) automaton given the states from the root of the
tree to the node n. In the built tree, each node has a unique numeric identifier.
Instantiating nodes using the NODE constructor controls such uniqueness. The
value and the identifier of a node can be retrieved at any time by calling VALUE

and ID, respectively.

FOLLOW-SOURCESB requires eight arguments: the set of sources, as in
FOLLOW-SOURCESA, the current transition to be performed as part of the
LR(0) simulation (encoded as a triple whose components are a source state,
a transition-symbol and a destination-state), the terminal a, the current pro-
cessed string w, that corresponds to λ when FOLLOW-SOURCESA is first called
in SWEEP, the root of the tree, the current node tree and the sets visited and
roots. When a appears as a transition symbol, the procedure stores in sources
the pair (stack, wa), where stack is given by the states in the values of the nodes
in the path in the tree from root to node and wa is the lookahead string ob-
tained from the simulation process that resulted in stack. The first part of loop
control in FOLLOW-SOURCESB is located in lines 2− 8. Although also present
in Charles algorithm, the presented code is an adaptation so as to work with
the tree structure and the absence of assumptions related to the input grammar
and the corresponding LR(0) automaton. Charles loop control guarantees that
no transition is revisited from any given state and transition symbol. In our case
we must guarantee that only one execution of FOLLOW-SOURCESB occurs for
a given stack and transition symbol. This prevents infinite loops like the one il-
lustrated in Figure 13. If simulation reaches a state p, follows a transition under
a nullable nonterminal B to state q, and from it produces Cη, where Cη ∗⇒ λ,
simulation would then come back to state p, where this process could continue
indefinitely.

Loop control is performed each each time FOLLOW-SOURCESB is activated.
Instead of storing the whole sequence of states on the stack, it is enough to
know the current node’s identifier, for it also defines a unique stack. For opti-
mization purposes, the pairs (id, transition) are stored in two distinct sets: roots
and visited. The roots set is only used for stacks whose size is one. The size of
the current stack is obtained by calling COUNT, which returns the number of
nodes in the path from the root node to the current node. Note that if the size
is one, storing the node’s identifier is not necessary, since the root state corre-
sponds to the source state in the transition triple. For stacks greater than one,
visited is used. Lines 10 − 24 inspect all edges leaving q, where q is the des-
tination state of the transition parameter. Two possibilities arise: a transition
over a nullable symbol or a terminal symbol. From the first we must continue
the simulation by pushing q onto the stack. To do this, we add a new child
node to the current node’s children list. The created node stores a pair (q, w) as
its value. Next, FOLLOW-SOURCESB is recursively called. The second situation
occurs when there is a transition symbol from q that matches a. In this case,
the current stack is retrieved by getting the inverse order of the states from
the current node to the root of the tree, and the pair (stack, wa) is added to
sources. Another loop control, not performed in Charles’ algorithm, occurs in

RESOLVE-CONFLICTS(q, t, sources, n)
1 if t = $ ∨ n > kmax

2 then return
3 allocate a new line p in the action table
4 for a ∈ Σ
5 do Action[p, a]← ∅
6 Action[q, t]← {Lp}
7 for act indexing sources
8 do for src ∈ sources[act]
9 do ASSERT(src = (stack, w))

10 la← NEXT-LOOKAHEADSA(stack, t)
11 for a ∈ la
12 do Action[p, a]← Action[p, a] ∪ {act}
13 for a ∈ (Σ − {$}) | |Action[p, a]| > 1
14 do for act ∈ Action[p, a]
15 do nSources← ∅
16 for src ∈ sources[act]
17 do ASSERT(src = (stack, w))
18 FOLLOW-SOURCESA(nSources[act], stack, t, a, w)
19
20 RESOLVE-CONFLICTS(p, a,nSources, n+ 1)

Fig. 14. Procedure RESOLVE-CONFLICTS.

the 10th line. If following a transition from q = GOTO0(ts, X), where ts stands
as the top state in the current stack, under a nullable nonterminal Y results
in an instant configuration ([p1p2...pnqq1q2...qnq], w) obtained in one or more
steps from a previous configuration ([p1p2...pnq], w), then there is a cycle over
nullable nonterminals in the LR(0) automaton. Detecting cycles using the tree
structure is straight forward: given a node and a value (q, w), a cycle occurs if
GET-FROM finds a node in the path from node (inclusively) to the root of the
tree stack whose value coincide with (q, w). Lines 26 − 37 are responsible for
making reductions. As mentioned before, reductions while simulating the LR(0)
automaton may cause underflow. If |γ1γ2| states should be popped, but only |γ2|
are available on the stack, being γ1γ2 the right hand side of a production, the
predecessor state of the γ1 is retrieved and put as the top element of an unitary
stack, used as a parameter to a recursive call.

The procedure RESOLVE-CONFLICTS, shown in Figure 14, checks if a con-
flict is removed. If not, it generates another level of lookaheads, respected kmax.
Four arguments are mandatory: a state q containing conflicts under t, also a re-
ceived parameter, the sources dictionary (as in SWEEP and FOLLOW-SOURCESA)
and n, the number of lookaheads used so far. Its execution starts checking if n is
greater than kmax or t is the EOF marker. In either case, the extension of looka-
heads does not go further. Otherwise, a new line p is allocated in the action table
after its last line and each entry in p is given the empty set. Later, the conflict
entry (q, t) points to p by a lookahead action – Lp. Next, for each action indexing

sources, each source (stack, w) is inspected. Each token than can follow t, given
stack, is calculated by calling NEXT-LOOKAHEADSA. For each returned token
a, the appropriate actions are set in Action[p, a]. After determining the values
in p’s entries, for the entries whose cardinality is greater than one, the conflict
removal process continues by calling FOLLOW-SOURCESA. This is necessary,
since NEXT-LOOKAHEADSA returns the tokens that can extend t, but not the
context in which they were obtained (source stacks).

NEXT-LOOKAHEADSA(stack, t)
1 la← ∅
2 ASSERT(stack = [p1...pn])
3 root← node← NODE(p1)
4 for 2 ≤ i ≤ n
5 do node2 ← NODE(pi)
6 ADD-CHILD(node,node2)
7 node← node2

8 NEXT-LOOKAHEADSB(la, (pn, t,GOTO0(pn, t)), root,node, ∅)
9 return la

Fig. 15. Façade procedure NEXT-LOOKAHEADSA.

Analogous to FOLLOW-SOURCESA, NEXT-LOOKAHEADSA, shown in Fig-
ure 15, is a façade procedure to NEXT-LOOKAHEADSB . It structures the re-
ceived stack in a tree format.

Having such tree, NEXT-LOOKAHEADSB , presented in Figure 16, fast cal-
culates the tokens that can be found given a stack and a transition symbol. To
achieve this, it uses two external functions defined in [5]: READ1 and FOLLOW1.
From a state p and a symbol X, READ1 returns the tokens that can be read
from GOTO0(p,X) either directly or under nullable transitions; FOLLOW1 re-
turns the tokens either in READ1(p,X) or in FOLLOW1(p0, C), as long as C →
α •Xβ ∈ p, β ∗⇒λ and p0 ∈ PRED(p, α). From a received stack tree and tran-
sition, NEXT-LOOKAHEADSB first grabs all tokens returned by READ1 for the
given transition. Reductions are treated as in FOLLOW-SOURCESB , except that
in cases of underflow, simulation does not proceed. Instead, the algorithm re-
trieves the desired tokens by calling FOLLOW1. To reduce under non-underflow
cases, the procedure pops states by calling UP; given a node n and a value
k, UP returns the k-th ancestor of n. By using READ1 and FOLLOW1, which
can be precomputed, NEXT-LOOKAHEADSB does not have to search for source
stacks when looking for lookaheads. The procedure’s loop control, not present
in Charles algorithm, is achieved just like FOLLOW-SOURCESB , i.e., by storing
all visited stacks.

The presented algorithms do not have the limitation of stopping when dealing
with NLALR grammars; termination is guaranteed to be reached under any
circumstances.

NEXT-LOOKAHEADSB(la, transition, root,node, visited)
1 ASSERT(transition = (ts,X, q))
2 bottom← VALUE(root)
3 if (ID(node), transition) ∈ visited
4 then return
5 la← la ∪READ1(ts,X)
6 stackSize← COUNT(node, root)
7 nStacks← ∅
8 for C → γ •Xδ | δ ∗⇒λ ∧ C 6= S

9 do if |γ|+ 1 < stackSize
10 then node2 ← UP(node, |γ|)
11 nStacks← nStacks ∪ {(node2, C)}
12
13 else ASSERT(γ = γ1γ2), where |γ2| = stackSize− 1
14 for p0 ∈ PRED(bottom, γ1)
15 do la← la ∪ FOLLOW1(p0, C)
16 for (n,C) ∈ nStacks
17 do ts← VALUE(n)
18 NEXT-LOOKAHEADSB(la, (ts, C,GOTO0(ts, C)), root, n, visited)

Fig. 16. Procedure NEXT-LOOKAHEADSB .

5.2 Conflict Listing

When using LALR(kv) action tables, the parser generator must not miscalculate
the number of remaining conflicts. To illustrate this, consider the following table
when kmax = 1:

a b c d e f $
8 S11, R8 R3, R8 R3
...

Using kmax = 2, the table is given by:

a b c d e f $
8 L13 L14 R3
...
13 S11, R8
14 R3, R8 R3, R8 R3, R8

Simply examining the number of entries with more than one parse action allows
identifying four conflicts, instead of the original two. When using kmax ≥ 2,
SAIDE performs a depth first search from the lookahead action in an entry
(p, a), and retrieves the actions in the entries that still contain conflicts. The
obtained set of actions acts is a subset of the original set of conflicts. When
performing the search, SAIDE also keeps track of all traversed edges of the
LDFA, and thus obtain the strings of length up to kmax for which the conflict

is not removed. The number of conflicts for Action[p, a] is given by (|shift| ×
|reds|) + (λx. if x ≥ 2 then 1 else 0)|reds|, where shift stands as the set of shift
actions and reds as the set of reduce actions in acts. For the conflicts that could
not be automatically removed, SAIDE lists them in a heuristic manner so as
to prioritize the order in which they should be removed. The heuristic here
discussed builds a conflict graph, whose vertexes represent LALR states with at
least one non-solved conflict. A directed edge connects p to q if there is a path
from p to q in the LALR automaton, i.e., p propagates lookaheads to q. From
this graph, a second one is built, formed by the SCCs of the first. In this graph,
a directed edge between two vertexes exists if at least one vertex in the first
SCC connects to another vertex in the second SCC. The SCCs graph is then
topologically sorted. From the obtained graph, the conflicts are listed according
to the order of the SCCs, from left to right. Given an SCC c, all conflicts in state
p ∈ c are put on the listing. If the user follows the heuristic listing, conflicts with
higher priority, when removed, may cause the transparent elimination of other
conflicts listed after them due to the flow of lookahead propagation indicated by
the conflict graph.

6 Related Work

SableCC [10] is an LALR(1) parser generator with automatic conflict removal
support. SableCC attempts to automatically remove conflicts by inlining pro-
ductions. To illustrate how this process works, consider the following grammar
G:

S → A1 b c | A2 b d
A1 → a | e
A2 → a | f

This grammar is not LALR(1) due to a reduce/reduce conflict involving produc-
tions A1 → a and A2 → a. Since b can follow A1 and A2, having processed a,
the parser has two possibilities of reduction. The inline strategy is to postpone
reductions, so as to increase the parser’s right context. For each production P
whose right hand side contains either A1 or A2, P is redefined so that each oc-
currence of A1 and A2 is substituted by their corresponding right hand sides.
The nonterminals A1 and A2 are then removed from the grammar, along with
their productions. This process results in a grammar G′ equivalent to G, but
LALR(1):

S → a b c | a b d | e b c | e b d | f b c | f b d

When submitting an input grammar to SableCC, transformations do not
change G explicitly; they are internal and transparent to users. SableCC does not
handle recursive productions, either direct or indirect, so as to prevent infinite
execution of the inlining process. If the left hand side of a production that
participates in a conflict is recursive, or the conflict itself cannot be eliminated
by inling productions, SableCC stops execution and reports the current conflict.

For each processed grammar, SableCC lists at most one conflict at a time. The
discussed technique is less powerful when compared to the generation of LDFAs
in the sense that it only handles non-recursive productions.

LPG [9] is another LALR parser generator with automatic conflict support.
LPG is a continuation project over JikesPG, the LALR parser generator from
IBM that implements the algorithms proposed by Philip Charles in [3]. LPG
inherents the same problem from JikesPG in which SAIDE solves: the incorrect
feedback of the number of conflicts when dealing with NLALR grammars. To
illustrate this, consider the following grammar:

A → B C D
A → B C E | λ

C → c | λ
D → d | λ
E → e | λ

This grammar is not LALR for any k. Using k as one, LPG reports 3 shift/reduces
and 1 reduce/reduce conflict. If executed using 2 lookaheads, LPG reports only
the reduce/reduce conflict. It also reports that states 1, 2, 3 and 4 of the cor-
responding automaton are cyclic and that B +⇒ B. At this point, the user may
have the false understanding that all shift/reduces were removed using an extra
level of lookaheads, while the reduce/reduce conflict could not be eliminated due
to the cyclic characteristic of states 1, 2, 3 and 4 and/or that B derives itself in
one or more steps!

As for debugging facilities SableCC and LPG fail to provide any mechanism
other than log messages. In fact, the reported log messages are not as complete
as in other parser generators such as CUP, Bison and Yacc: SableCC does not
dump the LALR automaton; LPG only print states of the LALR automaton
that contain conflicts.

7 Experiments

We performed tests in order to evaluate the automatic conflict mechanism when
applied to 3 input grammars: Algol-60(1), Algol-60(2) and Notus. Algol-60(1) is
a grammar that supports a subset of the full Algol-60 programming language
whereas Algol-60(2) is a complete specification5. The obtained results were:

Grammar kmax = 1 kmax = 2 kmax = 3

Confs. T. (ms) Confs. T. (ms) Confs. T. (ms)

Algol-60(1) 61 397.11 61 1,550.2 61 3,089.75

Algol-60(2) 255 421.87 245 3,499.68 243 14,773.74

Notus 575 401.52 541 15,375.2 539 17,168.96

where Confs stands as the number of reported conflicts and T denotes execu-
tion time, measured in milliseconds. In Algol-601 the number of conflicts is not
affected at any time whereas in Algol-602 there is a reduction of 4% and 5%
using two and three lookaheads respectively. From the table, one concludes that
5 These grammars are available in www.dcc.ufmg.br/˜leonardo/saide/grammars

Fig. 17. Conflict removal graph for the Mach̆ınaprogramming language.

the productions omitted in Algol-601 are responsible for most of the conflicts in
Algol-602. These conflicts result in a difference of execution time, specially for
k ≥ 2. For the Notus grammar, there is a reduction in 6% when using at most
two lookaheads. Due to its complexity and extensiveness, the Notus grammar
requires the highest amount of time when attempting to remove its conflicts.

In practice, SAIDE is fast when used for parsers that are built incrementally,
with the adding of syntax constructions only when the number of conflicts in
the current increment becomes zero. We believe that this is the most common
scenario in parser development. In such cases, there is generally a small amount
of conflicts to be tried to be automatically removed at each time, which causes
a very small impact on execution time.

As a case study so as to evaluate the proposed methodology, the tool was used
in building a parser for the Mach̆ına programming language6. The writing of its
syntax specification was incrementally performed. In the experiment, kmax = 2
was used. At each reported conflict, the four phases for manual removal were
applied. The application of the four phases defines a step. Figure 17 shows the dot
graph for the number of conflicts obtained in each step. For reading purposes, the
dots were connected to better identify the increasing and decreasing of conflicts.
In the presented graph, the frontier between increments is marked by a dotted
line. With exception to increment four, all steps inside other increments showed
a decrease in the number of conflicts. The increase of conflicts occurs in the
border of two increments, which is expected due to the adding of new rules.

6 Mach̆ına is a programming language designed at our laboratory used in the specifi-
cation of operational semantics of programming languages.

8 Conclusion and Future Work

This article presented an LALR parser generator supporting conflict resolution.
Among the contributions of our work, we highlight the following: the process
of conflict removal is eased by automatic conflict removal. In particular, the
present algorithms remove some conflicts caused by lack of right context; for the
cases in which manual removal is required, the tool assists users through a well
defined methodology; Charles’ algorithms were modified in order to accept any
context free grammar. This makes the methodology independent of grammar
characteristics.

All obtained results are based on empirical data, determined by using estab-
lished and also new programming languages, such as Notus and Mach̆ına. The
presented results indicate that the application of the methodology contributes
to the constant decrease on the number of conflicts in a grammar.

As for future work, we are currently applying compression techniques to the
produced LALR(kv) parsing tables. Preliminary results show that the generated
parsing tables can be compressed in more than 90%, a result similar to LALR(1)
compression rates.

We are also documenting the implemented code and integrating it to the
Netbeans platform so as to make the tool publicly available. The official project
web page for SAIDE can be found at http://www.dcc.ufmg.br/˜leonardo/saide.

References

1. Aho, A. V. and Johnson, S. C. and Ullman, J. D.: Deterministic Parsing of Ambigu-
ous Grammars, POPL ’73: Proceedings of the 1st Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages 1–21, 1973.

2. Bison: The GNU Parser Generator. In: http://www.gnu.org/software/bison/.
3. Charles, Philip: A Practical Method for Constructing Efficient LALR(k) Parsers

with Automatic Error Recovery, PhD thesis, New York University, 1991.
4. CUP Parser Generator. In: http://www2.cs.tum.edu/projects/cup/.
5. DeRemer, Frank and Pennello, Thomas: Efficient Computation of LALR(1) Look-

Ahead Sets, ACM Transactions on Programming Languages and Systems, 4(4):615–
649, 1982.

6. Aho, Alfred V. and Lam, Monica S. and Sethi, Ravi and Ullman, Jeffrey D.: Com-
pilers: Principles, Techniques, and Tools (2nd Edition), Addison-Wesley Longman
Publishing, 2006.

7. Klint, Paul and Lämmel, Ralf and Verhoef, Chris.: Toward an Engineering Disci-
pline for Grammarware, ACM Transactions on Software Engineering Methodology,
14(3):331–380, 2005.

8. Kristensen, Bent Bruun and Madsen, Ole Lehrmann: Methods for Computing
LALR(k) Lookahead, ACM Transactions on Programming Languages and Systems,
3(1):60–82, 1981.

9. LALR Parser Generator. In: http://sourceforge.net/projects/lpg/
10. SableCC Parser Generator. In: http://sablecc.org/.
11. Johnson, S.C.: Yacc: Yet Another Compiler Compiler, UNIX Programmer’s Man-

ual, volume 2, pages 353–387. Holt, Rinehart, and Winston, 1979.

