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Abstract. The Static Single Information (SSI) form is a program repre-
sentation that enables optimizations such as array bound checking elim-
ination and conditional constant propagation. Transforming a program
into SSI form has a non-negligible impact on compilation time; however,
only a few SSI clients, that is, optimizations that use SSI, require a full
conversion. In this paper we describe the SSI framework that we have
implemented for the LLVM compiler, and that is now part of this com-
piler’s standard distribution. In our design, optimizing passes inform to
the compiler a list of variables of interest, which are then transformed to
present, fully or partially, the SSI properties. Thus, we provide to each
client only the subset of SSI that the client needs. Our implementation or-
chestrates the execution of clients in sequence, avoiding redundant work
when two clients request the conversion of the same variable. As empiri-
cally demonstrated, in the context of an industrial strength compiler, our
approach saves compilation time and keeps the program representation
small, while enabling a vast array of code optimizations.

1 Introduction

The Static Single Information (SSI) form is a program representation introduced
by Scott Ananian [1]. This ten years old program representation redefines some
variables at program split points, which are basic blocks with two or more suc-
cessors. SSI form enables many compiler optimizations, because it allows an
analyzer to augment variables with information inferred from the result of con-
ditional branches. A non-exhaustive list of potential SSI clients includes array
bounds check elimination [3], bitwidth analysis [23], flow sensitive range interval
analysis [24], conditional constant propagation [1, 25], partial redundancy elim-
ination [16], fast liveness analysis [4, 21], and busy expression elimination [20].

The SSI representation suits the needs of many compiler optimizations –
henceforth called clients; however, different clients require that different subsets
of the source program be in SSI form. For instance, Bodik et al. [3]’s ABCD algo-
rithm uses information from conditional branches to put bounds on the value of
variables used as array indices. Thus, it requires that only integer variables used
in conditionals bear SSI properties. Even less demanding is the sparse conditional
constant propagation algorithm described by Ananian [1] and Singer [21], which
demands that variables used in equality comparisons be in SSI form. On the
other hand, the partial redundancy elimination algorithm described by Johnson



et al. [15] uses an analysis called anticipability. A non-iterative computation of
the anticipatable variables requires that all program variables be in SSI form.

In this paper we describe an on-demand SSI conversion framework. Our
framework saves compilation time and space in three different dimensions. First,
it converts only a subset of variables in the source program to SSI form. Clients
provide to our module a list of variables that must have the SSI properties, and
only these variables are transformed. Second, we provide two conversion modes
for each variable: full and partial. If a variable is fully converted into SSI form,
then it presents the SSI properties traditionally described in the literature [1, 4,
21]. On the other hand, if a variable is partially transformed, then it presents a
restricted set of properties, that we describe in this paper. The partial conver-
sion fits the needs of many SSI clients [1, 3, 21, 23–25], and, contrary to the full
conversion, it uses a non-iterative algorithm, which is faster, as we empirically
demonstrate. Third, our SSI conversion algorithm is a state-full black-box. Be-
cause we allow different clients invoking our converter in sequence, we log the SSI
conversions that we perform, so that subsequent requests on the same variable
do not lead to redundant work being performed.

Our SSI framework is now part of the default distribution of the Low Level
Virtual Machine [17] (LLVM), version 2.6. LLVM is an industrial strength com-
piler, used by companies like Cray 1 and Apple 2. We have implemented two SSI
clients: the ABCD algorithm of Bodik et al. [3], and a sparse conditional constant
propagation (CCP) algorithm, similar to the one described by Singer [21, p.59].
When compiling the SPEC CPU 2000 benchmark suite, the partial transforma-
tions that ABCD and CCP request are about 15 and 24 times faster than fully
converting a program to SSI. The SSI conversion is based on the insertion of spe-
cial instructions – σ-functions and φ-functions – in the source program. ABCD
and CCP generate approximately 6.5 and 10 times less special instructions than
the full conversion. We emphasize that the same infrastructure is used in the
three transformations that we have compared: CCP, ABCD and full; however,
because we build the SSI representation on demand, we give to each client only
the program properties that it requires.

In Section 2 we review the SSI form. In Section 3 we describe some compiler
optimizations and analyses that benefit from SSI form, and we show how different
subsets of this program representation serve these clients. In Section 4 we discuss
our approach to build the SSI representation on demand. Section 5 validates the
paper with a series of experiments, and Section 6 concludes this work.

2 Background on SSI

The term Static Single Information form seems to have been coined by Scott
Ananian in his master thesis [1]; however, program representations with similar
properties have been described before [16]. Benoit et al. [4] distinguish two main
flavors of the Static Single Information form: strong, introduced by Ananian [1]
1 http://blogs.rapidmind.com/2009/05/27/why-we-chose-llvm/
2 http://arstechnica.com/apple/news/2007/03/apple-putting-llvm-to-good-use.ars



1 int a = read();

2 if (a == 0) {

3 if (...) {

4 print(a);

5 }

6 }

7 print(a);

a = •
(• = a)?

(a1, a2) =σ a

(a4, a5) =σ a2

• = a5

a3 =ϕ [a1,a4,a5]
• = a3

a = •
(• = a)?

(a1, a2) =σ a

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

(a) (b) (c)

Fig. 1. (a) Source program. (b) Full SSI conversion. (c) Partial SSI conversion. We use
the symbol • to indicate that the left or right side of the instruction is not important.

and weak, described by Singer [21]. These representations are not equivalent [4].
Any strong SSI form program is also a weak SSI form program; thus, we will be
using SSI as a synonym for Strong SSI. According to Benoit et al., four properties
characterize strong SSI form:

– pseudo-definition: there exists a definition of each variable at the starting
point of the program’s control flow graph.

– single reaching-definition: each program point is reached by at most one
definition of each variable.

– pseudo-use: there exists a use of each variable at the ending point of the
program’s control flow graph.

– single upward-exposed-use: from each program point it is possible to reach
at most one use of a variable, without passing by a previous use.

Figure 1(a) shows a program written in a C like language, and Figure 1(b) gives
the control flow graph of this program, in SSI form. The program in Figure 1(c)
is not in SSI form, as it contains a point exposed to two different uses of a2.

In order to convert a program into SSI form we need two special types of
instructions: φ-functions and σ-functions. φ-functions are an abstraction used in
the Static Single Assignment form (SSA) [11] to join the live ranges of variables.
Any SSI form program is a SSA form program. For instance, the assignment
below, at the beginning of a basic block B,

v = φ(v1, . . . , vn)

works as a multiplexer. It will assign to v the value in vi, if the program flow
reaches block B coming from the ith predecessor of B.

The σ-functions are the dual of φ-functions. Whereas the latter has the func-
tionality of a variable multiplexer, the former is analogous to a demultiplexer,
that performs an assignment depending on the execution path taken. For in-
stance, the assignment below, at the end of a basic block B,

(v1, . . . , vn) = σ v



has the effect of assigning to vi the value in v if control flows into the ith successor
of B. Notice that variables alive in different branches of a basic block are given
different names by the σ-function that ends that basic block.

The insertion of φ and σ functions is a form of live range splitting. The live
range of a variable is the set of program points where that variable is alive.
Variable v is said to be alive at program point p if there is a path from p to
a use of v that does not go through any definition of v. Two algorithms for
converting a program into SSI form have been described in the literature: we
have Ananian’s [1] pessimistic algorithm, and Singer’s [21] optimistic approach.
We describe Singer’s approach in Section 4.

There exists an interesting relationship between the live range of program
variables and graphs. Chaitin et al. [10] have shown that the intersection graph
of the live ranges of a general program can be any type of graph. In 2005 a
number of researchers have shown that the intersection graphs produced from
programs in SSA form are chordal [6, 8, 19, 13]. Even more recently, Brisk et al. [9]
showed that the interference graphs of programs in SSI form are interval graphs,
a subset of the family of chordal graphs. This last proof had some omissions,
later fixed by Benoit and Brisk [4].

3 Examples of SSI clients

In this section we show examples of compiler optimizations that use the SSI
representation, giving emphasis on the subset of SSI that each client needs. The
SSI facilitates two types of program analyses. First, it helps analyses that extract
information from conditional statements, such as constant propagation and array
bound checks elimination. Second, it facilitates sparse backwards analyses that
associate information with the uses of variables. Section 3.1 discusses examples
in the former class, and Section 3.2 goes over the latter.

3.1 Information analyses

Information analyses are among the main reasons behind the design of the SSI
representation. These analyses use information from conditional branches to en-
able compiler optimizations, such as removing redundancies inserted to ensure
language safety. For instance, Figure 2(a-c) shows three common Java idioms
where exceptional cases are identified by the programmer via conditional tests.
However, similar tests will be implicitly created by the java compiler to enforce
the strongly typed nature of the language [2]. In the figures, these tests appear
in bold face. In another example, Figure 2(d) shows a Ruby program where a
runtime test is used to handle integer overflows. The code in lines 3 and 4 is
implicitly performed, at runtime, by the Ruby interpreter; however, given the
loop boundaries, this test will never be true.

Among the examples of redundant code elimination based on information
analyses we cite Bodik et al.’s ABCD algorithm [3] and the sparse conditional
constant propagation method of Wegman and Zadeck [25]. Ananian describes



1  int array[];
2  void s(int i, int v) {
3   if (i < v.length) {
4     if (i >= v.length)
5       throw new ArrayIndex-
        OutOfBoundsException();
6     v[i] = v;
7   } else {
8     // handle error
9   }
10 }

1  void f(Object o) {
2    if (o instanceof V)
3      if (o.getClass() != V)
4        throw new Class-
         CastException();
5      ((V) o).m();
6    else {
7      // handle error
8    }
9  }

1  int div(int a, int b) {
2    if (b != 0) {
3      if (b == 0)
4        throw new
         ArithmeticException()
6      return a / b;
7    } else {
8      // handle error
9    }
10 }

1  sum = 0
2  (1..10).each do |i|
3    if (sum_overflow(sum, i))
4      change sum to BigInt
5    sum += i
6  end

(a) (b)

(c) (d)

Fig. 2. Examples of defensive programming idioms.

a long list of information analyses when introducing the SSI representation [1].
Furthermore, many compilers already perform simple forms of redundant check
elimination. For instance, LLVM is able to eliminate simple boundary checks
inserted by the GNAT front-end used in the compilation of ADA programs.

In addition to removing redundant code, information analyses are also useful
to discover the range of values that variables might assume. For instance, in
Figure 2(a) we know that any value of variable v used in the true branch of the
conditional is less than v.length. Harrison [14] provides examples of how com-
pilers benefit from range analyses. Members of such family of analyses include
the bitwidth inference engine of Stephenson et al. [23], the range propagation
algorithm of Su and Wagner [24], and the range analyzis used by Patterson to
predict the outcome of branches [18].

Although well known in the literature, information analyses are described
using different program representations; however, they all can be modeled as
sets of constraints extracted from SSI form programs. For instance, in order to
perform conditional constraint propagation on the program in Figure 1(b) we
must solve the constraints 〈a = >〉, 〈a1 6= 0〉, 〈a2 = 0〉, 〈a4 = a2〉 and 〈a5 = a2〉.
After solving the constraints we can replace the instruction • = a5 by • = 0.

Different SSI form clients have different needs. For instance:



– the ABCD algorithm that removes redundant array bound checks [3], as
in Figure 2(a), requires only that variables used in conditionals, and that
represent either array indices or array lengths have SSI properties;

– in order to remove redundant type casts, as in Figure 2(b), a client must
require that variables used as operands of the instanceof function be in
SSI form.

– in order to remove redundant divide-by-zero tests, as in Figure 2(c), we need
that numeric variables used in conditionals be in SSI form.

– the version of ABCD that we implement in this paper requires any variable
used in branches to be in SSI form. Our implementation is used as a general
redundant test elimination, that removes the test in line 3 in Figure 2(d), for
instance.

Information analyses do not require that variables be fully converted into
SSI form. Instead, they need a representation that restricts the value range of
variables. The value range of a variable is the set of values that the variable may
assume during program execution. For instance, variable a in line 1 of Figure 1(a)
may assume any value of the integer type in the Java language; thus, its value
range is [−231, 231 − 1]. However, the conditional branch in line 2 restricts the
value range of a to [0, 0] when the test is true. If every variable created by a
σ-function has the same value range, like (a4, a5) = σ a2 in Figure 1(b), then
this σ-function is redundant for an information analysis. As an example, the
program in Figure 1(c) also allows to infer that the value of a2 is always 0, but
with fewer constraints than the program in Figure 1(b).

3.2 Backward analyses

In addition to being useful for information analyses, the SSI representation also
facilitates sparse backward analyses. Singer [20] gives two examples of such analy-
ses: very busy expressions, and the dual available expression analysis. An expres-
sion e is very busy at program point p if e is computed in any path from p to the
end of the program, before any variable that is part of it is redefined. Such anal-
ysis, also called anticipatable expressions analysis by Johnson and Pingali [16],
is useful for performing optimizations such as partial redundancy elimination.
Conversely, an expression e is available at program point p if it is computed in
any path from the beginning of the program until p, and none of the variables
that are part of e are redefined thereafter.

A sparse analysis associates information to variables, instead of program
points. That is, the busy expressions associated to variable v are the busy expres-
sions at the definition point of v. Similarly, the available expressions associated
to v are the expressions available at the program point where v is last used. The
SSI representation allows us to perform these analyses non-iteratively [20]. As
another example, Benoit et al. [4] have shown how SSI speeds up the computa-
tion of liveness analysis. This is a dataflow analysis that finds which are the live
variables at each program point.

Contrary to the analyses described in Section 3.1, the backward dataflow
analyses demand the full power of the SSI representation. That is, every variable



∀ block B that contains 
branch where v is used. 
add (v, ..., v)  =σ  v
at the end of B

(a)

(b)

rename
variables

rename
variables

∃ unmarked
instruction
v = •
at block B

∀ B' at the iterated 
dominance frontier of B, 
create v  =ϕ  (v, ..., v)
and mark v = • at B

∃ unmarked
instruction
• = v
at block B

∀ B' at the iterated post- 
dominance frontier of B, 
create (v, ..., v)  =σ  v
and mark • = v at B

Cytron'91 Singer'06

∃ unmarked
instruction
v = •
at block B

∀ B' at the iterated 
dominance frontier of B, 
create v  =ϕ  (v, ..., v)
and mark v = • at B

Cytron'91

Fig. 3. (a) Singer optimistic algorithm to convert a program into SSI form (b) Our
algorithm to produce partial SSI form.

of the source program must present the SSI properties enumerated in Section 2.
We will show that the same infrastructure that supports information analyses
also supports the backward analyses described in this section.

4 Building SSI on demand

We convert a program into SSI form on demand. This means that a client gives
to our converter a list of variables of interest, and we modify only these variables.
There are two modes of conversion, partial and full. We convert a variable to SSI
form via live range splitting and renaming. The difference between the partial
and the full conversion is the amount of live range splitting required.

Converting a program to full SSI form If a variable is fully converted to SSI
form, then it meets the definition of strong SSI form. This type of conversion is
useful for the backward analyses described in Section 3.2. In order to perform
the full conversion, we use the algorithm designed by Singer [21, p.46]. This
method – shown in Figure 3(a) – combines Cytron et al.’s algorithm to insert
φ-functions [12], and Singer’s algorithm to insert σ-functions [21].

The insertion of σ-functions guarantees the single upward-exposed-use prop-
erty. This phase happens as follows: for each use of a variable v, Singer inserts a
σ-function in each basic block in the post dominance frontier of v. A basic block
B2 post-dominates a basic block B1 if every path, from the exit of the source
program to B1 contains B2. If B2 post-dominates a predecessor of basic block
B0, but does not post-dominates B0, then B0 is in the post-dominance frontier
of B2. The σ-functions produce new uses of v, which cause the insertion of more
σ-functions. This process iterates until a fix-point is reached.

The insertion of φ-functions, necessary to guarantee the single reaching-
definition property, is the dual of the insertion of σ-functions, and it follows
Cytron’s algorithm [12]. Whereas the insertion of σ-functions requires post-
dominance frontiers and tracks uses of variables, the insertion of φ-functions



uses dominance frontiers and tracks variable definitions. Iterations between the
two boxes in Figure 3(a) happen because the insertion of σ-functions creates new
definitions of variables, forcing a new round of placement of φ-functions. Addi-
tionally, the insertion of φ-functions also leads to the insertion of σ-functions,
because it creates new uses of variables. Once a fix-point is reached, meaning
that the properties stated in Section 2 have been attained, a renaming pass
finally converts the program into SSI form.

Converting a program to partial SSI form In order to be in partial SSI form,
a variable must meet four properties. Three of these properties were seen in
Section 2: pseudo-definition, single reaching-definition and pseudo-use. We call
the fourth property the single upward-exposed-conditional. This property, which
is less general than Section 2’s single upward-exposed-use, is stated as follows:

– single upward-exposed-conditional: if v is used at a branch instruction i, then
from i it is possible to reach only one use of v without crossing another use.

There exist two main events that may restrict the value range of a variable v: an
assignment to v and a conditional branch that tests v. Thus, in order to partially
convert a variable v to SSI form we can add σ-functions at the boundaries of
basic blocks that end with a conditional branch where v is used. Returning to
our first example, variable a is fully converted to SSI form in Figure 1(b), and it
is partially converted to SSI form in Figure 1(c). Notice that the single-upward-
exposed-conditional property holds in Figure 1(c) because the branch instruction
(• = a)? is post-dominated by the use (a1, a2) = σ a.

The algorithm that we use to convert a program to partial SSI form is shown
in Figure 3(b). This algorithm has lower complexity than Singer’s, because the
placement of σ-functions is simpler. In order to convert a variable v to partial SSI
form, we loop over the uses of v, and for each use that is a conditional instruction,
we create a σ-function in the basic block that contains that use. Once all the
uses of v have been visited, we proceed to the insertion of φ-functions. The
placement of φ-functions is the same as in Singer’s method, but in the partial
transformation this phase happens only once.

Figure 4 illustrates these concepts. Figure 4(a) shows the control flow graph
of the program used in Figure 1(a). We are interested in partially converting
variable a into SSI form. Variable a is used in blocks 1, 3 and 4. Only the first
use is a branch, so we insert a σ-function after block 1, as seen in Figure 4(b).
This σ-function defines two new instances of variable a, because block 1 has two
successors. After σ-functions have been inserted, we move on to the insertion of
φ-functions. Because we now have two definitions of variable a reaching block 4,
we insert a φ-function in the beginning of this block, as shown in Figure 4(c).
Finally, a renaming step will produce the program in Figure 4(d).

The algorithm in Figure 3(b) might insert more σ-functions than the minimal
number necessary to guarantee the single-upward-exposed-conditional property.
For instance, we would insert a σ-function after the conditional in Figure 4(a),
even if there were no uses of variable a inside block 3. In this case, variable
a already has the single upward-exposed-conditional property, but our simple



a = •
(• = a)?

• = a

• = a

a = •
(• = a)?

(a, a) =σ a

• = a

• = a

a = •
(• = a)?

(a, a) =σ a

• = a

a =ϕ (a,a,a)
• = a

(a) (b) (c) (d)

a = •
(• = a)?

(a1, a2) =σ (a)

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

1

2

3

4

Fig. 4. Partially converting a program for information analysis.

algorithm is unable to see this fact. Tracing an analogy with the SSA conversion
algorithm [7, p.7], our method produces what we would call the “maximal”
partial-SSI representation. We opted to build this simple representation, instead
of the pruned form because the simpler approach is faster [21]. Whereas the
latter construction requires an analysis to identify which uses of variables reach
branching points, the former simply inserts σ-functions after conditionals.

Complexity Analysis The complexity of converting a single variable to SSI form,
using the algorithm in Figure 3(a) is computed as follows. The complexity of a
round of insertion of σ-functions, or φ-functions, is O(B2) [12], where B is the
number of basic blocks in the source program. However, as empirically demon-
strated [21], this algorithm is O(B) in practice. There are, indeed, true O(B)
algorithms for the placement of φ and σ-functions (see Sreedhar et al [22]). The
maximum number of alternations between the insertion of φ and σ-functions is
O(B); therefore, the total complexity of the algorithm is O(B3).

The partial conversion has lower complexity. Inserting σ-functions is O(U),
where U is the number of conditional instructions using v. Notice that a variable
tends to be used at most 5 times in a SSA-form assembly program [5], so this
complexity is constant in practice. The complexity of inserting φ-functions is
O(B2). As in the full conversion, it is O(B) in practice. There is no alternation
between the insertion of φ and σ-functions; thus, the total complexity of the
partial conversion algorithm is O(U) +O(B2).

Orchestrating the execution of different clients A compiler might perform several
passes on the same code, in order to carry out different optimizations. This
includes the possibility of different clients of our SSI transformation framework
running on the same program. Hence, one of the objectives of our design is to
allow clients to execute in sequence, without having to perform redundant work.

Our implementation guarantees that SSI clients running in sequence will
never insert redundant σ or φ-functions into the source program. That is, let c1
and c2 be two SSI clients running in sequence. Lets assume that c1 causes the



a = •
(• = a)?

(a1, a2) =σ a

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

(a1,1)
(a2,1)

(a3,4)

σ

ϕ

a:
1

2

3

4

a = •
(• = a)?

(a1, a2) =σ a

(a4, a5) =σ a2

• = a5

a3 =ϕ (a1,a4,a5)
• = a3

(a1,1)
(a2,1)
(a4,2)
(a5,2)

(a3,4)

σ

ϕ

a:

(a) (b) (c) (d)

Fig. 5. Preventing clients that run in sequence from performing redundant work.

insertion of σ1 (or φ1) at program point p1 to transform a variable v. If c2 also
requests the conversion of v, leading to the insertion of another σ instruction at
p1, then nothing will happen, because our SSI converter knows that instruction
σ1 is already breaking the live range of v. In order to avoid redundancy, our
SSI implementation keeps an internal state: we map each variable to a table of
pairs. Each pair consists of the identifier of either a σ or a φ-function, plus a
program point. Figure 5 illustrates these concepts. Figure 5(b) shows the table
created for variable a after some client requests the partial conversion of this
variable, yielding the program in Figure 5(a). Once a second client requests the
full conversion of a, we already know that no σ-function must be inserted at
program point 1. However, the insertion of a σ-function at program point 2
would lead to the creation of a φ-function at program point 4. Again, we check
a’s table to avoid inserting a new φ-function. Upon discovering the instruction
a3 = φ(a1, a2, a2), we change the two occurrences of a2 to a4 and a5, as illustrated
in Figure 5(c). The new table of variable a is given in Figure 5(d).

5 Experimental results

This section describes experiments that we have performed to validate our SSI
framework. Our experiments were conducted on a dual core Intel Pentium D of
2.80GHz of clock, 1GB of memory, running Linux Gentoo, version 2.6.27. Our
framework runs in LLVM 2.5 [17], and it passes all the tests that LLVM does.
The LLVM test suite consists of over 1.3 million lines of C code. In this paper
we will be showing only the results of compiling SPEC CPU 2000. We will use
three different clients of our SSI framework:

1. Full : this is the conversion algorithm shown in Figure 3(a), which converts a
program to strong SSI form. This client supports the backward analyses de-
scribed in Section 3.2. As an optimization, before running the full conversion
we traverse the source program, identifying the variables used across basic
blocks. Only these variables are touched by the converter. This optimization
is similar to the “semi-pruned” SSA conversion of Briggs et al. [7, Fig.4].
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Fig. 6. Execution time of partial compared with full SSI conversion. 100% is the time of
doing the full SSI transformation. The shorter the bar, the faster the partial conversion
when compared to the full conversion.

2. ABCD : this client generalizes the ABCD algorithm for array bound checking
elimination [3]. We eliminate conditional branches on numeric inequalities
that we can prove redundant, such as the redundant tests in Figures 2(a)
and 2(d). Our ABCD client requires that all the numeric variables used in
inequalities, e.g, <, =<, >= and >, plus the equality test ==, be converted to
SSI form.

3. CCP : this client does conditional constant propagation, that is, it replaces
the use of variables that have a value range equal to a zero length interval
[c, c] by the constant c. As an example, this optimization replaces the use
of variable a in line 4 of Figure 1(a) by the constant 0. This client requires
that only variables used in equality tests, e.g, ==, be converted to SSI.

When reporting the time of ABCD or CCP we show the time of running the
algorithm in Figure 3(b). The time of performing redundant branch elimination
or conditional constant propagation is not shown. Similarly, time reports for the
full conversion include only the time to run the algorithm in Figure 3(a).

The chart in Figure 6 compares the execution time of the three SSI clients.
The bars are normalized to the running time of the full SSI conversion. On the
average, the ABCD client runs in 6.8% and the CCP client runs in 4.1% of the
time of the full conversion. The numbers on top of the bars are absolute running
times. The partial conversions tends to run faster in clients with sparse control
flow graphs, which present fewer conditional branches, and consequently fewer
opportunities to restrict the value ranges of variables.

Figure 7 compares the running time of our partial conversion algorithm with
the running time of the opt tool. This tool is part of the LLVM framework,
and it performs target independent code optimizations. Opt receives a LLVM
bytecode file, optimizes it, and outputs the modified file, still in LLVM bytecode
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Fig. 7. Execution time of partial SSI conversion compared to the total time taken by
machine independent LLVM optimization passes (opt). 100% is the total time taken
by opt. The shorter the bar, the faster the partial conversion.

format. The SSI clients are opt passes. The bars are normalized to the opt time,
which consists on the time taken by machine independent optimizations plus
the time taken by one of the SSI clients, e.g, ABCD or CCP. Among the opti-
mizations performed by opt we list partial redundancy elimination, unreachable
basic block elimination and loop invariant code motion. The ABCD client takes
1.48% of opt’s time, and the CCP client takes 0.9%. To emphasize the speed of
these passes, we notice that the bars do not include the time of doing machine
dependent optimizations such as register allocation.

Figure 8 compares the number of σ and φ-functions inserted by the SSI
clients. The bars are the sum of these instructions, as inserted by each partial
conversion, divided by the number of σ and φ-functions inserted by the full SSI
transformation. The numbers on top of the bars are the absolute quantity of σ
and φ-functions inserted. The CCP client created 67.3K σ-functions, and 28.4K
φ-functions. The ABCD client created 98.8K σ-functions, and 42.0K φ-functions.
The full conversion inserted 697.6K σ-functions, and 220.6K σ-functions.

The chart in Figure 9 shows the number of σ and φ-functions that each
SSI client inserts per variable. The figure emphasizes the difference between the
partial conversion required by the two information analyses and the full SSI
transformation. On the average, for each variable whose conversion is requested
by either the ABCD or the CCP client, we will create 0.6 φ-functions, and 1.3
σ-functions. On the other hand, the full SSI conversion will insert 6.1 σ-functions
and 2.7 φ-functions per variable.

Figure 10 shows the number of variables that have been transformed by each
client. We notice that in two benchmarks, gcc and vortex, the ABCD client has
transformed more variables than the full client. This fact happens because the
full client transforms only variables that are alive across different basic blocks.
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Fig. 8. Number of φ and σ-functions produced by the partial SSI conversion compared
with the full conversion. Values on top of bars denote absolute number of instructions.
100% is the number of instructions inserted by the full conversion.

Fig. 9. Average number of φ and σ-functions produced per variable.

The ABCD and CCP clients, on the other hand, use the partial conversion
algorithm from Figure 3(b), which converts variables used in conditionals, even
when those variables are not alive outside the basic block where they are used.

The chart in Figure 11 compares the number of σ and φ-functions that we
save by running different SSI clients in sequence. We compute the bars as follows.
Let c1 and c2 be two SSI clients, such that c1 inserts n1 special instructions (φ or
σ functions) into the source program, and c2 inserts n2. Let n1,2 be the number
of special instructions generated when both clients run in sequence. The bars
represent the formula 1− (n1,2/(n1 + n2)). This measure denotes the number of
repeated instructions that are inserted by both clients running independently,



gzip vpr gcc mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf Total

ABCD 968 2K 38K 7K 361 292 211 4K 3K 3K 14K 20K 686 5K 100K

CCP 296 1K 24K 5K 56 78 74 2K 2K 2K 7K 17K 169 2K 62K

Full 1K 4K 36K 12K 376 360 807 4K 5K 4K 15K 13K 1K 6K 101K

Fig. 10. Number of variables converted to SSI.

Fig. 11. Percentage of σ and φ-functions saved by running clients in sequence.

and that are saved when these clients run in sequence. Our framework avoids
the insertion of redundant instructions by keeping a record of variables that each
client transforms, as described in Section 4.

6 Conclusion

This paper has presented the SSI conversion framework that we have deployed
on the LLVM compiler. Our implementation has been reviewed by members of
the LLVM community, and it is now available in the default LLVM distribution.
We are currently working on information analyses for Java. Our intention is to
use the SSI representation to remove redundant instanceof checks, for instance.
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