
Parameterized Construction of Program
Representations for Sparse Dataflow Analyses

André L. C. Tavares1, Mariza A. S. Bigonha1, Roberto S. Bigonha1, Benoit
Boissinot2, Fernando M. Q. Pereira1 and Fabrice Rastello2

1 UFMG – 6627 Antônio Carlos Av, 31.270-010, Belo Horizonte, Brazil
{andrelct,mariza,bigonha,fernando}@dcc.ufmg.br
2 ENS Lyon – 46 allée d’Italie, 69364 Lyon, France
{fabrice.rastello,benoit.boissinot}@ens-lyon.fr

Abstract. Data-flow analyses usually associate information with pro-
gram regions. Informally, if these regions are too small, like a point be-
tween two consecutive statements, we call the analysis dense. On the
other hand, if these regions include many such points, then we call it
sparse. This paper presents a systematic method to build program rep-
resentations that support sparse analyses. To pave the way to this frame-
work we clarify the bibliography about well-known intermediate program
representations. We show that our approach, up to parameter choice,
subsumes many of these representations, such as the SSA, SSI and e-
SSA forms. In particular, our algorithms are faster, simpler and more
frugal than the previous techniques used to construct SSI - Static Single
Information - form programs. We produce intermediate representations
isomorphic to Choi et al.’s Sparse Evaluation Graphs (SEG) for the fam-
ily of data-flow problems that can be partitioned by variables. However,
contrary to SEGs, we can handle - sparsely - problems that are not in
this family. We have tested our ideas in the LLVM compiler, comparing
different program representations in terms of size and construction time.

1 Introduction

Many data-flow analyses bind information to pairs formed by a variable and a
program point [1, 6, 12, 19, 46, 25, 29, 31, 36, 38, 40, 41, 44, 45, 47]. As an example,
for each program point p, and each integer variable v live at p, Stephenson et
al.’s [44] bit-width analysis finds the size, in bits, of v at p. Although well stud-
ied in the literature, this approach has some drawbacks; in particular, it suffers
from an excess of redundant information. For instance, a given variable v may be
mapped to the same bit-width along many consecutive program points. There-
fore, a natural way to reduce redundancies is to make these analyses sparser,
increasing the granularity of the program regions that they manipulate. This
observation is not new, and there have been, along the history of optimizing
compilers, different attempts to implement data-flow analyses sparsely.

The Static Single Assignment (SSA) form [18], for instance, allows us to
implement several analyses and optimizations, such as reaching definitions and

constant propagation, sparsely. Since its conception, the SSA format has been
generalized into many different program representations, such as the Extended-
SSA form [6], the Static Single Information (SSI) form [2, 7, 42], and the Static
Single Use (SSU) form [36, 22, 27]. Each of these representations extends the
reach of the SSA form to more sparse data-flow analyses; however, there is not
a format that subsumes all the others. In other words, each of these three pro-
gram representations fit specific types of data-flow problems. Another attempt to
model data-flow analyses sparsely is due to Choi et al.’s Sparse Evaluation Graph
(SEG) [14]. This data-structure supports several different analyses sparsely, as
long as the abstract state of a variable does not interfere with the abstract state
of the other variables in the same program. This family of analyses is known as
Partitioned Variable Problems in the literature [49].

In this paper, we propose a framework that is general enough to include all
these previous approaches. Given a data-flow problem, which is defined by (i)
a set of statements, e.g., assembly instructions, that produce information, and
(ii) a direction in which information flows: forward, backward or both ways, we
build a program representation that makes this analysis sparse. The program
representations that we generate ensure a key single information property: the
data-flow facts associated with a variable are invariant along the entire live range
of this variable. To build these program representations, we use an algorithm
that is as powerful as the method that Singer has used to convert a program
to SSI form [42]. However, our algorithm is faster: as we show in Section 3, for
all unidirectional and all non-truly bidirectional data-flow analysis we can avoid
iterating the live range splitting process that builds intermediate representations.

We have implemented our framework in the LLVM compiler [26], and have
used it to provide intermediate representations to well-known compiler opti-
mizations: Wegman et al.’s [47] conditional constant propagation, and Bodik et
al.’s [6] algorithm for array bounds check elimination. We compare these rep-
resentations with the SSI form as defined by Singer. The intermediate program
representations that we build increase the size of the original program by less
than 5% - one order of magnitude less than Singer’s SSI form. Furthermore, the
time to build these program representations is less than 2% of the time taken
by the standard suite of optimizations used in the LLVM compiler. Finally, our
intermediate representations have already been used in the implementation of
different static analyses, already publicly available [11, 20, 38, 39].

2 Static Single Information

Our objective is to generate program representations that bestow the Static Sin-
gle Information (Definition 6) property onto a given data-flow problem. In order
to introduce this notion, we will need a number of concepts, which we define in
this chapter. We start with the concept of a Data-Flow System, which Defini-
tion 1 recalls from the literature. We consider a program point any instruction in
the source code, and any region between consecutive instructions. Consecutive
program points are related by predicates pred and succ, such that pred(i) is the

set of all the predecessors of point i, and if s ∈ pred(i), then i ∈ succ(s). A trans-
fer function determines how information flows among these points. Information
are elements of a lattice. We find a solution to a data-flow problem by continu-
ously solving the set of transfer functions associated with each program region
until a fix point is reached. Some program points are considered meet nodes,
because they combine information that comes from two or more regions. The
result of combining different elements of a lattice is given by a meet operator,
which we denote by ∧.

Definition 1 (Data-Flow System). A data-flow system Edense is an equation
system that associates, with each program point i, an element of a lattice L,
given by the equation [x]i =

∧
s∈pred(i) F

s([x]s), where [x]i denotes the abstract
state associated with variable x at program point i, F s is the transfer function
associated with program point s, and ∧ is the meet operator. The analysis can
be written as a constraint system that binds to each program point i and each
s ∈ pred(i) the equation [x]i = [x]i ∧ F s([x]s) or, equivalently, the inequation
[x]i v F s([x]s).

The program representations that we generate lets us solve a class of data-
flow problems that we call Partitioned Lattice per Variable (PLV), and that we
state in Definition 2. Constant propagation is an example of a PLV problem.
If we denote by C the lattice of constants, the overall lattice can be written
as L = Cn, where n is the number of variables. In other words, this data-flow
problem ranges on a product lattice that contains a term for each variable in
the target program. Many data-flow problems are PLV; however, there exists
problems that do not fit into this framework, such as the relational analyses on
pentagons [28], octagons [30] and general polyhedrons [16].

Definition 2 (Partitioned Lattice per Variable Problem). The Maximum
Fixed Point problem on a data-flow system is a Partitioned Lattice per Variable
Problem (PLV) if, and only if, L can be decomposed into the product of Lv1 ×
· · · × Lvn

where each Lvi
is the lattice associated with program variable vi.

The transfer functions that we describe in Definition 3 have no influence on
the solution of a data-flow system. The goal of a sparse data-flow analysis is
to shortcut these functions. We accomplish this task by grouping contiguous
program points bound to these functions into larger regions.

Definition 3 (Trivial/Constant/Undefined Transfer functions). Let Lv1×
Lv2 × · · · × Lvn be the decomposition per variable of lattice L, where Lvi is the
lattice associated with variable vi. Let Fv be a transfer function from L to Lv.

– Fv is trivial if ∀x = ([v1], . . . , [vn]) ∈ L, Fv(x) = xv
– Fv is constant with value C ∈ L if ∀x ∈ L, Fv(x) = C
– Fv is undefined if Fv is constant with value ⊥, e.g., Fv(x) = ⊥

A sparse data-flow analyses propagates information from the point where this
information is created directly to the point where this information is needed.

Therefore, the notion of dependence, which we state in Definition 4, plays a
fundamental role in our framework. Intuitively, we say that a variable v depends
on a variable vj if the information associated with v might change in case the
information associated with vj does.

Definition 4 (Dependence). We say that Fv depends on variable vj if:

∃x = ([v1], . . . , [vn]) 6= ([v1]′, . . . , [vn]′) = x′ in L
such that [∀k 6= j, [vk] = [vk]′ ∧ Fi(x) 6= Fi(x′)]

A backward data-flow analysis combines information that flows out of a node
to determine the information that flows into it. A forward analysis propagates
information in the opposite direction. Some program points are considered meet
nodes, because they combine the information that comes from two or more re-
gions. For instance, two different definitions of the same variable v might be
associated with two different constants; hence, providing two different pieces of
information about v.

Definition 5 (Meet Nodes). Consider a forward (resp. backward) monotone
PLV problem, where (Y ju) is the maximum fixed point solution of variable u at
program point j. We say that a program point i is a meet node for variable v if,
and only if, i has n predecessors (resp. successors), s1, . . . , sn, n > 2, and there
exists i, j, 1 ≤ i < j ≤ n, such that Y si

v 6= Y
sj
v .

Our goal is to build program representations in which the information asso-
ciated with a variable is invariant along the entire live range of this variable. A
variable v is alive at a program point i if there is a path from i to an instruction
inst’ that uses v, and v is not re-defined along this way. The live range of a
variable v, which we denote by live(v), is the collection of program points where
that variable is alive.

Definition 6 (Static Single Information). Consider a forward (resp. back-
ward) monotone PLV problem Edense stated as in Definition 1. A program rep-
resentation fulfills the Static Single Information property if, and only if, it meets
the following properties for each variable v:

[SPLIT-DEF]: each s ∈ live(v) such that F sv is non-trivial nor undefined,
should contain a definition (resp. last use) of v;

[SPLIT-MEET]: each meet node i with n predecessors {s1, . . . , sn} (resp.
successors) should have a definition (resp. use) of v at i, and n uses (resp.
definition) of v, one at each si. We shall implement these defs/uses with
φ/σ-functions, as we explain in Section 2.1.

[INFO]: each program point i 6∈ live(v) should be bound to an undefined transfer
function, e.g., F sv = λx.⊥.

[LINK]: each instruction inst for which F instv depends on some [u]s should
contain a (potentially pseudo) use (resp. def) of u.

[VERSION]: for each variable v, live(v) is a connected component of the CFG.

2.1 Special instructions used to split live ranges

We group program points in three kinds: interior nodes, branches and joins. At
each place we use a different notation to denote live range splitting.

Interior nodes are program points that have a unique predecessor and a
unique successor. At these points we perform live range splitting via copies. If
the program point already contains another instruction, then this copy must be
done in parallel with the existing instruction. The notation,

inst ‖ v1 = v′1 ‖ . . . ‖ vm = v′m

denotes m copies vi = v′i performed in parallel with instruction inst. This means
that all the uses of inst plus all v′i are read simultaneously, then inst is computed,
then all definitions of inst plus all vi are written simultaneously.

In forward analyses, the information produced at different definitions of a
variable may reach the same meet node. To avoid that these definitions reach
the same use of v, we merge them at the earliest program point where they meet;
hence, ensuring [SPLIT-MEET]. We do this merging via special instructions
called φ-functions, which were introduced by Cytron et al. to build SSA-form
programs [18]. The assignment

v1 = φ(v1
1 : l1, . . . , vq1 : lq) ‖ . . . ‖ vm = φ(v1

m : l1, . . . , vqm : lq)

contains m φ-functions to be performed in parallel. The φ symbol works as a mul-
tiplexer. It will assign to each vi the value in vji , where j is determined by lj , the
basic block last visited before reaching the φ assignment. The above statement
encapsulates m parallel copies: all the variables vj1, . . . , v

j
m are simultaneously

copied into the variables v1, . . . , vm.
In backward analyses the information that emerges from different uses of a

variable may reach the same meet node. To ensure Property [SPLIT-MEET], the
use that reaches the definition of a variable must be unique, in the same way that
in a SSA-form program the definition that reaches a use is unique. We ensure
this property via special instructions that Ananian has called σ-functions [2].
The σ-functions are the dual of φ-functions, performing a parallel assignment
depending on the execution path taken. The assignment

(v1
1 : l1, . . . , vq1 : lq) = σ(v1) ‖ . . . ‖ (v1

m : l1, . . . , vqm : lq) = σ(vm)

represents m σ-functions that assign to each variable vji the value in vi if control
flows into block lj . These assignments happen in parallel, i.e., the m σ-functions
encapsulate m parallel copies. Also, notice that variables live in different branch
targets are given different names by the σ-function that ends that basic block.

2.2 Examples of PLV Problems

Many data-flow analyses can be classified as PLV problems. In this section we
present some meaningful examples. Along each example we show the program
representation that lets us solve this example sparsely.

def test(i):
 v = OX()
 if i % 2:
 tmp = i + 1
 v.m1(tmp)
 else:
 v = OY()
 v.m2()
 print v.m3()

l1: v = new OX()

l4: v.m1()

l7: v.m3()

l6: v.m2()

l5: v = new OY()l3: tmp = i + 1

l2: (i%2)?

l1: v = new OX()

l4: v.m1()

l7: v.m3()

l6: v.m2()

l5: v = new OY()l3: tmp = i + 1

l2: (i%2)?

{m1,m3}

{m1,m3}

{m1,m3}

{m3} {m3}

{m2,m3}

{}

l1: v1 = new OX()

l4: v2.m1()||(v4) = (v2)

l7: v6 =ϕ (v4, v5)
 v6.m3()

l6: v3.m2()||(v5) = (v3)

l5: v3 = new OY()l3: tmp = i + 1

l2: (i%2)?
 (v2, ⊥) =σ v1

[]v6 = {m3}

[v5] = [v6]

[v4] = [v6]

[v2] = {m1} ∪ [v4]

[v3] = {m2} ∪ [v5]

[v7] = {}

[v1] = [v2] ∧ [v7]

(a) (b) (c)

(e) (f)(d)

v1

v2 v3

v6

v5v4

Fig. 1: Class inference analysis as an example of backward data-flow analysis
that takes information from the uses of variables.

Class Inference: Some dynamically typed languages, such as Python, Java-
Scrip, Ruby or Lua, represent objects as hash tables containing methods and
fields. It is possible to improve the execution of programs written in these lan-
guages if we can replace these simple tables by actual classes with virtual ta-
bles [13]. A class inference engine tries to assign a virtual table to a variable
v based on the ways that v is used. The Python program in Figure 1(a) illus-
trates this optimization. Our objective is to infer the correct suite of methods
for each object bound to variable v. Figure 1(b) shows the control flow graph
of the program, and Figure 1(c) shows the results of a dense implementation of
this analysis. In a dense analysis, each program instruction is associated with
a transfer function; however, some of these functions, such as that in label l3,
are trivial. Our live range splitting strategy produces, for this example, the rep-
resentation given in Figure 1(d). Because type inference is a backward analysis
that extracts information from use sites, we split live ranges at these program
points, and rely on σ-functions to merge them back. The use-def chains that we
derive from the program representation, seen in Figure 1(e), lead naturally to
a constraint system, which we show in Figure 1(f). As we saw in Definition 1,
we let [vj] be the information associated with variable vj . A solution to this
constraint system gives us a solution to our data-flow problem.
Constant Propagation: Figure 2 illustrates constant propagation. We want
to find out which variables in the program of Figure 2(a) can be replaced by con-
stants. The CFG of this program is given in Figure 2(b). Constant propagation

a = 1
b = 9
while b > 0
 c = 4 × a
 b = b − c

l1: a = 1

l2: b = 9

l3: (b < 0)?

l4: c = 4 × a

l5: b = b − c

T

⊥

−1−2 0 +1 +2

1

2

3

4

5

67

a = 1

b0 = 9

b1 =ϕ(b0, b2)
(b1 < 0)?

c = 4 × a

b2 = b1− c

1

2

3

4

5

67

(a) (b) (c)

(d) (e) (f)

[a] = 1

[b0] = 9

[b1] = [b0] ∧ [b2]

[c] = 4 × [a]

[b2] = [b1] - [c]

a

b0

b2b1

c

Fig. 2: Constant propagation as an example of forward data-flow analysis that
takes information from the definitions of variables.

has a very simple lattice L, which we show in Figure 2(c). Constant propagation
is a PLV problem, as we have discussed before. In constant propagation, infor-
mation is produced at the program points where variables are defined. Thus, in
order to meet Definition 6, we must guarantee that each program point is dom-
inated by a single definition of a variable. Figure 2(d) shows the intermediate
representation that we create for the program in Figure 2(b). In this case, our
intermediate representation is equivalent to the SSA form. The def-use chains
implicit in our program representation lead to the constraint system shown in
Figure 2(f). We can use the def-use chains seen in Figure 2(e) to guide a worklist-
based constraint solver, as Nielson et al. [32, Ch.6] describe.
Taint analysis: The objective of taint analysis [38] is to find program vul-
nerabilities. In this case, a harmful attack is possible when input data reaches
sensitive program sites without going through special functions called sanitizers.
Figure 3 illustrates this type of analysis. We have used φ and σ-functions to
split the live ranges of the variables in Figure 3(a) producing the program in
Figure 3(b). Lets assume that echo is a sensitive function, because it is used
to generate web pages. For instance, if the data passed to echo is a JavaScript
program, then we could have an instance of cross-site scripting attack. Thus,
the statement echo v1 may be a source of vulnerabilities, as it outputs data
that comes directly from the program input. On the other hand, we know that

l1: v = input()

l3: echo v l4: echo v

l5: is v Clean?

(a) (b)

l2: v = "Hi!"

l7: echo v l6: echo v

v1 = input()

echo v1 echo v2

v3 =ϕ (v1, v2)
is v3 Clean?
(v4, v5) =σ (v3)

v2 = "Hi!"

echo v4 echo v5

[v1] = Tainted
[v2] = Clean
[v3] = [v1] ∧ [v2]
[v4] = Tainted
[v5] = Clean

(c)

Fig. 3: Taint analysis as an example of forward data-flow analysis that takes
information from the definitions of variables and conditional tests on these vari-
ables.

l1: v = foo()

l2: v.m()

(a) (b)

l3: v.m()

l4: v.m()

v1 = foo()

v1.m()||v2 = v1

v2.m()||v3 = v2

v4 =ϕ (v3, v1)
v4.m()

[v1] = Possibly Null

[v2] = Not Null

[v3] = Not Null

[v4] = [v3] ∧ [v1]

(c)

Fig. 4: Null pointer analysis as an example of forward data-flow analysis that
takes information from the definitions and uses of variables.

echo v2 is always safe, for variable v2 is initialized with a constant value. The
call echo v5 is always safe, because variable v5 has been sanitized; however, the
call echo v4 might be tainted, as variable v4 results from a failed attempt to
sanitize v. The def-use chains that we derive from the program representation
leads naturally to a constraint system, which we show in Figure 3(c). The inter-
mediate representation that we create in this case is equivalent to the Extended
Single Static Assignment (e-SSA) form [6]. It also suits the ABCD algorithm for
array bounds-checking elimination [6], Su and Wagner’s range analysis [45] and
Gawlitza et al.’s range analysis [21].
Null pointer analysis: The objective of null pointer analysis is to determine
which references may hold null values. Nanda and Sinha have used a variant of
this analysis to find which method dereferences may throw exceptions, and which
may not [31]. This analysis allows compilers to remove redundant null-exception
tests and helps developers to find null pointer dereferences. Figure 4 illustrates
this analysis. Because information is produced at use sites, we split live ranges

after each variable is used, as we show in Figure 4(b). For instance, we know that
the call v2.m() cannot result in a null pointer dereference exception, otherwise an
exception would have been thrown during the invocation v1.m(). On the other
hand, in Figure 4(c) we notice that the state of v4 is the meet of the state of v3,
definitely not-null, and the state of v1, possibly null, and we must conservatively
assume that v4 may be null.

3 Building the Intermediate Program Representation

A live range splitting strategy Pv = I↑ ∪ I↓ over a variable v consists of a set
of “oriented” program points. We let I↓ denote a set of points i with forward
direction. Similarly, we let I↑ denote a set of points i with backward direction.
The live-range of v must be split at least at every point in Pv. Going back to the
examples from Section 2.2, we have the live range splitting strategies enumerated
below. Further examples are given in Figure 5.

– Class inference is a backward analysis that takes information from the
uses of variables; thus, for each variable, the live-range splitting strategy
is characterized by the set Uses↑ where Uses is the set of use points. For
instance, in Figure 1(b), we have that Pv = {l4, l6, l7}↑.

– Constant propagation is a forward analysis that takes information from
definition sites. Thus, for each variable v the live-range splitting strategy is
characterized by the set Defs↓ where Defs is the set of definition points. For
instance, in Figure 2(b), we have that Pb = {l2, l5}↓.

– Taint analysis is a forward analysis that takes information from points
where variables are defined, and conditional tests that use these variables.
For instance, in Figure 3(a), we have that Pv = {l1, l2,Out(l5)}↓ where
Out(li) denotes the exit of li.

– Nanda et al.’s null pointer analysis [31] is a forward flow problem that
takes information from definitions and uses. For instance, in Figure 4(a), we
have that Pv = {l1, l2, l3, l4}↓.

The algorithm SSIfy in Figure 6 implements a live range splitting strategy in
three steps. Firstly, it splits live ranges, inserting new definitions of variables into
the program code. Secondly, it renames these newly created definitions; hence,
ensuring that the live ranges of two different re-definitions of the same variable
do not overlap. Finally, it removes dead and non-initialized definitions from the
program code. We describe each of these phases in the rest of this section.
Splitting live ranges through the creation of new definitions of vari-
ables: In order to implement Pv we must split the live ranges of v at each
program point listed by Pv. However, these points are not the only ones where
splitting might be necessary. As we have pointed out in Section 2.1, we might
have, for the same original variable, many different sources of information reach-
ing a common meet point. For instance, in Figure 2(b), there exist two definitions
of variable b: l2 and l5, that reach the use of b at l3. The information that flows
forward from l2 and l5 collides at l3, the meet point of the if-then-else. Hence

Client Splitting strategy P

Alias analysis, reaching definitions Defs↓

cond. constant propagation [47]

Partial Redundancy Elimination [2, 42] Defs↓
S

LastUses↑

ABCD [6], taint analysis [38], Defs↓
S

Out(Conds)↓

range analysis [45, 21]

Stephenson’s bitwidth analysis [44] Defs↓
S

Out(Conds)↓
S

Uses↑

Mahlke’s bitwidth analysis [29] Defs↓
S

Uses↑

An’s type inference [23], Class inference [13] Uses↑

Hochstadt’s type inference [46] Uses↑
S

Out(Conds)↑

Null-pointer analysis [31] Defs↓
S

Uses↓

Fig. 5: Live range splitting strategies for different data-flow analyses. We use Defs
(Uses) to denote the set of instructions that define (use) the variable; Conds
to denote the set of instructions that apply a conditional test on a variable;
Out(Conds) the exits of the corresponding basic blocks; LastUses to denote the
set of instructions where a variable is used, and after which it is no longer live.

1 function SSIfy(var v, Splitting Strategy Pv)

2 split(v, Pv)

3 rename(v)

4 clean(v)

Fig. 6: Split the live ranges of v to convert it to SSI form

the live-range of b has to be split immediately before l3, e.g., at In(l3), leading
to a new definition b1. In general, the set of program points where information
collide can be easily characterized by join sets [17]. The join set of a group of
nodes P contains the CFG nodes that can be reached by two or more nodes of
P through disjoint paths. Join sets can be over-approximated by the notion of
iterated dominance frontier [48], a core concept in SSA construction algorithms,
which, for the sake of completeness, we recall below:

– Dominance: a CFG node n dominates a node n′ if every program path
from the entry node of the CFG to n′ goes across n. If n 6= n′, then we say
that n strictly dominates n′.

– Dominance frontier (DF): a node n′ is in the dominance frontier of a
node n if n dominates a predecessor of n′, but does not strictly dominate n′.

– Iterated dominance frontier (DF +): the iterated dominance frontier of
a node n is the limit of the sequence:

DF1 = DF (n)
DFi+1 = DFi ∪ {DF (z) | z ∈ DFi}

1 function split(var v, Splitting Strategy Pv = I↓ ∪ I↑)

2 “compute the set of split points”

3 S↑ = ∅
4 foreach i ∈ I↑:

5 if i.is join:

6 foreach e ∈ incoming edges(i):
7 S↑ = S↑

S
Out(pDF+(e))

8 else:

9 S↑ = S↑
S

Out(pDF+(i))

10 S↓ = ∅
11 foreach i ∈ S↑

S
Defs(v)

S
I↓:

12 if i.is branch:

13 foreach e ∈ outgoing edges(i)
14 S↓ = S↓

S
In(DF+(e))

15 else:

16 S↓ = S↓
S

In(DF+(i))

17 S = Pv

S
S↑

S
S↓

18 “Split live range of v by inserting φ, σ, and copies”

19 foreach i ∈ S:

20 if i does not already contain any definition of v:

21 if i.is join: insert “v = φ(v, ..., v)” at i

22 elseif i.is branch: insert “(v, ..., v) = σ(v)” at i

23 else: insert a copy “v = v” at i

Fig. 7: Live range splitting. We use In(l) to denote a program point immediately
before l, and Out(l) to denote a program point immediately after l.

Similarly, split sets created by the backward propagation of information can be
over-approximated by the notion of iterated post-dominance frontier (pDF +),
which is the dual of DF + [3]. That is, the post-dominance frontier is the domi-
nance frontier in a CFG where direction of edges have been reversed.

Figure 7 shows the algorithm that we use to create new definitions of vari-
ables. This algorithm has three main phases. First, in lines 3-9 we create new
definitions to split the live ranges of variables due to backward collisions of
information. These new definitions are created at the iterated post-dominance
frontier of points that originate information. If a program point is a join node,
then each of its predecessors will contain the live range of a different definition
of v, as we ensure in line 6 of our algorithm. Notice that these new definitions
are not placed parallel to an instruction, but in the region immediately after it,
which we denote by Out(. . .). In lines 10-16 we perform the inverse operation:
we create new definitions of variables due to the forward collision of informa-
tion. Finally, in lines 17-23 we actually insert the new definitions of v. These new
definitions might be created by σ functions (due exclusively to the splitting in
lines 3-9); by φ-functions (due exclusively to the splitting in lines 10-16); or by
parallel copies. Contrary to Singer’s algorithm, originally designed to produce
SSI form programs, we do not iterate between the insertion of φ and σ func-

1 function rename(var v)

2 “Compute use-def & def-use chains”

3 “We consider here that stack.peek() = ⊥ if stack.isempty(),

4 and that def(⊥) = entry”

5 stack = ∅
6 foreach CFG node n in dominance order:

7 if exists v = φ(v : l1, . . . , v : lq) in In(n):

8 stack.set def(v = φ(v : l1, . . . , v : lq))

9 foreach instruction u in n that uses v:

10 stack.set use(u)

11 if exists instruction d in n that defines v:

12 stack.set def(d)

13 foreach instruction (. . .) = σ(v) in Out(n):

14 stack.set use((. . .) = σ(v))

15 if exists (v : l1, . . . , v : lq) = σ(v) in Out(n):

16 foreach v : li = v in (v : l1, . . . , v : lq) = σ(v):

17 stack.set def(v : li = v)

18 foreach m in successors(n):

19 if exits v = φ(. . . , v : ln, . . .) in In(m):

20 stack.set use(v = v : ln)

21 function stack.set use(instruction inst):

22 while def(stack.peek()) does not dominate inst: stack.pop()

23 vi = stack.peek()

24 replace the uses of v by vi in inst

25 if vi 6= ⊥: set Uses(vi) = Uses(vi)
S

inst

26 function stack.set def(instruction inst):

27 let vi be a fresh version of v

28 replace the defs of v by vi in inst

29 set Def(vi) = inst

30 stack.push(vi)

Fig. 8: Versioning

tions. Nevertheless, as we show in the Appendix, our method ensures the SSI
properties for any combination of unidirectional problems.

The Algorithm split preserves the SSA property, even for data-flow analyses
that do not require it. As we see in line 11, the loop that splits meet nodes
forwardly include, by default, all the definition sites of a variable. We chose to
implement it in this way for practical reasons: the SSA property gives us access
to a fast liveness check [8], which is useful in actual compiler implementations.
This algorithm inserts φ and σ functions conservatively. Consequently, we may
have these special instructions at program points that are not true meet nodes.
In other words, we may have a φ-function v = φ(v1, v2), in which the abstract
states of v1 and v2 are the same in a final solution of the data-flow problem.
Variable Renaming: The algorithm in Figure 8 builds def-use and use-def
chains for a program after live range splitting. This algorithm is similar to the
standard algorithm used to rename variables during the SSA construction [3,

1 clean(var v)

2 let web = {vi|vi is a version of v}
3 let defined = ∅
4 let active = { inst |inst actual instruction and web ∩ inst.defs 6= ∅}
5 while ∃inst ∈ active s.t. web ∩ inst.defs\defined 6= ∅:
6 foreach vi ∈ web ∩ inst.defs\defined:

7 active = active ∪ Uses(vi)

8 defined = defined ∪ {vi}
9 let used = ∅

10 let active = { inst |inst actual instruction and web ∩ inst.uses 6= ∅}
11 while ∃inst ∈ active s.t. inst.uses\used 6= ∅:
12 foreach vi ∈ web ∩ inst.uses\used:

13 active = active ∪ Def(vi)

14 used = used ∪ {vi}
15 let live = defined ∩ used

16 foreach non actual inst ∈ Def(web):

17 foreach vi operand of inst s.t. vi /∈ live:

18 replace vi by ⊥
19 if inst.defs = {⊥} or inst.uses = {⊥}
20 remove inst

Fig. 9: Dead and undefined code elimination. Original instructions not inserted
by split are called actual instruction. We let inst.defs denote the set of variable(s)
defined by inst, and inst.uses denote the set of variables used by inst.

Algorithm 19.7]. To rename a variable v we traverse the program’s dominance
tree, from top to bottom, stacking each new definition of v that we find. The
definition currently on the top of the stack is used to replace all the uses of v that
we find during the traversal. If the stack is empty, this means that the variable
is not defined at this point. The renaming process replaces the uses of undefined
variables by ⊥ (line 3). We have two methods, stack.set use and stack.set def
to build the chain relations between the variables. Notice that sometimes we
must rename a single use inside a φ-function, as in lines 19-20 of the algorithm.
For simplicity we consider this single use as a simple assignment when calling
stack.set use, as one can see in line 20. Similarly, if we must rename a single
definition inside a σ-function, then we treat it as a simple assignment, like we
do in lines 15-16 of the algorithm.

Dead and Undefined Code Elimination: The algorithm in Figure 9 elimi-
nates φ-functions that define variables not actually used in the code, σ-functions
that use variables not actually defined in the code, and parallel copies that either
define or use variables that do not reach any actual instruction. We mean by “ac-
tual” instructions, those instructions that already existed in the program before
we transformed it with split. In line 3 we let “web” be the set of versions of v, so
as to restrict the cleaning process to variable v, as we see in lines 4-6 and lines 10-
12. The set “active” is initialized to actual instructions in line 4. Then, during
the loop in lines 5-8 we add to active φ-functions, σ-functions, and copies that

can reach actual definitions through use-def chains. The corresponding version
of v is then marked as defined (line 8). The next loop, in lines 11-14 performs a
similar process, this time to add to the active set, instructions that can reach ac-
tual uses through def-use chains. The corresponding version of v is then marked
as used (line 14). Each non live variable (see line 15), i.e. either undefined or
dead (non used) is replaced by ⊥ in all φ, σ, or copy functions where it appears
in. This is done by lines 15-18. Finally every useless φ, σ, or copy functions are
removed by lines 19-20. As a historical curiosity, Cytron et al.’s procedure to
build SSA form produced what is called the minimal representation [17]. Some
of the φ-functions in the minimal representation define variables that are never
used. Briggs et al. [9] remove these variables; hence, producing what compiler
writers normally call pruned SSA-form. We close this section stating that the
SSIfy algorithm preserves the semantics of the modified program:

Theorem 1 (Semantics). SSIfy maintains the following property: if a value
n written into variable v at program point i′ is read at a program point i in
the original program, then the same value assigned to a version of variable v at
program point i′ is read at a program point i after transformation.

The Propagation Engine: Def-use chains can be used to solve, sparsely, a
PLV problem about any program that fulfills the SSI property. However, in order
to be able to rely on these def-use chains, we need to derive a sparse constraint
system from the original - dense - system. This sparse system is constructed
according to Definition 7. Theorem 2 states that such a system exists for any
program, and can be obtained directly from the Algorithm SSIfy.

Definition 7 (SSI constrained system). Let Edense be a constraint system
extracted from a program that meets the SSI properties. Hence, for each pair
(variable v, program point i) we have the equation [v]i = [v]i∧F sv ([v1]s, . . . , [vn]s).
We define a system of sparse equations Essisparse as follows:

– Let {a, . . . , b} be the variables used (resp. defined) at program point i, where
variable v is defined (resp. used). The LINK property ensures that F sv depends
only on some [a]s . . . [b]s. Thus, there exists a function Gsv defined as the pro-
jection of F sv on La×· · ·×Lb, such that Gsv([a], . . . , [b]) = F sv ([v1], . . . , [vn]).

– The sparse constrained system associates with each variable v, and each defi-
nition (resp. use) point s of v, the corresponding constraint [v] v Gsv([a], . . . , [b])
where a, . . . , b are used (resp. defined) at s.

Theorem 2 (Correctness of SSIfy). The execution of SSIfy(v, Pv), for every
variable v in the target program, creates a new program representation such that:

1. there exists a system of equations Essidense, isomorphic to Edense for which the
new program representation fulfills the SSI property.

2. if Edense is monotone then Essidense is also monotone.

The algorithms in Figures 10 and 11 provide worklist based solvers for back-
ward and forward sparse data-flow systems built as in Definition 7. The SSI

1 function back propagate(transfer functions G)

2 worklist = ∅
3 foreach v ∈ vars: [v] = >
4 foreach i ∈ insts: worklist += i

5 while worklist 6= ∅:
6 let i ∈ worklist; worklist −= i

7 foreach v ∈ i.uses():

8 [v]new = [v] ∧Gi
v([i.defs()])

9 if [v] 6= [v]new:

10 stack += v.defs()

11 [v] = [v]new

Fig. 10: Backward propagation engine under SSI

1 function forward propagate(transfer functions G)

2 worklist = ∅
3 foreach v ∈ vars: [v] = >
4 foreach i ∈ insts: worklist += i

5 while worklist 6= ∅:
6 let i ∈ worklist; worklist −= i

7 foreach v ∈ i.defs():

8 [v]new = [v] ∧Gi
v([i.uses()])

9 if [v] 6= [v]new:

10 stack += v.uses()

11 [v] = [v]new

Fig. 11: Forward propagation engine under SSI

constrained system might have several inequations for the same left-hand-side,
due to the way we insert φ and σ functions. Definition 6, as opposed to the
original SSI definition [2, 42], does not ensure the SSA or the SSU properties.
These guarantees are not necessary to every sparse analysis. It is a common
assumption in the compiler’s literature that “data-flow analysis (. . .) can be
made simpler when each variable has only one definition”, as stated in Chapter
19 of Appel’s textbook [3]. A naive interpretation of the above statement could
lead one to conclude that data-flow analyses become simpler as soon as the pro-
gram representation enforces a single source of information per live-range: SSA
for forward propagation, SSU for backward, and the original SSI bi-directional
analyses. This premature conclusion is contradicted by the example of dead-code
elimination, a backward data-flow analysis that the SSA form simplifies. In fact,
the SSA form fulfills our definition of the SSI property for dead-code elimination.
Nevertheless, the corresponding constraint system may have several inequations,
with the same left-hand-side, i.e., one for each use of a given variable v. Even
though we may have several sources of information, we can still solve this back-
ward analysis using the algorithm in Figure 10. To see this fact, we can replace
Giv in Figure 10 by “i is a useful instruction or one of its definitions is marked
as useful” and one obtains the classical algorithm for dead-code elimination.

4 Our Approach vs Other Sparse Evaluation Frameworks

There have been previous efforts to provide theoretical and practical frameworks
in which data-flow analyses could be performed sparsely. In order to clarify some
details of our contribution, this section compares it with three previous ap-
proaches: Choi’s Sparse Evaluation Graphs, Ananian’s Static Single Information
form and Oh’s Sparse Abstract Interpretation Framework.
Sparse Evaluation Graphs: Choi’s Sparse Evaluation Graphs [14] are one
of the earliest techniques designed to support sparse analyses. The nodes of
this graph represent program regions where information produced by the data-
flow analysis might change. Choi et al.’s ideas have been further expanded, for
example, by Johnson et al.’s Quick Propagation Graphs [25], or Ramalingan’s
Compact Evaluation Graphs [37]. Nowadays we have efficient algorithms that
build such data-structures [24, 34, 35]. These graphs improve many data-flow
analyses in terms of runtime and memory consumption. However, they are more
limited than our approach, because they can only handle sparsely problems that
Zadeck has classified as Partitioned Variable. We recall Zadeck’s definition below:

Definition 8 (Partitioned Variable Problem). A PLV problem (Defini-
tion 2) is said to be also a Partitioned Variable Problem (PVP) if, and only if,
each transfer function F s can be decomposed into a product F sv1×F

s
v2×· · ·×F

s
vn

where F svj
is a function from Lvj

to Lvj
.

Reaching definitions and liveness analysis are examples of PVPs, as this kind
of information can be computed for one program variable independently from the
others. For these problems we can build intermediate program representations
isomorphic to SEGs, as we state in Theorem 3. However, many data-flow prob-
lems, in particular the PLV analyses that we mentioned in Section 2.2, do not fit
into this category; nevertheless, we can handle them sparsely. The sparse evalua-
tion graphs can still support PLV problems, but, in this case, a new SEG vertex
would be created for every program point where new information is produced,
and we would have a dense analysis.

Theorem 3 (Equivalence SSI/SEG). Given a forward Sparse Evaluation
Graph (SEG) that represents a variable v in a program representation Prog
with CFG G, there exits a live range splitting strategy that once applied on v
builds a program representation that is isomorphic to SEG.

Static Single Information Form and Similar Program Representations:
Scott Ananian has introduced in the late nineties the Static Single Information
(SSI) form, a program representation that supports both forward and backward
analyses [2]. This representation was later discussed by Jeremy Singer [42] and
revisited by Boissinot et al. [7]. Singer provided new algorithms plus examples
of applications that benefit from the SSI form, and Boissinot et al. clarified a
number of omissions in the related literature. The σ-functions that we use in this
paper is a notation borrowed from Ananian’s work, and the algorithms that we
discuss in Section 3 improve on Singer’s ideas. Contrary to Singer’s algorithm

we do not iterate between the insertion of φ and σ functions. Nonetheless, as we
show in Theorem 2, our method is enough to ensure the SSI properties for any
combination of unidirectional problems.

In addition to the SSI form, the compiler related literature describes other
program representations that sparsify specific data-flow analyses. For instance,
the Extended Static Single Assignment (e-SSA) form was introduced by Bodik et
al. [6] to implement the “less-than” [28] lattice sparsely. As opposed to SSI and
SSA, the e-SSA form supports flow analyses that obtain information both from
variable definitions and conditional tests. As another example, the the Static
Single Use form (SSU) supports analyses that extract information from uses. As
uses and definitions are not fully symmetric – the live-range can “traverse” a use
while it cannot traverse a definition – there exists different variants of SSU [36,
22, 27]. For instance, the “strict” SSU form enforces that each definition reaches
a single use, whereas SSI and other variations of SSU allow two consecutive uses
of a variable on the same path. Our method is also more general than these
previous approaches, as we can produce them via different parameterizations.
For SSI we have {Defs↓ ∪Uses↑}; for e-SSA we have Defs↓

⋃
Out(Conds)↓, and

for Strict SSU we have Defs↓
⋃

Uses↓.
Sparse Abstract Interpretation Framework: Recently, Oh et al. [33] have
designed and tested a framework that sparsifies flow analyses modelled via ab-
stract interpretation. They have used this framework to implement standard
analyses on the interval [15] and on the octogon lattices [30], and have processed
large code bodies. We cannot directly compare our approach with Oh et al.’s tool
because it is not publicly available. However, we believe that our approach leads
to a sparser implementation. We base this assumption on the fact that Oh et al.’s
approach relies on standard def-use chains to propagate information, whereas in
our case, the merging nodes combine information before passing it ahead. As
an example, lets consider the code if () then a=•; else a=•; endif if ()
then •=a; else •=a; endif under a forward analysis that generates informa-
tion at definitions and requires it at uses. In this scenario, Oh et al.’s framework
creates four dependence links between the two points where information is pro-
duced and the two points where it is consumed. Our method, on the other hand,
converts the program to SSA form; hence, creating two names for variable a.
We avoid the extra links because a φ-function merges the data that comes from
these names before propagating it to the use sites.

5 Experimental Results

This section describes experiments that we have performed to probe the size
and the runtime efficiency of the algorithms that we use to build intermediate
representations. Our experiments were conducted on a dual core Intel Pentium
D of 2.80GHz of clock, 1GB of memory, running Linux Gentoo, version 2.6.27.
Our framework runs in LLVM 2.5 [26], and it passes all the tests that LLVM does.
The LLVM test suite consists of over 1.3 million lines of C code. In this paper
we show results for SPEC CPU 2000. To compare different live range splitting

0% 

5% 

10% 

15% 

20% 

25% 

gzip  vpr  gcc  mesa  art  mcf  equake  cra7y  ammp  parser  gap  vortex  bzip2  twolf  TOTAL 

ABCD/SSI  CCP/SSI 

Fig. 12: Comparison of the time taken to produce the different representations.
100% is the time to use the SSI live range splitting strategy. The shorter the
bar, the faster the live range splitting strategy. The SSI conversion took 1315.2s
in total, the ABCD conversion took 85.2s, and the CCP conversion took 49.4s.

strategies we generate the program representations below. Figure 5 explains the
sets defs, uses and conds.

1. SSI : Ananian’s Static Single Information form [2] is our baseline. We build
the SSI program representation via Singer’s iterative algorithm.

2. ABCD : ({def , cond}↓). This live range splitting strategy generalizes the
ABCD algorithm for array bounds checking elimination [6]. An example
of this live range splitting strategy is given in Figure 3.

3. CCP : ({def , condeq}↓). This splitting strategy, which supports Wegman et
al.’s [47] conditional constant propagation, is a subset of the previous strat-
egy. Differently of the ABCD client, this client requires that only variables
used in equality tests, e.g., ==, undergo live range splitting. That is, condeq(v)
denotes the conditional tests that check if v equals a given value.

Runtime: The chart in Figure 12 compares the execution time of the three
live range splitting strategies. We show only the time to perform live range
splitting. The time to execute the optimization itself, removing array bounds
check or performing constant propagation, is not shown. The bars are normalized
to the running time of the SSI live range splitting strategy. On the average, the
ABCD client runs in 6.8% and the CCP client runs in 4.1% of the time of
SSI. These two forward analyses tend to run faster in benchmarks with sparse
control flow graphs, which present fewer conditional branches, and therefore
fewer opportunities to restrict the ranges of variables.

In order to put the time reported in Figure 12 in perspective, Figure 13 com-
pares the running time of our live range splitting algorithms with the time to
run the other standard optimizations in our baseline compiler3. In our setting,
LLVM -O1 runs 67 passes, among analysis and optimizations, which include par-
tial redundancy elimination, constant propagation, dead code elimination, global
3 To check the list of LLVM’s target independent optimizations try llvm-as <

/dev/null | opt -std-compile-opts -disable-output -debug-pass=Arguments

0.00% 

0.50% 

1.00% 

1.50% 

2.00% 

2.50% 

gzip  vpr  gcc  mesa  art  mcf  equake  cra8y  ammp  parser  gap  vortex  bzip2  twolf  TOTAL 

ABCD/(opt + ABCD)  CCP/(opt + CCP) 

Fig. 13: Execution time of two different live range splitting strategies compared
to the total time taken by machine independent LLVM optimizations (opt).
100% is the time taken by opt. The shorter the bar, the faster the conversion.

0% 

5% 

10% 

15% 

20% 

25% 

30% 

gzip  vpr  gcc  mesa  art  mcf  equake  cra8y  ammp  parser  gap  vortex  bzip2  twolf  TOTAL 

ABCD  CCP 

Fig. 14: Number of φ and σ-functions produced by different live range splitting
strategies. 100% is the number of instructions inserted by the SSI conversion.

value numbering and invariant code motion. We believe that this list of passes is
a meaningful representative of the optimizations that are likely to be found in an
industrial strength compiler. The bars are normalized to the optimizer’s time,
which consists of the time taken by machine independent optimizations plus the
time taken by one of the live range splitting clients, e.g, ABCD or CCP. The
ABCD client takes 1.48% of the optimizer’s time, and the CCP client takes 0.9%.
To emphasize the speed of these passes, we notice that the bars do not include
the time to do machine dependent optimizations such as register allocation.

Space: Figure 14 compares the number of φ and σ-functions inserted by each
splitting strategy. The bars give the sum of these instructions, as inserted by each
conversion, divided by the number of σ and φ-functions inserted by the SSI live
range splitting strategy. The CCP client created 67.3K σ-functions, and 28.4K
φ-functions. The ABCD client created 98.8K σ-functions, and 42.0K φ-functions.
The SSI conversion inserted 697.6K σ-functions, and 220.6K σ-functions.

Finally, Figure 15 outlines how much each live range splitting strategy in-
creases program size. We show results only to the ABCD and CCP clients, to
keep the chart easy to read. The SSI conversion increases program size in 17.6%

0% 
1% 
2% 
3% 
4% 
5% 
6% 
7% 
8% 

16
4.g
zip
 

17
5.v
pr
 

17
6.g
cc
 

17
7.m

es
a 

17
9.a
rt 

18
1.m

cf 

18
3.e
qu
ak
e 

18
6.c
ra>
y 

18
8.a
mm

p 

19
7.p
ar
se
r 

25
4.g
ap
 

25
5.v
or
tex
 

25
6.b
zip
2 

30
0.t
wo
lf 

TO
TA
L 

Growth due to ABCD conversion  Growth due to CCP conversion 

Fig. 15: Growth in program size due to the insertion of new φ and σ functions
to perform live range splitting.

on average. This is an absolute value, i.e., we sum up every φ and σ function
inserted, and divide it by the number of bytecode instructions in the original
program. This compiler already uses the SSA-form by default, and we do not
count as new instructions the φ-functions originally used in the program. The
ABCD client increases program size by 2.75%, and the CCP client increases
program size by 1.84%.

An interesting question that deserves attention is “What is the benefit of
using a sparse data-flow analysis in practice?” We have not implemented dense
versions of the ABCD or the CCP clients. However, previous works have shown
that sparse analyses tend to outperform equivalent dense versions in terms of
time and space efficiency [14, 37]. In particular, the e-SSA format used by the
ABCD and the CCP optimizations is the same program representation adopted
by the tainted flow framework of Rimsa et al. [38], which has been shown to
be faster than a dense implementation of the analysis, even taking the time to
perform live range splitting into consideration.

6 Conclusion

This paper has presented a systematic way to build program representations that
suit data-flow analyses. We build different program representations by splitting
the live ranges of variables. The way in which we split live ranges depends on two
factors. First, which program points produce new information, e.g., uses, defini-
tions, tests, etc. Second, how this information propagates along the variable live
range: forwardly or backwardly. We have used an implementation of our frame-
work in LLVM to convert programs to the Static Single Information form [2],
and to provide intermediate representations to the ABCD array bounds-check
elimination algorithm [6] and to Wegman et al.’s Conditional Constant Propa-
gation algorithm [47]. Our framework has been used by Couto et al. [20] and
by Rodrigues et al. [39] in different implementations of range analyses. We have
also used our live range splitting algorithm, implemented in the phc PHP com-
piler [5, 4], to provide the Extended Static Single Assignment form necessary to
solve the tainted flow problem [38].

References

1. W. B. Ackerman. Efficient Implementation of Applicative Languages. PhD thesis,
MIT, 1984.

2. Scott Ananian. The static single information form. Master’s thesis, MIT, Septem-
ber 1999.

3. Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition, 2002.

4. Paul Biggar. Design and Implementation of an Ahead-of-Time Compiler for PHP.
PhD thesis, Trinity College Dublin, 2009.

5. Paul Biggar, Edsko de Vries, and David Gregg. A practical solution for scripting
language compilers. In SAC, pages 1916–1923. ACM, 2009.

6. Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating array bounds
checks on demand. In PLDI, pages 321–333. ACM, 2000.

7. Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, and
Christophe Guillon. Revisiting out-of-SSA translation for correctness, code quality,
and efficienty. In CGO, pages XX–XX. IEEE, 2009.

8. Benoit Boissinot, Sebastian Hack, Daniel Grund, Benoit Dupont de Dinechin, and
Fabrice Rastello. Fast liveness checking for SSA-form programs. In CGO, pages
35–44. IEEE, 2008.

9. Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph
coloring register allocation. TOPLAS, 16(3):428–455, 1994.

10. Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Timothy S.
Oberg, and Steven W. Reeves. Fast copy coalescing and live-range identification.
In PLDI, pages 25–32. ACM, 2002.

11. Victor Hugo Sperle Campos, Raphael Ernani Rodrigues, Igor Rafael de As-
sis Costa, and Fernando Magno Quintao Pereira. Speed and precision in range
analysis. In SBLP, pages 42–56. Springer, 2012.

12. Robert Cartwright and Mattias Felleisen. The semantics of program dependence.
SIGPLAN Not., 24(7):13–27, 1989.

13. Craig Chambers and David Ungar. Customization: optimizing compiler technology
for self, a dynamically-typed object-oriented programming language. SIGPLAN
Not., 24(7):146–160, 1989.

14. Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of
sparse data flow evaluation graphs. In POPL, pages 55–66. ACM, 1991.

15. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

16. P. Cousot and N.. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84–96. ACM, 1978.

17. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. An efficient method of computing static single assignment form. In POPL,
pages 25–35, 1989.

18. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. TOPLAS, 13(4):451–490, 1991.

19. Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In POPL, pages 207–212, New York, NY, USA, 1982. ACM.

20. Douglas do Couto Teixeira and Fernando Magno Quintao Pereira. The design
and implementation of a non-iterative range analysis algorithm on a production
compiler. In SBLP, pages 45–59. SBC, 2011.

21. Thomas Gawlitza, Jerome Leroux, Jan Reineke, Helmut Seidl, Gregoire Sutre,
and Reinhard Wilhelm. Polynomial precise interval analysis revisited. Efficient
Algorithms, 1:422 – 437, 2009.

22. Lal George and Blu Matthias. Taming the ixp network processor. In PLDI, pages
26–37. ACM, 2003.

23. Jong hoon An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. Dynamic
inference of static types for ruby. In POPL, pages XX–XX. ACM, 2011.

24. R. Johnson, D. Pearson, and K. Pingali. The program tree structure. In PLDI,
pages 171–185. ACM, 1994.

25. Richard Johnson and Keshav Pingali. Dependence-based program analysis. In
PLDI, pages 78–89. ACM, 1993.

26. Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75–88. IEEE, 2004.

27. Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. Register
promotion by sparse partial redundancy elimination of loads and stores. In PLDI,
pages 26–37. ACM, 1998.

28. Fancesco Logozzo and Manuel Fahndrich. Pentagons: a weakly relational abstract
domain for the efficient validation of array accesses. In SAC, pages 184–188. ACM,
2008.

29. S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood. Bitwidth
cognizant architecture synthesis of custom hardware accelerators. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 20(11):1355–
1371, 2001.

30. Antoine Miné. The octagon abstract domain. Higher Order Symbol. Comput.,
19:31–100, 2006.

31. Mangala Gowri Nanda and Saurabh Sinha. Accurate interprocedural null-
dereference analysis for java. In ICSE, pages 133–143, 2009.

32. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, 2005.

33. Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. Design
and implementation of sparse global analyses for c-like languages. In PLDI, pages
1–11. ACM, 2012.

34. Keshav Pingali and Gianfranco Bilardi. APT: A data structure for optimal control
dependence computation. In PLDI, pages 211–222. ACM, 1995.

35. Keshav Pingali and Gianfranco Bilardi. Optimal control dependence computation
and the roman chariots problem. In TOPLAS, pages 462–491. ACM, 1997.

36. John Bradley Plevyak. Optimization of Object-Oriented and Concurrent Programs.
PhD thesis, University of Illinois at Urbana-Champaign, 1996.

37. G. Ramalingam. On sparse evaluation representations. Theoretical Computer Sci-
ence, 277(1-2):119–147, 2002.

38. Andrei Alves Rimsa, Marcelo D’Amorim, and Fernando M. Q. Pereira. Tainted
flow analysis on e-SSA-form programs. In CC, pages 124–143. Springer, 2011.

39. Raphael Ernani Rodrigues, Victor Hugo Sperle Campos, and Fernando
Magno Quintao Pereira. A fast and low overhead technique to secure programs
against integer overflows. In CGO. ACM, 2013.

40. Subhajit Roy and Y. N. Srikant. The hot path ssa form: Extending the static single
assignment form for speculative optimizations. In CC, pages 304–323, 2010.

41. Bernhard Scholz, Chenyi Zhang, and Cristina Cifuentes. User-input dependence
analysis via graph reachability. Technical report, Sun, Inc., 2008.

42. Jeremy Singer. Static Program Analysis Based on Virtual Register Renaming. PhD
thesis, University of Cambridge, 2006.

43. Vugranam C. Sreedhar, Roy Dz ching Ju, David M. Gillies, and Vatsa Santhanam.
Translating out of static single assignment form. In SAS, pages 194–210. Springer-
Verlag, 1999.

44. Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth analysis
with application to silicon compilation. In PLDI, pages 108–120. ACM, 2000.

45. Zhendong Su and David Wagner. A class of polynomially solvable range con-
straints for interval analysis without widenings. Theoretical Computeter Science,
345(1):122–138, 2005.

46. Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of
typed scheme. POPL, pages 395–406, 2008.

47. Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. TOPLAS, 13(2), 1991.

48. Michael Weiss. The transitive closure of control dependence: the iterated join.
TOPLAS, 1(2):178–190, 1992.

49. Frank Kenneth Zadeck. Incremental Data Flow Analysis in a Structured Program
Editor. PhD thesis, Rice University, 1984.

A Isomorphism to Sparse Evaluation Graphs

Given a control flow graph G, Choi et al. define a sparse evaluation graph as a
tuple 〈NSG, ESG,M〉, such that:

– NSG is a set of nodes defined as follows:
1. NSG contains a node ns representing the entry point s ∈ G;
2. NSG contains a node np for each point p ∈ G that is associated with a

non-identity transfer function.
3. NSG contains a node nm for each point m in the iterated dominance

frontier of the points of G used to build the nodes in step (1) and (2).
These are called meet nodes.

– We let P denote the set of points p ∈ G used in step 2 above, plus the point
s ∈ G used in step 1 above; we let M denote the set of points m ∈ G used
in step 3 above; if we let S = P

⋃
M then we define ESG as follows:

1. there is an edge (nq, nm) ∈ N2
SG whenever m ∈ M and q is, among all

the nodes in S, the immediate dominator of one of the CFG predecessors
of m. See search(3b) and link(2b) in Choi et al [14];

2. there is an edge (nq, np) ∈ N2
SG whenever p ∈ P , and q is, among

all the nodes in S, the immediate dominator of p. See search(1) and
link(2b) [14];

– The mapping function M : EG 7→ NSG associates to each edge (u, v) of the
CFG the node nq ∈ NSG, whenever q ∈ S is the immediate dominator of u ∈
G. See search(3a) [14]. This is done through the recursive function search
that performs a topological traversal of the CFG (DFS of the dominance
tree; See search(4) [14]).

Theorem 3 states that, for forward partitioned variable data-flow problems (PVP),
the algorithm in Figure 6 can build program representations isomorphic to Sparse
Evaluation Graphs. The proof that this result holds for backward data-flow prob-
lems, is analogous, and we omit it.

Lemma 1 (CFG cover). Let Prog be a program with its corresponding CFG
G with start node s, and exit node x. Let Prog′ be the program that we obtain
from Prog by:

1. adding a pseudo-definition of each variable to s;
2. adding a pseudo-use of each variable to x;
3. placing a pseudo-use of a variable v at each point where v is defined;
4. converting the resulting program into SSA form.

If v is a variable in Prog, then the live ranges of the different names of v in
Prog′ completely partition the program points of G. In other words, each program
point of G belongs to exactly one live range of v in Prog′.

Proof. First, v is alive at every point of G, due to transformations (1), (2) and
(3). Therefore, if V is the set of the different names of v after the conversion to
SSA form in step (4), then any program point of G belongs to the live range of
at least one v′ ∈ V . The result follows from a well-know property of Cytron’s
SSA-form conversion algorithm [18], which, as observed by Sreedhar et al. [43],
creates variables with non-intersecting live ranges. In other words, after the SSA
renaming, two different names of v cannot be simultaneously alive at a program
point p.

[Equivalence SSI/SEG - See Theorem 3] Given a forward Sparse Evaluation
Graph (SEG) that represents a variable v in a program representation Prog with
CFG G, there exits a live range splitting strategy that once applied on v builds
a program representation that is isomorphic to SEG.

Proof. We argue that the SEG of v is isomorphic to the representation of v in
Prog′, the program representation that we derive from Prog by applying the
transformations 1-3 listed in Lemma 1 in addition to a pass of SSIfy. If we let
P , as before, be defined as the set of CFG points associated with non-identity
transfer functions, plus the start node s of the CFG, then after we apply the
splitting strategy P↓, we have that:

1. there will be exactly one definition per node of P and one definition per
node of DF+(P). So there is an one-to-one correspondence between SSA
definitions and SG nodes.

2. From Lemma 1 the live-ranges of the different names of v provides a parti-
tioning of the points of G. If v′ is a new name of v, then each program point
where v′ is alive is dominated by v′’s definition4. Each program point belongs
to the live-range of the name of v whose definition immediately dominates it
(among all definitions). Thus, live ranges give origin to a function that maps
SSA definitions to program points. Consequently, there is an isomorphism
between the live-ranges and the mapping function M .

4 This is a classical result of SSA-form. See Budimlic et al. [10] for a proof

1:

2:

3:

4: def(v) 5: def(v)

6:

8:

7: def(v)

9:

10:

11: use(v)

12: def(v)

2

4
v=●

5
v=●

7
v=●

X11

9

2

2

2 2

12

12

9

9

8

11

6

7

s

s

4 5

S

11
●=v

12
v=●

6

8

9

{}

{11}

{11}

{}

{}

{}

{} {} {}

{}
{}

1:

2: v2 = ϕ (vs, v12)

3:

4: def(v4)||def(v2) 5: def(v5)||def(v2)

6: v6 = ϕ (v4, v5)

8: v8 = ϕ (v6, v7)

7: def(v7)||def(v2)

9: v9 = ϕ (v8, v11)

10:

11: use(v9)

12: def(v12)

v9

v2

v2

v2 v2

v12

v9

v9

v8

v11

v6

v7

s

s

v4 v5

vs = ●

vx =φ (vs, v12)
● = vx

v11

v12

Fig. 16: Example of equivalence between SEGs and our live range splitting strat-
egy for reaching uses.

3. def-use chains on Prog′ are isomorphic to the edges in ESG: indeed a SEG
node np is linked to nq whenever (i) np immediately dominates nq if q ∈ P ;
or (ii) nq is in the dominance frontier of np if q ∈ M . In the former case
the definition of v at p reaches the (pseudo-)use of v at q. In the latter this
definition reaches the use of v at the φ-function placed at q by SSIfy(v, P↓).

In the proof of Theorem 3 we had to augment the program with a pseudo-
definition of v at the CFG’s entry point and a pseudo-use at every actual def-
inition of v and at the CFG’s exit point. The difference between a code with
or without pseudo uses/defs is related to the necessity to compute data-flow
information beyond the live-ranges of variables or not. This necessity exists for
optimizations such as partial redundancy elimination, which may move, create
or delete code.

Figure 16 compares SEG and the forward live range splitting strategy in the
example taken from Figure 11 of Choi et al. [14], which shows the reaching uses
analysis. In the left we see the original program, and in the middle the SEG built
for a forward flow analysis that extracts information from uses of variables. We
have augmented the edges in the left CFG with the mapping M of SEG nodes to
CFG edges. In the right we see the same CFG, augmented with pseudo defs and
uses, after been transformed by SSIfy applied on the points {S, 4, 5, 7, 11, 12}↓.
The edges of this CFG are labeled with the definitions of v live there.

B Correctness of our SSIfication

In this section we consider a unidirectional forward (resp. backward) PLV prob-
lem stated as a set of equations [v]i = [v]i ∧ F sv (. . .) for every variable v, each

program point i, and each s ∈ pred(i) (resp. s ∈ succ(i)). We rely on the nomen-
clature introduced by Definition 3 in order to prove Theorem 2.

Lemma 2 (Live range preservation). If variable v is live at a program point
i, then there is a version of v live at i after we run SSIfy.

Proof. Split cannot remove any live range of v, as it only inserts “copies” from
v to v, e.g., each copy has the same source and destination. Rename removes
live ranges of v, but it replaces them with the live ranges of new versions of this
variable whenever a use of v is renamed. Clean only removes “copies”; hence, all
the original instructions remain in the code. ut

Lemma 3 (Non-Overlapping). Two different versions of v, e.g., vi and vj
cannot be live at a program point i transformed by SSIfy.

Proof. The only algorithm that creates new versions of v is rename. Each new
version of v is unique, as we ensure in line 27-29 of the algorithm. If rename
changes the use of v to vi at i, then there exists a definition of vi at some
program point i′ that dominates i, as we ensure in line 22 of the algorithm. Lets
assume that we have two versions of v, e.g., vi and vj , live at a program point
i, in order to derive a contradiction. in this case, there exist program points ii
where vi is used, and ij where vj is used, reachable from i. And exist a program
point i′i where vi is defined, and a program point i′j where vj is defined, so that i′i
dominates ii, and i′j dominates ij . Now, if neither i′i dominates i′j nor vice-versa,
then we have a contradiction, because, given that i′i reaches ij and i′j reaches ii,
then neither i′i would dominates ii, nor i′j would dominates ij . Without loss of
generality, lets assume that i′i dominates i′j . in this case, rename visits i′i first,
and upon visiting i′j , places the definition of vj on top of the definition of vi
in the stack in line 30. Thus, i′j cannot dominate ii, or we would have, at that
program point, a use of vj , instead of vi. In this case, ij is live past the dominance
frontier of i′i, forcing split (line 14) to create a φ-function that dominates ii, at
a program point that is dominated by i′i; hence, creating a new definition vφ of
v. Therefore, at ii we would have a use of vφ instead of v.ut

[Semantics - Theorem 1] SSIfy maintains the following property: if a value
n written to variable v at program point i′ is read at a program point i in the
original program, then the same value assigned to a version of variable v at
program point i′ is read at a program point i after transformation.

Proof. For simplicity, we will extend the meaning of “copy” to include not only
the parallel copies placed at interior nodes, but also φ and σ-functions. Split
cannot create new values, as it only inserts “copies”. Clean cannot remove values,
as it only removes “copies”. From the hypothesis we know that the definition of
v that reaches i is live at i. From Lemma 2 we know that there is a version of
v live at i. From Lemma 3 we know that only one version of v can be live at i,
and so rename cannot send new values to i.ut

Now suppose that the program, not necessarily under SSI form, fulfills INFO
and LINK from Definition 6 for a system of monotone equations Edense, given
as a set of constraints [v]i v F sv ([v1]s, . . . , [vn]s). Consider a live range splitting
strategy Pv that includes for each variable v the set of program points I↓ (resp.
I↑) where F sv is non-trivial. The following theorem states that Algorithm SSIfy
creates a program form that fulfills the Static Single Information property.
[Correctness of SSIfy - Theorem 2] Given the conditions stated above,
Algorithm SSIfy(v, Pv) creates a new program representation such that:

1. there exists a system of equations Essidense, isomorphic to Edense for which
the new program representation fulfills the SSI property.

2. if Edense is monotone then Essidense is also monotone.

Proof. We derive from this new program representation a system of equations
isomorphic to the initial one by associating trivial transfer functions with the
newly created “copies”. The INFO and LINK properties are trivially maintained.
As only trivial and constant functions have been added, monotonicity is main-
tained.

To show that we provide SPLIT-DEF, we must first show that each i ∈
live(v) where F sv is non-trivial contains a definition (resp. last use) of v. The
function split separates these points in lines 9 and 16, and later, in line 23, inserts
definitions in those points. To show that we provide SPLIT-MEET, we must
prove that each join (resp. split) node for which Edense has possibly different
values on its incoming edges should have a φ-function (resp. σ-function) for v.
These points are separated in lines 7 and 14 of split. To see why this is the
case, notice that line 7 separates the points in the iterated dominance frontier
of points that originate information that flows forward. These are, as a direct
consequence of the definition of iterated dominance frontier, the points where
information collide. Similarly, line 14 separates the points in the post-dominance
frontier of regions which originate information that flows backwardly.

We ensure VERSION as a consequence of the SSA conversion. All our pro-
gram representations preserve the SSA representation, as we include the def-
inition sites of v in line 11 of split. Function rename ensures the existence of
only one definition of each variable in the program code (line 27), and that each
definition dominates all its uses (consequence of the traversal order). Therefore,
the newly created live ranges are connected on the dominance tree of the source
program. Function rename also creates a new program representation for which
it is straightforward to build a system of equations Essidense isomorphic to Edense:
Firstly, the constraint variables are renamed in the same way that program vari-
ables are. Secondly, for each program variable, new system variables bound to
⊥ are created for each program point outside of its live-range.ut

C Equivalence between sparse and dense analyses.

We have shown that SSIfy transforms a program P into another program P ssi

with the same semantics. Furthermore, this representation provides the SSI prop-
erty for a system of equations Essidense that we extract from P ssi. This system is

isomorphic to the system of equations Edense that we extract from P . From the
so obtained program under SSI for the constrained system Essidense, Definition 7
shows how to construct a sparse constrained system Essisparse. When transfer
functions are monotone and the lattice has finite height, Theorem 4 states the
equivalence between the sparse and the dense systems. The purpose of this sec-
tion is to prove this theorem. We start by introducing the notion of coalescing.
Let E be a constraint system that associates with each 1 ≤ i ≤ n the constraint
ai v Hi(a1, . . . , an), where each ai is an element of a lattice L of finite height,
and Hi is a monotone function from Ln to L. Let (A1, . . . , An) be the maximum
solution to this system, and let 1 ≤ m ≤ n such that ∀i, 1 ≤ i ≤ m, Ai = Am.
We define a “coalesced” constraint system Ecoal in the following way: for each
1 ≤ i ≤ m we create the constraint bm v Hi(bm, . . . , bm, bm+1, . . . , bn); for each
m < i ≤ n we create the constraint bi v Hi(bm, . . . , bm, bm+1, . . . , bn). Lemma 4
shows that coalescing preserves the maximum solution of the original system.

Lemma 4 (Equivalence with coalescing). If E is a constraint system with
maximum solution (A1, . . . , Am, . . . , An), for any i, j, 1 ≤ i, j ≤ m we have that
Ai = Aj, and Ecoal is the “coalesced” system that we derive from E, then the
maximum solution of Ecoal is (Am, . . . , An).

Proof. Both system have a (unique) maximum solution (see e.g. [32]), although
the solution of the “coalesced” system has smaller cardinality, e.g., n-m+1.
Now, as (Am, . . . , Am, Am+1, . . . , An) is a solution to E, by definition of Ecoal,
(Am, . . . , An) is a solution to Ecoal. Let us prove that this solution is max-
imum, i.e. for any solution (Bm, . . . , Bn) of Ecoal, we have (Bm, . . . , Bn) v
(Am, . . . , An). By definition of Ecoal, we have that (Bm, . . . , Bm, Bm+1, . . . , Bn)
is a solution to E. As (A1, . . . , An) is maximum, we have (Bm, . . . , Bm, Bm+1, . . . ,
Bn) v (A1, . . . , An). So (Bm, . . . , Bn) v (Am, . . . , An). ut

We now prove Theorem 4, which states that there exists a direct mapping
between the maximum solution of a dense constraint system associated with a
SSI-form program, and the sparse system that we can derive from it, according
to Definition 7.

Theorem 4 (sparse ≡ dense). Consider a program in SSI-form that gives ori-
gin to a constraint system Essidense associating with each variable v the constraints
[v]i = [v]i ∧ F sv ([v1]s, . . . , [vn]s). Suppose that each F sv is a monotone function
from Ln to L where L is of finite height. Let (Yv)v∈variables be the maximum
solution of the corresponding sparse constraint system.

Then, (Xi
v)(v,i)∈variables×prog points with

{
Xi
v = Yv for i ∈ live(v)

Xi
v = ⊥ otherwise is the max-

imum solution to Essidense.

Proof. The constraint systems Essidense and Essisparse have a maximum unique so-
lution, because the transfer functions are monotone and L has finite height

The idea of the proof is to modify the constraint system Essidense into a system
equivalent to Essisparse. To accomplish this transformation, we (i) replace each

F sv by Gsv, where Gsv is constructed as in Definition 7; (ii) for each v, coalesce
[v]ii∈live(v) into [v]; (iii) coalesce all other constraint variables into [v⊥].

The LINK property allows us to replace F sv by Gsv. Due to SPLIT-DEF, a
new variable is defined at each point where information is generated, and due
to VERSION there is only one live range associated with each variable. Hence,
([v]i)i∈live(v) is invariant. Due to INFO, we have that ([v]i)i 6∈live(v) is bound to
⊥. Due to Lemma 4, we know that this new constraint system has a maximum
solution (Yv)v∈variables∪⊥: Xi

v equals Yv for all i ∈ live(v), and Y⊥ otherwise.
We translate each constraint [v]i v F sv ([v1]s, . . . , [vn]s), in the original sys-

tem, to a constraint in the “coalesced” one in the following way: if i ∈ live(v) : if s ∈ defs(v) : [v] v Gsv([a], . . . , [b]) (1)
else : [v] v [v] (2)

otherwise : [v⊥] v ⊥ (3)

Case (1) follows from LINK, case (2) follows from SPLIT-DEF, and case (3)
follows from INFO. By ignoring y⊥ that appears only in (3), and by removing
the constraints produced by (2), which are useless, we obtain Essisparse.

