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Abstract

Data-flow analyses usually associate information about variables with pro-
gram regions. Informally, if these regions are too small, e.g., a point between
two consecutive statements, we call the analysis dense. On the other hand,
if these regions include many such points, then we call it sparse. This paper
presents a systematic method to build program representations that sup-
port forward and/or backward sparse analyses. To pave the way that leads
to this framework we survey and clarify the bibliography about intermedi-
ate program representations. We revisit the Static Single Information (SSI)
form introduced in the nineties and show how to simplify the construction
of program representations for unidirectional data-flow analyses. We show
that our approach, up to parameter choice, subsumes other program repre-
sentations such as the SSA, SSI and e-SSA forms. For data-flow problems
that can be partitioned by variables (PVP) we can produce intermediate
representations isomorphic to Choi et al.’s Sparse Evaluation Graphs (SEG).
However, contrary to SEGs, we can handle - sparsely - problems that are not
PVP. We have implemented this framework in the LLVM compiler, and have
empirically compared different program representations in terms of size and
construction time.
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1. Introduction

The monotone data-flow framework is an old ally of compiler writers.
Since the work of pionners like Prosser [1], Allen [2, 3], Kildall [4] and
Hecht [5], data-flow analyses such as reaching definitions, available expres-
sions and liveness analysis have made their way into the implementation of
virtually every important compiler. The information acquired by data-flow
analyses supports many classic compiler optimizations, such as common-
subexpression and dead-code elimination, constant and copy propagation,
register allocation and pointer analysis, among others. Furthermore, this
framework provides a core theory grounding a profusion of developments in
compiler research, both in the academia and in the industry.

The vast majority of data-flow analyses binds information to pairs formed
by a variable and a program point [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20]. For instance, for each program point p, and each integer variable
v live at p, Stephenson et al.’s [18] bit-width analysis finds the size, in bits,
of v at p. Although well studied in the literature, this approach has some
drawbacks; in particular, it suffers from an excess of redundant information.
For instance, a given variable v may be mapped to the same bit-width along
many consecutive program points. Therefore, a natural way to reduce redun-
dancies is to make these analyses sparser, increasing the granularity of the
program regions that they manipulate. We identify two main design strate-
gies to achieve this sparsity: the use of new data-structures that represent
the program under analysis, or the use of new program representations which
make it natural to associate information to larger code regions.

In terms of data-structures, the first, and best known method proposed
to support sparse data-flow analyses is Choi et al.’s Sparse Evaluation Graph
(SEG) [21]. The nodes of this graph represent program regions where infor-
mation produced by the data-flow analysis might change. Choi et al.’s ideas
have been further expanded, for example, by Johnson et al.’s Quick Propaga-
tion Graphs [11], or Ramalingan’s Compact Evaluation Graphs [22]. Nowa-
days we have efficient algorithms that build such data-structures [23, 24, 25].
These data-structures improve many data-flow analyses in terms of runtime
and memory consumption. Nevertheless, the elegance of SEGs and its suc-
cessors have not, so far, been enough to attract the attention of mainstream
compiler writers. Compilers such as gcc, LLVM or Java Hotspot rely, in-
stead, on several types of program representations to provide support to
sparse data-flow analyses.
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The most famous among these representations is the Static Single As-
signment form [26], which suits well forward flow analyses, such as reaching
definitions. Other representations, not as popular, yet more general than
SSA form, exist too. For instance, Scott Ananian has introduced in the late
nineties the Static Single Information (SSI) form, a program representation
that supports both forward and backward analyses [27]. This representa-
tion was later discussed by Jeremy Singer [28] and revisited by Boissinot
et al. [29]. Singer provided new algorithms plus examples of applications
that benefit from the SSI form, and Boissinot et al. clarified a number of
omissions in the related literature. A different program representation – the
Extended Static Single Assignment (e-SSA) form – was introduced by Bodik
et al. [6]. As opposed to SSI and SSA, the e-SSA form supports flow anal-
yses that obtain information both from variable definitions and conditional
tests. Another important representation, which supports data-flow analyses
that acquire information from uses, is the Static Single Use form (SSU). As
uses and definitions are not fully symmetric (the live-range can “traverse”
a use while it cannot traverse a definition) there exists different variants of
SSU (eg. [14, 30, 31]). For instance, the “strict” SSU form enforces that each
definition reaches a single use, whereas SSI and other variations of SSU allow
two consecutive uses of a variable on the same path. All these program repre-
sentations are very effective, having seen use in a number of implementations
of flow analyses; however, they only fit specific data-flow problems.

In this paper we present a method to build program representations that
support sparse data-flow analyses. We build these program representations
by splitting the live ranges of variables, in such a way that the information
associated with variables is invariant along their entire live ranges. Our
technique is more general than the program representations that we have
mentioned before. It can be parametrized according to the direction(s) of the
flow problems, i.e., forward and/or backward, and according to the program
points where data-flow information is produced. Usually these points contain
variable definitions, uses or conditional tests. In order to build these program
representations, we use an algorithm that is as powerful as the method that
Singer has used to convert a program to the SSI form [28]. However, our
algorithm is simpler: as we show in Section 3, for all unidirectional and
all non-truly bidirectional data-flow analysis we can avoid iterating the live
range splitting process in order to build intermediate representations.

Our method subsumes Choi et al.’s sparse evaluation graphs, as we demon-
strate in Appendix A; however, we improve on SEGS in a number of ways.
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Firstly, SEGs best suit a class of data-flow analyses that Zadeck defines as
Partitioned Variable Problems [32] (PVP). Reaching definitions and liveness
analysis are examples of PVPs. For these problems we can build intermedi-
ate program representations isomorphic to SEGs. However, as we explain in
Section 2, many data-flow problems do not fit into this category; neverthe-
less, we can handle them sparsely. Secondly, we improve on SEGs in terms
of space: this data-structure keeps - for each program variable - a mapping
from SEG vertices to Control Flow Graph (CFG) edges that is linear on the
size of the CFG. We do not keep this map. Instead, we can replace it with
the fast liveness check algorithm that SSA form programs admit [33]. Thus,
whenever necessary we can map the information related to a variable to the
program points where this variable is live.

We have implemented our framework on top of the LLVM compiler [34],
and have used it to provide intermediate representations to two well known
compiler optimizations: Wegman et al.’s [20] conditional constant propaga-
tion, and Bodik et al.’s [6] algorithm for array bounds check elimination. We
have also built the SSI form as defined by Singer, and compare it with the
other program representations that we produce. The intermediate program
representations that we derive from our framework increase the size of the
original program by less than 5%. This is one order of magnitude less than
Singer’s SSI form. Furthermore, our experiments indicate that the time to
build these program representations is less than 2% of the time taken by the
standard suite of optimizations used in the LLVM compiler.

2. Sparse Data-flow Analyses

In this section we quickly review some concepts related to flow analy-
ses. For a more in depth overview of this topic we recommend Nielson et
al. [35]. The monotone data-flow framework associates information with
program points. We define a Program Point as any minimum region in the
program code where a data-flow analysis can acquire information. The algo-
rithms that we describe in this paper consider as program points the instruc-
tions in the source code, and the regions between consecutive instructions.
A transfer function determines how information flows between adjacent pro-
gram points. This information is an element of an algebraic body called a
lattice. For instance, liveness analysis is a flow problem in which the chal-
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lenge is to determine which variables are live1 in and out of each CFG node.
The regions of interest, in this case, are program points between instructions.
A variable v is live out of an instruction inst if there is a path from inst to
another instruction inst’ that uses v, and v is not re-defined along this path.
A variable is live in at an instruction inst if it is live out at inst, and it is
not defined by inst. The result of liveness analysis is a mapping that gives,
for each instruction, its IN and OUT sets. We will focus on liveness analysis
for a single variable v, e.g., either IN = Live, or IN = Dead; same for OUT.
Normally we find a solution to a data-flow problem by continuously solving
a set of data-flow equations associated with each program region until a fix
point is reached. Given a transfer function f inst

v , and a meet operator ∧ that
we will define later, regarding range analysis these equations are:


IN[inst] = f inst

v (OUT[inst])

OUT[inst] =
∧
S∈succ(inst) IN[S]

(1)

Because liveness analysis combines information that flows out of a node to
find the information that flows into it, we call it a backward analysis. Forward
analyses are the opposite: the meet operator combines the information that
comes from the predecessors of a region to produce the information that flows
to the successors of this region. Different types of program instructions are
associated with different transfer functions. In the case of liveness analysis,
we have three types of transfer functions, which depend on the instruction
either using or defining the variable v:

Type of instruction inst Transfer function
inst uses v f inst

v = λx.Live
inst defines v and does not use v f inst

v = λx.Dead
inst neither uses nor defines v f inst

v = λx.x

Some program points are considered meet nodes, because they combine
the information that comes from two or more regions. In the case of liveness
analysis, conditional branches are meet nodes, because they are source of
two different program paths. The variable of interest v may be live in one of

1Since “live” is a technical term, we use it, instead of “alive”, even as a predicate
adjective, e.g., “the variable is live”.
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these paths, and dead along the other. Information, in this case, is combined
via the meet operator ∧. For liveness analysis, this operator is defined by
the table below, which says, for instance, that if a variable is dead along a
path and live along the other, then it is live past that meet point:

∧ Dead Live
Dead Dead Live
Live Live Live

Some transfer functions are identities. For instance, in liveness analysis,
an instruction that neither defines nor uses any variable is associated with an
identity transfer function. The goal of sparse data-flow analysis is to shortcut
these functions, a task that we accomplish by grouping contiguous program
points bound to identities into larger regions. Sometimes it is possible to
perform this grouping more efficiently via a customized program representa-
tion [11, 21, 22, 36]. In particular, the class of Partitioned Data-flow Analyses
(PDA), defined by Zadeck [32], greatly benefits from sparsity. These analy-
ses, which include live variables, reaching definitions and forward/backward
printing, can be decomposed into a set of sparse data-flow problems – usu-
ally one per variable – each independent on the other. For completeness, we
re-state Zadeck’s definition, as the sum of two notions: Partitioned Variable
Problem (PVP) and Partitioned Variable Lattice (PVL).

Property 1 (PVP/PVL). Partitioned Variable Problem:
Let V = {v1, . . . , vn} be the set of program variables. We consider, without
loss of generality, a forward data-flow analysis. This data-flow analysis is an
equation system that associates, with each program point i, an element of a
lattice L, given by the equation [x]i =

∧
s∈pred(i) F

s([x]s), where [x]i denotes
the abstract state associated with variable x at program point i, and F s is
the transfer function associated with program point s. The analysis can be
written2 as a constraint system that binds to each program point i and each
s ∈ pred(i) the equation [x]i = [x]i ∧F s([x]s) or, equivalently, the inequation
[x]i v F s([x]s). The corresponding Maximum Fixed Point (MFP) problem
is said to be a Partitioned Variable Problem iff:

2As far as we are concerned with finding its maximum solution. See for example
Section 1.3.2 of [35].
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[PVL]: L can be decomposed into the product of Lv1 × . . . × Lvn where
each Lvi

is the lattice associated with program variable vi.

[PVP]: each transfer function F s can also be decomposed into a product
F s
v1
× F s

v2
× . . .× F s

vn
where F s

vj
is a function from Lvj

to Lvj
.

Liveness analysis is a partitioned variable problem: the liveness informa-
tion (lattice of Boolean values B) can be computed for each individual (PVL
property) variable independently (PVP property): the overall lattice can be
written as a cross product L = Bn. The liveness information for variable
v at program point i, e.g., [v]i, can be expressed in term of its state at the
successors s of i: [v]i = [v]i ∧ F s

v ([v]s) with F s
v from B to B.

Many data-flow analyses do not provide the PVP property; however,
most of them do fulfill the PVL property. Consider a problem as simple
as constant propagation as an example: if we denote by C the lattice of
constants, the overall lattice can be written as L = Cn with n the number of
variables (PVL property); as opposed to liveness information, the constant
value of some variable v at program point i has to be expressed in term of
the constant value of some other variables (not only v) at the predecessors
S of i: [v]i = [v]i ∧ F s

v ([v1]
s, . . . , [vn]s) with F s

v from L to B (and not from B
to B). Notice that there are data-flow analyses that do not meet the PVL
property, such as those that rely on relations between variables [37].

If the information associated with a variable is invariant along its entire
live range, then we can bind this information to the variable itself. In other
words, we can replace all the constraint variables [v]i by a single constraint
variable [v], for each variable v and every i ∈ live(v). In the context of
constant propagation, at the program points s ∈ live(v) that do not redefine
a variable v, [v]i = [v]i∧F s

v ([v1]
s, . . . , [vn]s) = [v]i∧[v]s simplifies into [v] = [v].

On the other hand, F
def (v)
v simplifies to a function that depends only on some

[u] where each u is an argument of the instruction defining v. This gives the
intuition on why a propagation engine along the def-use chains of a SSA-
form program can be used to solve the constant propagation problem in an
equivalent, yet “sparser”, manner. This also paves the way toward a formal
definition of the Static Single Information property.

Property 2 (SSI). Static Single Information: Consider a forward
(resp. backward) monotone PVL problem Edense stated as a set of con-
straints [v]i v F s

v ([v1]
s, . . . , [vn]s) for every variable v, each program point i,
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and each s ∈ pred(i) (resp. s ∈ succ(i)). A program representation fulfills
the Static Single Information property iff:

[SPLIT]: for each variable v, each s ∈ live(v) such that F s
v 6= λx.⊥ is

non-trivial, i.e. is not the simple projection on Lv (see Definition 2
in Appendix B), should contain a definition (resp. last use) of v; Let
(Y i

v )(v,i)∈variables×prog points be a maximum solution to Edense. Each join
(resp. split) node for which F s

v (Y s
v1
, . . . , Y s

vn
) has different values on its

incoming edges should have a φ-function (resp. σ function) for v as
defined in Section 2.1.

[INFO]: each program point i 6∈ live(v) should be bound to an undefined
(see Definition 2) transfer function, e.g., F s

v = λx.⊥.

[LINK]: each instruction inst for which F inst
v depends on some [u]s (see

Definition 2) should contain a (potentially pseudo) use (resp. def) of u
live-out (resp. live-in) of inst.

[VERSION]: for each variable v, live(v) is a connected component of the
CFG.

These properties allows us to attach the information to variables, instead
of program points. The SPLIT property forces the information related to
a variable to be invariant along its entire live-range. INFO forces this in-
formation to be irrelevant outside the live range of the variable. The LINK
property forces the def-use chains to reach the points where information is
available for a transfer function to be evaluated. The VERSION property
provides an one-to-one mapping between variable names and live ranges.

We must split live ranges to provide the SSI properties. If we split them
between each pair of consecutive instructions, then we would automatically
provide these properties, as the newly created variables would be live at only
one program point. However, this strategy would lead to the creation of
many trivial program regions, and we would lose sparsity. In Section 3 we
provide a sparser way to split live ranges that fit Property 2. Possibly, we
may have to extend the live-range of a variable to cover every program point
where the information is relevant. We accomplish this last task by inserting
into the program pseudo-uses and pseudo-definitions of this variable.
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2.1. Special instructions used to split live ranges

We group program points in three kinds: interior nodes, branches and
joins. At each place we use a different notation to denote live range splitting.

Interior nodes are program points that have a unique predecessor and a
unique successor. At these points we perform live range splitting via copies.
If the program point already contains another instruction, then this copy
must be done in parallel with the existing instruction. The notation,

inst ‖ v1 = v′1 ‖ . . . ‖ vm = v′m

denotes m copies vi = v′i performed in parallel with instruction inst. This
means that all the uses of inst plus all v′i are read simultaneously, then inst is
computed, then all definitions of inst plus all vi are written simultaneously.

We call joins the program points that have one successor and multiple
predecessors. For instance, two different definitions of the same variable v
might be associated with two different constants; hence, providing two differ-
ent pieces of information about v. To avoid that these definitions reach the
same use of v we merge them at the earliest program point where they meet.
We do it via special instructions called φ-functions, which were introduced
by Cytron et al. to build SSA-form programs [26]. The assignment

v1 = φ(v1
1 : l1, . . . , vq1 : lq) ‖ . . . ‖ vm = φ(v1

m : l1, . . . , vqm : lq)

contains m φ-functions to be performed in parallel. The φ symbol works as
a multiplexer. It will assign to each vi the value in vji , where j is determined
by lj, the basic block last visited before reaching the φ assignment. The
above statement encapsulates m parallel copies: all the variables vj1, . . . , v

j
m

are simultaneously copied into the variables v1, . . . , vm.
In backward analyses the information that emerges from different uses

of a variable may reach the same branch point, which is a program point
with a unique predecessor and multiple successors. To ensure Property 2,
the use that reaches the definition of a variable must be unique, in the same
way that in a SSA-form program the definition that reaches a use is unique.
We ensure this property via special instructions that Ananian has called σ-
functions [27]. The σ-functions are the dual of φ-functions, performing a
parallel assignment depending on the execution path taken. The assignment

(v1
1 : l1, . . . , vq1 : lq) = σ(v1) ‖ . . . ‖ (v1

m : l1, . . . , vqm : lq) = σ(vm)
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represents m σ-functions that assign to each variable vji the value in vi if
control flows into block lj. These assignments happen in parallel, i.e., the
m σ-functions encapsulate m parallel copies. Also, notice that variables live
in different branch targets are given different names by the σ-function that
ends that basic block.

2.2. Propagation engine

As mentioned earlier for any program that fulfills the SSI property of a
given PVL problem, a propagation engine along the def-use chains can be
used to solve it sparsely. Let us consider a unidirectional forward (resp. back-
ward) PVL problemEssi

dense stated as a set of equations [v]i v F s
v ([v1]

s, . . . , [vn]s)
(or equivalently [v]i = [v]i∧F s

v ([v1]
s, . . . , [vn]s) for every variable v, each pro-

gram point i, and each s ∈ pred(i) (resp. s ∈ succ(i)).
We see two ways to handle φ and σ-functions during the data-flow anal-

ysis. Either we consider each of them as a whole and get only one equation
per φ or σ-function, or we consider them as a set of copies and then have as
many equations as the number of parameters, in the case of φ-functions, or
successors, in the case of σ-functions. We have opted for the second choice,
because it simplifies our notation. Any φ-function a = φ(a1 : l1, . . . , am : lm)
(resp. σ-function (a1 : l1, . . . , am : lm) = σ(a)) at program point i leads
to as many constraints as the set of predecessors (resp. successors) Sj of i.
In other words, a φ-function such as a = φ(a1 : l1, . . . , am : lm), gives us n
constraints such as [a]i v [aj]

lj , which we can simplify into the classical meet
[a]i v

∧
lj∈pred(i)[aj]

lj . Similarly, a σ-function (S1 : a1, . . . , Sm : am) = σ(a)

at program point i yields n constraints such as [aj]
lj v [a]i.

Given a program that fulfills the SSI property for Essi
dense and the set

of transfer functions F s
v , we show here how to build an equivalent sparse

constrained system.

Definition 1 (SSI constrained system). Consider that a program in SSI
form gives us a constraint system that associates with each variable v the
constraints [v]i = [v]i ∧ F s

v ([v1]
s, . . . , [vn]s). We define a system of sparse

equations Essi
sparse as follows:

• For each instruction at a program point i that defines (resp. uses) a
variable v, we let a . . . b be its set of used (resp. defined) variables.
Because of the LINK property, F s

v depends only on some [a]s . . . [b]s.
Thus, there exists a function Gs

v defined as the restriction of F s
v on

La × . . .× Lb, i.e. Gs
v([a], . . . , [b]) = F s

v ([v1], . . . , [vn]).
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• The sparse constrained system associates with each variable v, and
each definition (resp. use) point s of v, the corresponding constraint
[v] v Gs

v([a], . . . , [b]) where a, . . . , b are used (resp. defined) at s.

The SSI constrained system might have several inequations for the same
left-hand-side. This is due to the way that we handle φ and σ functions.
Our definition of the SSI property, as opposed to the original ones [27, 28],
does not ensure the SSA or the SSU properties, because such a guarantee
is not necessary to every sparse analysis. It is a common assumption in the
compiler’s literature that “data-flow analysis (. . . ) can be made simpler when
each variable has only one definition”, as stated in Chapter 19 of Appel’s
textbook [38]. A naive interpretation of the above statement could lead one
to conclude that data-flow analyses become simpler as soon as the program
representation enforces a single source of information per live-range: SSA for
forward propagation, SSU for backward, and the original SSI bi-directional
analyses. This premature conclusion is contradicted by the example of dead-
code elimination, a backward data-flow analysis that the SSA form simplifies.
In fact, the SSA form fulfills our definition of the SSI property for dead-code
elimination. Nevertheless, the corresponding constraint system has several
inequations (one per variable use) for the same left-hand-side (one for each
variable). It is well known that such a system can be solved using chaotic
iteration such as the worklist algorithm [35, Sec 6.1] given in Figures 1 and 2:
replace Gi

v in Figure 1 by “i is a useful instruction or one of its definitions
is marked as useful” and one obtains the classical algorithm for dead-code
elimination.

The following theorem proved in Appendix C states the equivalence be-
tween sparse and dense analyses.

Theorem 1 (sparse ≡ dense). Consider a program in SSI-form that gives
origin to a constraint system Essi

dense associating with each variable v the con-
straints [v]i = [v]i ∧ F s

v ([v1]
s, . . . , [vn]s). Suppose that each F s

v is a monotone
function from Ln to L where L is of finite height. Let (Yv)v∈variables be the
maximum solution of the corresponding sparse constraint system.

Then, (X i
v)(v,i)∈variables×prog points with

{
X i
v = Yv for i ∈ live(v)

X i
v = ⊥ otherwise

is the

maximum solution to Essi
dense.

2.3. Examples of sparse data-flow analyses
As we have mentioned before, many data-flow analyses can be classified as

PVP/PVL problems. In this section we present some meaningful examples.
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1 function back propagate(transfer functions G)

2 worklist = ∅
3 foreach v ∈ vars: [v] = >
4 foreach i ∈ insts: worklist += i

5 while worklist 6= ∅:
6 let i ∈ worklist; worklist −= i

7 foreach v ∈ i.uses():

8 [v]new = [v] ∧Gi
v([i.defs()])

9 if [v] 6= [v]new:

10 stack += v.defs()

11 [v] = [v]new

Figure 1: Backward propagation engine under SSI

1 function forward propagate(transfer functions G)

2 worklist = ∅
3 foreach v ∈ vars: [v] = >
4 foreach i ∈ insts: worklist += i

5 while worklist 6= ∅:
6 let i ∈ worklist; worklist −= i

7 foreach v ∈ i.defs():

8 [v]new = [v] ∧Gi
v([i.uses()])

9 if [v] 6= [v]new:

10 stack += v.uses()

11 [v] = [v]new

Figure 2: Forward propagation engine under SSI

Class Inference. Some dynamically typed languages, such as Python, Java-
Scrip, Ruby or Lua, represent objects as tables containing methods and fields.
It is possible to improve the execution of programs written in these languages
if we can replace these simple tables by actual classes with virtual tables [39].
A class inference engine tries to assign a class to a variable v based on the
ways that v is used. The Python program in Figure 3(a) illustrates this
optimization. Our objective is to infer the correct suite of methods for each
object bound to variable v. Figure 3(b) shows the control flow graph of
the program, and Figure 3(c) shows the results of a dense implementation
of this analysis. Notice that each program instruction is associated with a
transfer function, and that some of these functions, such as that in label l3,
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def test(i):
  v = OX()
  if i % 2:
    tmp = i + 1
    v.m1(tmp)
  else:
    v = OY()
    v.m2()
  print v.m3()

l1: v = OX( )

l4: v.m1( )

l7: v.m3( )

l6: v.m2( )

l5: v = OY( )l3: tmp = i + 1

l2: (i%2)?

l1: v =  OX( )

l4: v.m1( )

l7: v.m3( )

l6: v.m2( )

l5: v = OY( )l3: tmp = i + 1

l2: (i%2)?

{m1,m3}

{m1,m3}

{m1,m3}

{m3} {m3}

{m2,m3}

{}

v1 = OX( )

v2.m1( )||v4 = v2

v6 =ϕ (v4, v5)
v6.m3( )

v3.m2( )||v5 = v3

v3 = OY( )tmp = i + 1

(i%2)?
(v2, v7) =σ (v1)

[v6] = {m3}

[v5] = [v6]

[v4] = [v6]

[v2] = {m1} ∪ [v4]

[v3] = {m2} ∪ [v5]

[v7] = {}

[v1] = [v2] ∧ [v7]

(a) (b) (c)

(d) (e) (f)

1
2

3

4

5

6

8

s

x

7

9

{1}
− {2}

m1,m3

{3,4}
m1,m3

{7}
m2,m3

{5,8}
m3

{9}
−

{6}
−

[vi] is the abstract state
associated with vi:

Figure 3: Class inference analysis as an example of backward data-flow analysis that takes
information from the uses of variables.

are trivial, having no influence on the data-set that they create. Choi et
al. [21] would perform the class inference analysis on the SEG in Figure 3(d).
Each node of this graph is labeled with the edges of the CFG that it groups
together. All the CFG edges grouped by a node have the same data-flow
information, as one can verify in Figure 3(c). We show this information – a
set of methods – in each SEG node. The SEG edges point in the direction that
information flows between program regions. Instead of using a separate data-
structure, like Choi et al. do, we work directly on the program, producing
the representation given in Figure 3(e). Because type inference is a backward
analysis that extracts information from use sites, we split live ranges at these
program points, and rely on σ-functions to merge them back. We want to stay
in SSA-form; hence, we must also insert φ-function to join the live ranges that
denote the same variable definition. The use-def chains that we derive from
the program representation lead naturally to a constraint system, which we
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a = 1
b = 9
while b > 0
  c = 4 × a
  b = b − c

s l1: a = 1

l2: b = 9

l3: (b < 0)?

l4: c = 4 × a

l5: b = b − cx

T

⊥

−1−2 0 +1 +2 ......

1

2

3

4

5

67

{1}
T,T,T

{2}
1,T,T

{3}
1,9,T

{4,7}
1,⊥,4

{5}
1,⊥,4

{6}
1,⊥,4

{}
1,⊥,4

s a = 1

b0 = 9

b1 =ϕ(b0, b2)
(b1 < 0)?

c = 4 × a

b2 = b1− c

x

1

2

3

4

5

67

(a) (b) (c)

(d) (e) (f)

[a] = 1

[b0] = 9

[b1] = [b0] ∧ [b2]

[c] = 4 × [a]

[b2] = [b1] - [c]

Figure 4: Constant propagation as an example of forward data-flow analysis that takes
information from the definitions of variables.

show in Figure 3(f), where [vj] is the information associated with variable vj.
A fix-point to this constraint system is a solution to our data-flow problem.
Class inference is a Partitioned Variable Problem (PVP)3, because the data-
flow information associated with a variable v can be computed independently
from the other variables. In the words of Choi et al., SEGs are “specially
attractive” for this kind of problem.

3Actually class inference is no more a PVP as soon as we want to propagate the
information through copies.
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Constant Propagation. There exist many data-flow analyses that are not Par-
titioned Variable Problems. Constant propagation is an example: in this
analysis, the abstract state of a variable v is determined by the abstract
state of the variables used to define v. Figure 4 illustrates constant propaga-
tion. We want to find out which variables in the program of Figure 4(a) can
be replaced by constants. The CFG of this program is given in Figure 4(b).
Constant propagation has a very simple lattice, which we show in Figure 4(c).
The SEG created for this instance of constant propagation is given in Fig-
ure 4(d). Every instruction in this example either generates information,
or merges it; thus, the SEG contains a node representing each instruction.
We have augmented each SEG node with the edges that it represent in the
CFG, plus the final result of the constant propagation problem in that re-
gion. Because we have three variables, each node is associated with a three
dimensional vector ([a], [b], [c]), where [x] is the abstract state of variable x,
as given by the lattice in Figure 4(c). Our approach, to this kind of problem
is sparser, because we bind a lattice value directly to each live range, instead
of having to associate product lattices to program regions. In constant prop-
agation, information is produced at the program points where variables are
defined. Thus, in order to provide Property 2, we must guarantee that each
program point is dominated by a single definition of a variable. Figure 4(e)
shows the intermediate representation that we create for the program in Fig-
ure 4(b). In this case, our intermediate representation is equivalent to the
SSA form. The def-use chains implicit in our program representation lead to
the constraint system shown in Figure 4(f).

Taint analysis. The objective of taint analysis [15] is to find program vulner-
abilities. In this case, a harmful attack is possible when input data reaches
sensitive program sites without going through special functions called sanitiz-
ers. Figure 5 illustrates this type of analysis. We have used φ and σ-functions
to split the live ranges of the variables in Figure 5(a) producing the program
in Figure 5(b). Lets assume that echo is a sensitive function, because it is
used to generate web pages. For instance, if the data passed to echo is a
JavaScript program, then we could have an instance of cross-site scripting
attack. Thus, the statement echo v1 may be a source of vulnerabilities, as
it outputs data that comes directly from the program input. On the other
hand, we know that echo v2 is always safe, for variable v2 is initialized with a
constant value. The call echo v5 is always safe, because variable v5 has been
sanitized; however, the call echo v4 might be tainted, as variable v4 results
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l1: v = input( )

l3: echo v l4: echo v

l5: is v Clean?

(a) (b)

l2: v = "Hi!"

l7: echo v l6: echo v

v1 = input( )

echo v1 echo v2

v3 =ϕ (v1, v2)
is v3 Clean?
(v4, v5) =σ (v3)

v2 = "Hi!"

echo v4 echo v5

[v1] = Tainted
[v2] = Clean
[v3] = [v1] ∧ [v2]
[v4] = Tainted
[v5] = Clean

(c)

Figure 5: Taint analysis as an example of forward data-flow analysis that takes information
from the definitions of variables and conditional tests on these variables.

from a failed attempt to sanitize v. The def-use chains that we derive from
the program representation leads naturally to a constraint system, which we
show in Figure 5(c). The intermediate representation that we create in this
case is equivalent to the Extended Single Static Assignment (e-SSA) form [6].
It also suits the ABCD algorithm for array bounds-checking elimination [6],
Su and Wagner’s range analysis [19] and Gawlitza et al.’s range analysis [40].

Null pointer analysis. The objective of null pointer analysis is to determine
which references may hold null values. Nanda and Sinha have used a variant
of this analysis to find which method dereferences may throw exceptions,
and which may not [13]. This analysis allows compilers to remove redundant
null-exception tests and helps developers to find null pointer dereferences.
Figure 6 illustrates this analysis. Because information is produced at use
sites, we split live ranges after each variable is used, as we show in Figure 6(b).
For instance, we know that the call v2.m() cannot result in a null pointer
dereference exception, otherwise an exception would have been thrown during
the invocation v1.m(). On the other hand, in Figure 6(c) we notice that the
state of v4 is the meet of the state of v3, definitely not-null, and the state of
v1, possibly null, and we must conservatively assume that v4 may be null.
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l1: v = foo( )

l2: v.m( )

(a) (b)

l3: v.m( )

l4: v.m( )

v1 = foo( )

v1.m( )||v2 = v1

v2.m( )||v3 = v2

v4 =ϕ (v3, v1)
v4.m( )

[v1] = Possibly Null

[v2] = Not Null

[v3] = Not Null

[v4] = [v3] ∧ [v1]

(c)

Figure 6: Null pointer analysis as an example of forward data-flow analysis that takes
information from the definitions and uses of variables.

3. Building the Intermediate Program Representation

A live range splitting strategy Pv = I↑ ∪ I↓ over a variable v consists
of a set of “oriented” program points. We let I↓ denote a set of points i
with forward direction. Similarly, we let I↑ denote a set of points i with
backward direction. The live-range of v must be split at least at every point
in Pv. Going back to the examples from Section 2.3, we have the live range
splitting strategies enumerated below. The list in Figure 7 gives further
examples of live range splitting strategies.

• Class inference is a backward analysis that takes information from the
uses of variables; thus, for each variable, the live-range splitting strat-
egy is characterized by the set Uses↑ where Uses is the set of use points.
For instance, in Figure 3(e), we have that Pv = {l4, l6, l7}↑.

• Constant propagation is a forward analysis that takes information from
definition sites. Thus, for each variable v the live-range splitting strat-
egy is characterized by the set Defs↓ where Defs is the set of definition
points. For instance, in Figure 4, we have that Pb = {l2, l5}↓.

• Taint analysis is a forward analysis that takes information from points
where variables are defined, and conditional tests that use these vari-
ables. For instance, in Figure 5, we have that Pv = {l1, l2,Out(l5)}↓
where Out(li) denotes the exit of li.
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Client Splitting strategy P

Alias analysis, reaching definitions Defs↓
cond. constant propagation [20]

Partial Redundancy Elimination [27, 28] Defs↓
⋃

LastUses↑

ABCD [6], taint analysis [15], Defs↓
⋃

Out(Conds)↓
range analysis [19, 40]

Stephenson’s bitwidth analysis [18] Defs↓
⋃

Out(Conds)↓
⋃

Uses↑

Mahlke’s bitwidth analysis [12] Defs↓
⋃

Uses↑

An’s type inference [41], Class inference [39] Uses↑

Hochstadt’s type inference [10] Uses↑
⋃

Out(Conds)↑
Null-pointer analysis [13] Defs↓

⋃
Uses↓

Figure 7: Live range splitting strategies for different data-flow analyses. We use Defs
(Uses) to denote the set of instructions that define (use) the variable; Conds to denote the
set of instructions that apply a conditional test on a variable; Out(Conds) the exits of the
corresponding basic blocks; LastUses to denote the set of instructions where a variable is
used, and after which it is no longer live.

• Nanda et al.’s null pointer check [13] is a forward analysis that takes
information from definitions and uses. For instance, in Figure 6, we
have that Pv = {l1, l2, l3, l4}↓.

The algorithm SSIfy in Figure 8 implements a live range splitting strategy
in three steps. Firstly, it splits live ranges, inserting new definitions of vari-
ables into the program code. Secondly, it renames these newly created defi-
nitions; hence, ensuring that the live ranges of two different re-definitions of
the same variable do not overlap. Finally, it removes dead and non-initialized
definitions from the program code. We describe each of these phases in the
rest of this section.

Splitting live ranges through the creation of new definitions of variables. In
order to implement Pv we must split the live ranges of v at each program
point listed by Pv. However, these points are not the only ones where splitting
might be necessary. As we have pointed out in Section 2.1, we might have,
for the same original variable, many different sources of information reaching
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1 function SSIfy(var v, Splitting Strategy Pv)
2 split(v, Pv)
3 rename(v)

4 clean(v)

Figure 8: Split the live ranges of v to convert it to SSI form

a common program point. For instance, in Figure 4(b), there exist two
definitions of variable b – l2 and l5 – that reach the use of b at l3. The
information that flows forward from l2 and l5 collides at l3, the merge point
of the if-then-else. Hence the live-range of b has to be split immediately
before l3 – at In(l3) –, leading, in our example, to a new definition b1. In
general, the set of program points where information collides can be easily
characterized by join sets [42]. The join set of a set of nodes P contains the
CFG nodes that can be reached by two or more nodes of P through disjoint
paths. Join sets created by the forward propagation of information can be
over-approximated via the notion of iterated dominance frontier [43]. This
concept is the basics of SSA construction, and for completeness we recall its
definition below:

• Dominance: a CFG node n dominates a node n′ if every program
path from the entry node of the CFG to n′ goes across n. If n 6= n′,
then we say that n strictly dominates n′.

• Dominance frontier (DF ): a node n′ is in the dominance frontier
of a node n if n dominates a predecessor of n′, but does not strictly
dominate n′.

• Iterated dominance frontier (DF +): the iterated dominance fron-
tier of a node n is the limit of the sequence:

DF1 = DF (n)
DFi+1 = DFi ∪ {DF (z) | z ∈ DFi}

Similarly, split sets created by the backward propagation of information
can be over-approximated by the notion of iterated post-dominance fron-
tier (pDF +), which is the dual of DF + [38]. That is, the post-dominance
frontier is the dominance frontier in a CFG where direction of edges have
been reversed.
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1 function split(var v, Splitting Strategy Pv = I↓ ∪ I↑)
2 “compute the set of split points”
3 S↑ = ∅
4 foreach i ∈ I↑:
5 if i.is join:
6 foreach e ∈ incoming edges(i):
7 S↑ = S↑

⋃
Out(pDF+(e))

8 else:
9 S↑ = S↑

⋃
Out(pDF+(i))

10 S↓ = ∅
11 foreach i ∈ S↑

⋃
Defs(v)

⋃
I↓:

12 if i.is branch:
13 foreach e ∈ outgoing edges(i)
14 S↓ = S↓

⋃
In(DF+(e))

15 else:
16 S↓ = S↓

⋃
In(DF+(i))

17 S = Pv
⋃
S↑
⋃
S↓

18 “Split live range of v by inserting φ, σ, and copies”
19 foreach i ∈ S:
20 if i does not already contain any definition of v:
21 if i.is join: insert “v = φ(v, ..., v)” at i
22 elseif i.is branch: insert “(v, ..., v) = σ(v)” at i
23 else: insert a copy “v = v” at i

Figure 9: Live range splitting. We use In(l) to denote a program point immediately before
l, and Out(l) to denote a program point immediately after l.

Figure 9 shows the algorithm that we use to create new definitions of
variables. This algorithm has three main phases. First, in lines 3-9 we
create new definitions to split the live ranges of variables due to backward
collisions of information. These new definitions are created at the iterated
post-dominance frontier of points that originate information. If a program
point is a join node, then each of its predecessors will contain the live range
of a different definition of v, as we ensure in line 6 of our algorithm. Notice
that these new definitions are not placed parallel to an instruction, but in the
region immediately after it, which we denote by Out(. . .). In lines 10-16 we
perform the inverse operation: we create new definitions of variables due to
the forward collision of information. Our starting points, in this case, include
also the original definitions of v, as we see in line 11, because we want to stay
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in SSA form in order to have access to a fast liveness check [33]. Finally, in
lines 17-23 we actually insert the new definitions of v. These new definitions
might be created by σ functions (due exclusively to the splitting in lines 3-9);
by φ-functions (due exclusively to the splitting in lines 10-16); or by parallel
copies. Contrary to Singer’s algorithm, originally designed to produce SSI
form programs, we do not iterate between the insertion of φ and σ functions.
Nevertheless, as we show in the Appendix, our method is enough to ensure
the SSI properties for any combination of unidirectional problems.

Variable Renaming. The algorithm in Figure 10 builds def-use and use-def
chains for a program after live range splitting. This algorithm is similar to the
standard algorithm used to rename variables during the SSA construction [38,
Algorithm 19.7]. To rename a variable v we traverse the program’s dominance
tree, from top to bottom, stacking each new definition of v that we find. The
definition currently on the top of the stack is used to replace all the uses of v
that we find during the traversal. If the stack is empty, this means that the
variable is not defined at this point. The renaming process replaces the uses
of undefined variables by ⊥ (line 3). We have two methods, stack.set use and
stack.set def to build the chain relations between the variables. Notice that
sometimes we must rename a single use inside a φ-function, as in lines 19-
20 of the algorithm. For simplicity we consider this single use as a simple
assignment when calling stack.set use, as one can see in line 20. Similarly, if
we must rename a single definition inside a σ-function, then we treat it as a
simple assignment, like we do in lines 15-16 of the algorithm.

Dead and Undefined Code Elimination. The algorithm in Figure 11 elim-
inates φ-functions that define variables not actually used in the code, σ-
functions that use variables not actually defined in the code, and parallel
copies that either define or use variables that do not reach any actual in-
struction. We mean by “actual” instructions, those instructions that already
existed in the program before we transformed it with split. In line 3 we let
“web” be the set of versions of v, so as to restrict the cleaning process to
variable v, as we see in lines 4-6 and lines 10-12. The set “active” is ini-
tialized to actual instructions in line 4. Then, during the loop in lines 5-8
we add to active φ-functions, σ-functions, and copies that can reach actual
definitions through use-def chains. The corresponding version of v is then
marked as defined (line 8). The next loop, in lines 11-14 performs a similar
process, this time to add to the active set, instructions that can reach actual
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1 function rename(var v)

2 “Compute use-def & def-use chains”
3 “We consider here that stack.peek() = ⊥ if stack.isempty(),
4 and that def(⊥) = entry”
5 stack = ∅
6 foreach CFG node n in dominance order:
7 if exists v = φ(v : l1, . . . , v : lq) in In(n):
8 stack.set def(v = φ(v : l1, . . . , v : lq))
9 foreach instruction u in n that uses v:

10 stack.set use(u)
11 if exists instruction d in n that defines v:
12 stack.set def(d)
13 foreach instruction (. . .) = σ(v) in Out(n):
14 stack.set use((. . .) = σ(v))
15 if exists (v : l1, . . . , v : lq) = σ(v) in Out(n):
16 foreach v : li = v in (v : l1, . . . , v : lq) = σ(v):
17 stack.set def(v : li = v)
18 foreach m in successors(n):
19 if exits v = φ(. . . , v : ln, . . .) in In(m):
20 stack.set use(v = v : ln)
21 function stack.set use(instruction inst):
22 while def(stack.peek()) does not dominate inst: stack.pop()

23 vi = stack.peek()
24 replace the uses of v by vi in inst
25 if vi 6= ⊥: set Uses(vi) = Uses(vi)

⋃
inst

26 function stack.set def(instruction inst):
27 let vi be a fresh version of v
28 replace the defs of v by vi in inst
29 set Def(vi) = inst
30 stack.push(vi)

Figure 10: Versioning

uses through def-use chains. The corresponding version of v is then marked
as used (line 14). Each non live variable (see line 15), i.e. either undefined
or dead (non used) is replaced by ⊥ in all φ, σ, or copy functions where
it appears in. This is done by lines 15-18. Finally every useless φ, σ, or
copy functions are removed by lines 19-20. As a historical curiosity, Cytron
et al.’s procedure to build SSA form produced what is called the minimal
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1 clean(var v)
2 let web = {vi|vi is a version of v}
3 let defined = ∅
4 let active = { inst |inst actual instruction and web ∩ inst.defs 6= ∅}
5 while ∃inst ∈ active s.t. web ∩ inst.defs\defined 6= ∅:
6 foreach vi ∈ web ∩ inst.defs\defined:
7 active = active ∪ Uses(vi)
8 defined = defined ∪ {vi}
9 let used = ∅

10 let active = { inst |inst actual instruction and web ∩ inst.uses 6= ∅}
11 while ∃inst ∈ active s.t. inst.uses\used 6= ∅:
12 foreach vi ∈ web ∩ inst.uses\used:
13 active = active ∪ Def(vi)
14 used = used ∪ {vi}
15 let live = defined ∩ used
16 foreach non actual inst ∈ Def(web):
17 foreach vi operand of inst s.t. vi /∈ live:
18 replace vi by ⊥
19 if inst.defs = {⊥} or inst.uses = {⊥}
20 remove inst

Figure 11: Dead and undefined code elimination. Original instructions not inserted by
split are called actual instruction. We let inst.defs denote the set of variable(s) defined by
inst, and inst.uses denote the set of variables used by inst.

representation [42]. Some of the φ-functions in the minimal representation
define variables that are never used. Briggs et al. [44] remove these variables;
hence, producing what compiler writers normally call pruned SSA-form.

3.1. Implementing parallel copies, φ and σ-functions

Traditional instruction sets, such as x86 or PowerPC, do not provide
φ-functions nor σ-functions. Thus, before producing an executable pro-
gram, the compiler must implement these instructions somehow. Normally,
φ-functions and parallel copies are replaced by ordinary copy instructions,
as discussed by Briggs et al. [44] or Benoit et al [29]. There exists ways to
implement the semantics of parallel copies via simple copies without increas-
ing the register pressure in the source program [45]. The implementation of
σ-functions; however, has not been discussed in the literature. A possible
solution is to get rid of copies and σ-functions by simply copy-propagating
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v1 = OX( )

v2.m1( )

v6 =ϕ (v2, v3)
v6.m3( )

v3.m2( )

v7 =ϕ (v1)
v3 = OY( )

v2 =ϕ (v1)
tmp = i + 1

(i%2)?

(a) v1 = input( )

echo v1 echo v2

v3 =ϕ (v1, v2)
is v3 Clean?

v2 = "Hi!"

v4 =ϕ (v3)
echo v4

v5 =ϕ (v3)
echo v5

(b)

Figure 12: (a) getting rid of copies and σ-functions; (b) implementing σ-functions via
single arity φ-functions.

them; thus, leaving for the SSA elimination module the task of replacing σ-
functions with special instructions. As an example, Figure 12(a) shows the
result of copy folding applied on Figure 3(e).

Alternatively, σ-functions can be implemented as single arity φ-functions.
As an example, Figure 12(b) shows how we would represent the σ-functions
in Figure 5(b). If l is a branch point with n successors that would contain
a σ-function (v1 : l1, . . . , vn : ln) = σ(v), then, for each successor lj of l,
we insert at the beginning of lj an instruction vj = φ(v : l). Notice that
it is possible that lj already contains a φ-function for v. This case happens
when the control flow edge l → lj is critical. A critical edge links a basic
block with several successors to a basic block with several predecessors. If lj

already contains a φ-function v′ = φ(. . . , vj, . . .), then we rename vj to v.

3.2. Deriving dense information from sparse analyses

We can use our sparse data-flow analysis framework to solve even some
data-flow problems that demand information at every program point, such
as bitwidth analysis [12, 18, 40, 46]. There exist clients of bit-width analyses
that need to know the bit sizes of the variables at particular program points.
For instance, Barik et al. [47] have designed a bit-width aware register allo-
cator. In this setting, the register pressure at a program point p is the sum
of the bit sizes of all the variables live at p. We can support the register
allocator of Barik et al. by coupling the result of the sparse bit-width anal-
ysis with live range information. We can perform this coupling efficiently,
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because algorithm SSIfy preserves the single static assignment property.
Preserving the SSA properties is key due to two reasons. First, liveness

analysis has a non-iterative implementation for SSA-form programs linear on
the program size [38, p.429]. Second, if we only need liveness information
for some specific variables, at some specific program points, then there is a
fast liveness check for SSA-form programs. The problem of answering the
question “is variable v live at program point p” has an algorithm that is O(U),
where U is the number of times that v is used in the program code [33]. Over
95% of variables found in common benchmarks are used less than 5 times [33,
p.42]; thus, this asymptotic complexity is constant in practice.

4. Experimental Results

This section describes experiments that we have performed to probe the
size and the runtime efficiency of the algorithms that we use to build interme-
diate representations. Our experiments were conducted on a dual core Intel
Pentium D of 2.80GHz of clock, 1GB of memory, running Linux Gentoo, ver-
sion 2.6.27. Our framework runs in LLVM 2.5 [34], and it passes all the tests
that LLVM does. The LLVM test suite consists of over 1.3 million lines of C
code. In this paper we will be showing only the results of compiling SPEC
CPU 2000. In order to compare different live range splitting strategies we
generate program representations to three different LLVM analyses:

1. SSI : We use Ananian’s Static Single Information form [27] as a baseline
for our experiments. We build the SSI program representation via
Singer’s iterative algorithm.

2. ABCD : ({def , cond}↓). This live range splitting strategy generalizes
the ABCD algorithm for array bounds checking elimination [6]. An
example of this live range splitting strategy is given in Figure 5.

3. CCP : ({def , cond eq}↓). This live range splitting strategy, which sup-
ports Wegman et al.’s [20] conditional constant propagation, is a subset
of the previous strategy. Differently of the ABCD client, this client re-
quires that only variables used in equality tests, e.g., ==, undergo live
range splitting. That is, cond eq(v) denotes the conditional tests that
check if v equals a given value.

For an explanation about the sets defs, uses and conds, see Figure 7.
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Figure 13: Comparison of the time taken to produce the different program representations.
100% is the time of using the SSI live range splitting strategy. The shorter the bar, the
faster the live range splitting strategy. The SSI conversion took 1315.2s in total, the ABCD
conversion took 85.2s, and the CCP conversion took 49.4s.

4.1. Runtime

The chart in Figure 13 compares the execution time of the three live range
splitting strategies. We show only the time to perform live range splitting.
The time to execute the optimization itself, removing array bounds check or
performing constant propagation, is not shown. The bars are normalized to
the running time of the SSI live range splitting strategy. On the average,
the ABCD client runs in 6.8% and the CCP client runs in 4.1% of the time
of SSI. These two forward analyses tend to run faster in benchmarks with
sparse control flow graphs, which present fewer conditional branches, and
therefore fewer opportunities to restrict the ranges of variables.

In order to put the time reported in Figure 13 in perspective, Figure 14
compares the running time of our live range splitting algorithms with the
time to run the other standard optimizations in our baseline compiler4. In
our setting, LLVM -O1 runs 67 passes, among analysis and optimizations,
which include partial redundancy elimination, constant propagation, dead
code elimination, global value numbering and invariant code motion. We
believe that this list of passes is a meaningful representative of the optimiza-
tions that are likely to be found in an industrial strength compiler. The bars
are normalized to the optimizer’s time, which consists of the time taken by

4To check the list of LLVM’s target independent optimizations try llvm-as <
/dev/null | opt -std-compile-opts -disable-output -debug-pass=Arguments
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Figure 14: Execution time of two different live range splitting strategies compared to the
total time taken by machine independent LLVM optimization passes (opt). 100% is the
total time taken by opt. The shorter the bar, the faster the conversion.

machine independent optimizations plus the time taken by one of the live
range splitting clients, e.g, ABCD or CCP. The ABCD client takes 1.48%
of the optimizer’s time, and the CCP client takes 0.9%. To emphasize the
speed of these passes, we notice that the bars do not include the time to do
machine dependent optimizations such as register allocation.

4.2. Space

Figure 15 compares the number of φ and σ-functions inserted by each
live range splitting strategy. The bars are the sum of these instructions, as
inserted by each conversion, divided by the number of σ and φ-functions
inserted by the SSI live range splitting strategy. The CCP client created
67.3K σ-functions, and 28.4K φ-functions. The ABCD client created 98.8K
σ-functions, and 42.0K φ-functions. The SSI conversion inserted 697.6K σ-
functions, and 220.6K σ-functions.

The chart in Figure 16 shows the number of σ and φ-functions that each
live range splitting strategy inserts per variable. The denominator includes
only variables that have lead to the creation of special instructions. That is,
variables that are live only inside one basic block are not taken into consider-
ation. The figure emphasizes the difference between the conversion required
by the two forward analyses and the SSI conversion. On the average, for
each variable whose conversion is requested by either the ABCD or the CCP
client, we will create 0.6 φ-functions, and 1.3 σ-functions. On the other hand,
SSI will insert 6.1 σ-functions and 2.7 φ-functions per variable.
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Finally, Figure 17 outlines how much each live range splitting strategy
increases program size. We show results only to the ABCD and CCP clients,
to keep the chart easy to read. The SSI conversion increases program size
in 17.6% on average. This is an absolute value, i.e., we sum up every φ and
σ function inserted, and divide it by the number of bytecode instructions in
the original program. This compiler already uses the SSA-form by default,
and we do not count as new instructions the φ-functions originally used in
the program. The ABCD client increases program size by 2.75%, and the
CCP client increases program size by 1.84%.

An interesting question that deserves attention is “What is the benefit
of using a sparse data-flow analysis in practice?” We have not implemented
dense versions of the ABCD or the CCP clients. However, previous works
have shown that sparse analyses tend to outperform equivalent dense versions
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Figure 17: Growth in program size due to the insertion of new φ and σ functions to
perform live range splitting.

in terms of time and space efficiency [21, 22]. In particular, the e-SSA format
used by the ABCD and the CCP optimizations is the same program repre-
sentation adopted by the tainted flow framework of Rimsa et al. [15], which
has been shown to be faster than a dense implementation of the analysis,
even taking the time to perform live range splitting into consideration.

5. Conclusion

This paper has presented a systematic way to build program represen-
tations that suit data-flow analyses. We build different program represen-
tations by splitting the live ranges of variables. The way in which we split
live ranges depends on two factors. First, which program points produce
new information, e.g., uses, definitions, tests, etc. Second, how this infor-
mation propagates along the variable live range: forwardly or backwardly.
We have used an implementation of our framework in LLVM to convert pro-
grams to the Static Single Information form [27], and to provide intermediate
representations to the ABCD array bounds-check elimination algorithm [6]
and to Wegman et al.’s Conditional Constant Propagation algorithm [20].
This very implementation has been used by Couto et al. [48] to provide the
program representation required to implement Gawlitza et al.’s [40] range
analysis algorithm. We have also used our live range splitting algorithm,
implemented in the phc PHP compiler [49], to provide the Extended Static
Single Assignment form necessary to solve the tainted flow problem [15].
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Appendix A. Isomorphism to Sparse Evaluation Graphs

Given a control flow graph G, Choi et al. define a sparse evaluation graph
as a tuple 〈NSG, ESG,M〉, such that:

• NSG is a set of nodes defined as follows:

1. NSG contains a node ns representing the entry point s ∈ G;

2. NSG contains a node np for each point p ∈ G that is associated
with a non-identity transfer function.

3. NSG contains a node nm for each point m in the iterated domi-
nance frontier of the points of G used to build the nodes in step
(1) and (2). These are called meet nodes.

• We let P denote the set of points p ∈ G used in step 2 above, plus the
point s ∈ G used in step 1 above; we let M denote the set of points
m ∈ G used in step 3 above; if we let S = P

⋃
M then we define ESG

as follows:

1. there is an edge (nq, nm) ∈ N2
SG whenever m ∈M and q is, among

all the nodes in S, the immediate dominator of one of the CFG pre-
decessors of m. See search(3b) and link(2b) in Choi et al [21];

2. there is an edge (nq, np) ∈ N2
SG whenever p ∈ P , and q is, among

all the nodes in S, the immediate dominator of p. See search(1)

and link(2b) [21];

• The mapping function M : EG 7→ NSG associates to each edge (u, v)
of the CFG the node nq ∈ NSG, whenever q ∈ S is the immediate
dominator of u ∈ G. See search(3a) [21]. This is done through the
recursive function search that performs a topological traversal of the
CFG (DFS of the dominance tree; See search(4) [21]).

Theorem 2 states that, for forward partitioned variable data-flow problems
(PVP), the algorithm in Figure 8 can build program representations iso-
morphic to Sparse Evaluation Graphs. The proof that this result holds for
backward data-flow problems, is analogous, and we omit it.
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Lemma 1 (CFG cover). Let Prog be a program with its corresponding
CFG G with start node s, and exit node x. Let Prog′ be the program that we
obtain from Prog by:

1. adding a pseudo-definition of each variable to s;

2. adding a pseudo-use of each variable to x;

3. placing a pseudo-use of a variable v at each point where v is defined;

4. converting the resulting program into SSA form.

If v is a variable in Prog, then the live ranges of the different names of v
in Prog′ completely partition the program points of G. In other words, each
program point of G belongs to exactly one live range of v in Prog′.

Proof. First, v is alive at every point of G, due to transformations (1),
(2) and (3). Therefore, if V is the set of the different names of v after the
conversion to SSA form in step (4), then any program point of G belongs to
the live range of at least one v′ ∈ V . The result follows from a well-know
property of Cytron’s SSA-form conversion algorithm [26], which, as observed
by Sreedhar et al. [50], creates variables with non-intersecting live ranges.
In other words, after the SSA renaming, two different names of v cannot be
simultaneously alive at a program point p.

Theorem 2 (Equivalence SSI/SEG). Given a forward Sparse Evaluation
Graph (SEG) that represents a variable v in a program representation Prog
with CFG G, there exits a live range splitting strategy that once applied on v
builds a program representation that is isomorphic to SEG.

Proof. We argue that the SEG of v is isomorphic to the representation of v
in Prog′, the program representation that we derive from Prog by applying
the transformations 1-3 listed in Lemma 1 in addition to a pass of SSIfy.
If we let P , as before, be defined as the set of CFG points associated with
non-identity transfer functions, plus the start node s of the CFG, then after
we apply the splitting strategy P↓, we have that:

1. there will be exactly one definition per node of P and one definition per
node of DF+(P ). So there is an one-to-one correspondence between
SSA definitions and SG nodes.

2. From Lemma 1 the live-ranges of the different names of v provides a
partitioning of the points of G. If v′ is a new name of v, then each
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program point where v′ is alive is dominated by v′’s definition5. Each
program point belongs to the live-range of the name of v whose def-
inition immediately dominates it (among all definitions). Thus, live
ranges give origin to a function that maps SSA definitions to program
points. Consequently, there is an isomorphism between the live-ranges
and the mapping function M .

3. def-use chains on Prog′ are isomorphic to the edges in ESG: indeed a
SEG node np is linked to nq whenever (i) np immediately dominates
nq if q ∈ P ; or (ii) nq is in the dominance frontier of np if q ∈ M . In
the former case the definition of v at p reaches the (pseudo-)use of v
at q. In the latter this definition reaches the use of v at the φ-function
placed at q by SSIfy(v, P↓).

In the proof of Theorem 2 we had to augment the program with a pseudo-
definition of v at the CFG’s entry point and a pseudo-use at every actual
definition of v and at the CFG’s exit point. The difference between a code
with or without pseudo uses/defs is related to the necessity to compute data-
flow information beyond the live-ranges of variables or not. This necessity
exists for optimizations such as partial redundancy elimination, which may
move, create or delete code.

Figure A.18 compares SEG and the forward live range splitting strategy
in the example taken from Figure 11 of Choi et al. [21], which shows the
reaching uses analysis. In the left we see the original program, and in the
middle the SEG built for a forward flow analysis that extracts information
from uses of variables. We have augmented the edges in the left CFG with
the mapping M of SEG nodes to CFG edges. In the right we see the same
CFG, augmented with pseudo defs and uses, after been transformed by SSIfy
applied on the points {S, 4, 5, 7, 11, 12}↓. The edges of this CFG are labeled
with the definitions of v live there.

Appendix B. Correctness of our SSIfication

In this section we consider a unidirectional forward (resp. backward) PVL
problem stated as a set of equations [v]i = [v]i ∧F s

v (. . .) for every variable v,
each program point i, and each s ∈ pred(i) (resp. s ∈ succ(i)). We rely on
the concepts introduced by Definition 2 in order to prove Theorem 4.

5This is a classical result of SSA-form. See Budimlic et al. [51] for a proof
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Figure A.18: Example of equivalence between SEGs and our live range splitting strategy
for reaching uses.

Definition 2 (Trivial/constant transfer functions. Dependencies). Let
Lv1 × Lv2 × . . . × Lvn be the decomposition per variable of lattice L, where
Lvi

is the lattice associated with variable vi. Let Fv be a transfer function
from L to Lv. We say that Fv is trivial if:

∀x = ([v1], . . . , [vn]) ∈ L, Fv(x) = xv

We say that Fv is constant with value C ∈ L if:

∀x ∈ L, Fv(x) = C

If Fv is constant with value ⊥, e.g., Fv(x) = ⊥, then we say that Fv is
undefined. Finally, we say that Fv depends on variable vj if:

∃x = ([v1], . . . , [vn]) 6= ([v1]
′, . . . , [vn]′) = x′ in L

such that [∀k 6= j, [vk] = [vk]
′ ∧ Fi(x) 6= Fi(x

′)]

Lemma 2 (Live range preservation). If variable v is live at a program
point i, then there is a version of v live at i after we run SSIfy.

Proof. Split cannot remove any live range of v, as it only inserts “copies”
from v to v, e.g., each copy has the same source and destination. Rename
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removes live ranges of v, but it replaces them with the live ranges of new
versions of this variable whenever a use of v is renamed. Clean only removes
“copies”; hence, all the original instructions remain in the code.

Lemma 3 (Non-Overlapping). Two different versions of v, e.g., vi and
vj cannot be live at a program point i transformed by SSIfy.

Proof. The only algorithm that creates new versions of v is rename. Each
new version of v is unique, as we ensure in line 27-29 of the algorithm. If
rename changes the use of v to vi at i, then there exists a definition of vi
at some program point i′ that dominates i, as we ensure in line 22 of the
algorithm. Lets assume that we have two versions of v, e.g., vi and vj, live at
a program point i, in order to derive a contradiction. in this case, there exist
program points ii where vi is used, and ij where vj is used, reachable from
i. And exist a program point i′i where vi is defined, and a program point
i′j where vj is defined, so that i′i dominates ii, and i′j dominates ij. Now, if
neither i′i dominates i′j nor vice-versa, then we have a contradiction, because,
given that i′i reaches ij and i′j reaches ii, then neither i′i would dominates ii,
nor i′j would dominates ij. Without loss of generality, lets assume that i′i
dominates i′j. in this case, rename visits i′i first, and upon visiting i′j, places
the definition of vj on top of the definition of vi in the stack in line 30. Thus,
i′j cannot dominate ii, or we would have, at that program point, a use of vj,
instead of vi. In this case, ij is live past the dominance frontier of i′i, forcing
split (line 14) to create a φ-function that dominates ii, at a program point
that is dominated by i′i; hence, creating a new definition vφ of v. Therefore,
at ii we would have a use of vφ instead of v.

Theorem 3 (Semantics). SSIfy maintains the following property: if a value
n written to variable v at program point i′ is read at a program point i in the
original program, then the same value assigned to a version of variable v at
program point i′ is read at a program point i after transformation.

Proof. For simplicity, we will extend the meaning of “copy” to include not
only the parallel copies placed at interior nodes, but also φ and σ-functions.
Split cannot create new values, as it only inserts “copies”. Clean cannot
remove values, as it only removes “copies”. From the hypothesis we know
that the definition of v that reaches i is live at i. From Lemma 2 we know
that there is a version of v live at i. From Lemma 3 we know that only one
version of v can be live at i, and so rename cannot send new values to i.

38



Now suppose that the program, not necessarily under SSI form, fulfills
INFO and LINK as defined in Property 2 for a system of monotone equations
Edense, given as a set of constraints [v]i v F s

v ([v1]
s, . . . , [vn]s). Consider a live

range splitting strategy Pv that includes for each variable v the set of program
points I↓ (resp. I↑) where F s

v is non-trivial. The following theorem states
that Algorithm SSIfy creates a program form that fulfills the Static Single
Information property.

Theorem 4 (Correctness of SSIfy). Given the conditions stated above,
Algorithm SSIfy(v, Pv) creates a new program representation such that:

1. there exists a system of equations Essi
dense, isomorphic to Edense for which

the new program representation fulfills the SSI property.

2. if Edense is monotone then Essi
dense is also monotone.

Proof. We derive from this new program representation a system of equa-
tions isomorphic to the initial one by associating trivial transfer functions
with the newly created “copies”. The INFO and LINK properties are triv-
ially maintained. As only trivial and constant functions have been added,
monotonicity is maintained.

To show that we provide SPLIT, we must first show that each i ∈ live(v)
where F s

v is non-trivial contains a definition (resp. last use) of v. The
function split separates these points in lines 9 and 16, and later, in line 23,
inserts definitions in those points. Second, we must show that each join (resp.
split) node for which Edense has possibly different values on its incoming
edges should have a φ-function (resp. σ-function) for v. These points are
separated in lines 7 and 14 of split. To see why this is the case, notice that
line 7 separates the points in the iterated dominance frontier of points that
originate information that flows forward. These are, as a direct consequence
of the definition of iterated dominance frontier, the points where information
collide. Similarly, line 14 separates the points in the post-dominance frontier
of regions which originate information that flows backwardly.

We ensure VERSION as a consequence of the SSA conversion. All our
program representations preserve the SSA representation, as we include the
definition sites of v in line 11 of split. Function rename ensures the existence of
only one definition of each variable in the program code (line 27), and that
each definition dominates all its uses (consequence of the traversal order).
Therefore, the newly created live ranges are connected on the dominance
tree of the source program. Function rename also creates a new program
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representation for which it is straightforward to build a system of equations
Essi
dense isomorphic to Edense: Firstly, the constraint variables are renamed

in the same way that program variables are. Secondly, for each program
variable, new system variables bound to ⊥ are created for each program
point outside of its live-range.

Appendix C. Equivalence between sparse and dense analyses.

We have shown that SSIfy transforms a program P into another program
P ssi with the same semantics. Furthermore, this representation provides the
SSI property for a system of equations Essi

dense that we extract from P ssi.
This system is isomorphic to the system of equations Edense that we extract
from P . From the so obtained program under SSI for the constrained sys-
tem Essi

dense, Definition 1 shows how to construct a sparse constrained system
Essi
sparse. When transfer functions are monotone and the lattice has finite

height, Theorem 1 states the equivalence between the sparse and the dense
systems. The purpose of this section is to prove this theorem. We start by
introducing the notion of coalescing. Let E be a constraint system that as-
sociates with each 1 ≤ i ≤ n the constraint ai v Hi(a1, . . . , an), where each
ai is an element of a lattice L of finite height, and Hi is a monotone function
from Ln to L. Let (A1, . . . , An) be the maximum solution to this system, and
let 1 ≤ m ≤ n such that ∀i, 1 ≤ i ≤ m, Ai = Am. We define a “coalesced”
constraint system Ecoal in the following way: for each 1 ≤ i ≤ m we create
the constraint bm v Hi(bm, . . . , bm, bm+1, . . . , bn); for each m < i ≤ n we
create the constraint bi v Hi(bm, . . . , bm, bm+1, . . . , bn). Lemma 4 shows that
coalescing preserves the maximum solution of the original system.

Lemma 4 (Equivalence with coalescing). If E is a constraint system
with maximum solution (A1, . . . , Am, . . . , An), for any i, j, 1 ≤ i, j ≤ m we
have that Ai = Aj, and Ecoal is the “coalesced” system that we derive from
E, then the maximum solution of Ecoal is (Am, . . . , An).

Proof. Both system have a (unique) maximum solution (see e.g. [35]), al-
though the solution of the “coalesced” system has smaller cardinality, e.g.,
n-m+1. Now, as (Am, . . . , Am, Am+1, . . . , An) is a solution to E, by def-
inition of Ecoal, (Am, . . . , An) is a solution to Ecoal. Let us prove that
this solution is maximum, i.e. for any solution (Bm, . . . , Bn) of Ecoal, we
have (Bm, . . . , Bn) v (Am, . . . , An). By definition of Ecoal, we have that
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(Bm, . . . , Bm, Bm+1, . . . , Bn) is a solution to E. As (A1, . . . , An) is maximum,
we have (Bm, . . . , Bm, Bm+1, . . . , Bn) v (A1, . . . , An). So (Bm, . . . , Bn) v
(Am, . . . , An).

We now prove Theorem 1, which states that there exists a direct map-
ping between the maximum solution of a dense constraint system associated
with a SSI-form program, and the sparse system that we can derive from it,
according to Definition 1.

Proof. The constraint systems Essi
dense and Essi

sparse have a maximum unique
solution, because the transfer functions are monotone and L has finite height

The idea of the proof is to modify the constraint system Essi
dense into a

system equivalent to Essi
sparse. To accomplish this transformation, we (i) re-

place each F s
v by Gs

v, where Gs
v is constructed as in Definition 1; (ii) for each

v, coalesce [v]ii∈live(v) into [v]; (iii) coalesce all other constraint variables into

[v⊥].
The LINK property allows us to replace F s

v by Gs
v. Due to SPLIT, a new

variable is defined at each point where information is generated, and due to
VERSION there is only one live range associated with each variable. Hence,
([v]i)i∈live(v) is invariant. Due to INFO, we have that ([v]i)i 6∈live(v) is bound
to ⊥. Due to Lemma 4, we know that this new constraint system has a
maximum solution (Yv)v∈variables∪⊥: X i

v equals Yv for all i ∈ live(v), and Y⊥
otherwise.

We translate each constraint [v]i v F s
v ([v1]

s, . . . , [vn]s), in the original
system, to a constraint in the “coalesced” one in the following way:

if i ∈ live(v) : if s ∈ defs(v) : [v] v Gs
v([a], . . . , [b]) (1)

else : [v] v [v] (2)
otherwise : [v⊥] v ⊥ (3)

Case (1) follows from LINK, case (2) follows from SPLIT, and case (3) follows
from INFO. By ignoring y⊥ that appears only in (3), and by removing the
constraints produced by (2), which are useless, we obtain Essi

sparse.
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