
A Recommendation System for Tackling Software Architecture Erosion

Ricardo Terra†‡, Marco Tulio Valente†, Krzysztof Czarnecki‡ and Roberto S. Bigonha†
‡University of Waterloo, Canada

†Universidade Federal de Minas Gerais, Brazil
Email: {terra,mtov}@dcc.ufmg.br, kczarnec@gsd.uwaterloo.ca, bigonha@dcc.ufmg.br

Abstract—In this paper, we describe a recommendation
system that provides refactoring guidelines for maintainers
when tackling an architectural erosion process. The paper
formally describes 32 refactoring recommendations to fix
architectural violations, describes a tool—called DCLfix—
that triggers the proposed recommendations, and evaluates
the application of this tool in two industrial-strength systems.
For the first system, DCLfix has been able to recommend
31 refactorings that constitute the appropriate solution
for 41 violations discovered as the result of an architecture
conformance process. For the second system—a 728 KLOC
customer care system used by a major telecommunication
company—DCLfix has triggered 624 useful recommenda-
tions, as asserted by the system’s architect.

I. INTRODUCTION

Software architecture erosion is one of the most evi-
dent manifestations of software aging [1], [2]. Basically,
the phenomenon designates the progressive gap normally
observed between two architectures: the intended architec-
ture defined during the architectural design phase and the
concrete architecture defined by the current implementa-
tion of the software system [3]–[5]. Among the causes of
architectural erosion, we can mention deadline pressures,
conflicting requirements, communication mismatches, un-
awareness of developers, and the lack of an explicit
correspondence between architectural and programming
language abstractions. Regardless the causes, when the
erosion is neglected over the years, it can reduce the
architecture to a small set of strongly-coupled and weakly-
cohesive components, whose maintenance and evolution
become increasingly more difficult and costly [6], [7].

To tackle the erosion process, the first task is to check
whether the current architecture conforms to the intended
one [7]–[10]. More specifically, the goal of an architecture
conformance process is to reveal in the source code the
implementation decisions that denote architectural viola-
tions, i.e., concrete statements, expressions, or declarations
that do not match the constraints imposed by the intended
architecture. For this purpose, several architecture confor-
mance techniques and approaches have been proposed,
including reflexion models [11], intensional views [12],
design tests [13], architectural description languages [14],
and domain-specific languages [15]–[17].

After the conformance phase, the next task is to replace
the detected violations with implementation decisions
consistent with the intended architecture. However, this
reengineering effort is usually a non-trivial and time-
consuming task, because software erosion is mostly a
silent process that accumulates over years. For example,

Knodel et al. described their experience of applying an
architecture conformance process to a real-world product
line in the domain of portable measurement devices. As
a result, they have identified almost 5,000 architectural
divergences in three products of such product line [18].
In a previous work [16], we have described our own ex-
perience in applying conformance techniques to a human-
resource management system. In this process, we have
been able to discover more than 2,200 architectural vi-
olations. As a last example, Sarkar et al. reported their
experience in remodularizing a large banking application,
whose architecture has deteriorated into an unmanageable
monolithic block. Reconstructing the original architecture
of this system demanded 2,100 person-days just for coding
and testing [6].

However, despite of its relevance and contrasting with
the variety of techniques available for architecture con-
formance, the task of fixing architectural violations is
usually performed in ad hoc ways. Usually, the only
employed tools are the automatic refactorings provided
by today’s IDEs or simple program analysis tools, such
as tools that extract function-call information [6]. In view
of such circumstances, a solution based on recommenda-
tion system principles represents an interesting approach.
Basically, such a solution can provide useful refactoring
guidelines for developers and maintainers when fixing
architectural violations. Therefore, it may represent a real
improvement to the state of the practice in architecture
repair. On the other hand, by definition, an approach based
on recommendations does not have the ambition to pro-
vide a fully automatic solution for removing architectural
violations, which is certainly a task ahead the state of
the art in reengineering tools. In fact, even a bug-free
implementation for typical refactorings, i.e., refactorings
whose scope are limited to a few classes, has been proved
to be a complex task [19].

In this paper, we first describe the design and implemen-
tation of DCLfix, a recommendation system whose main
purpose is to provide refactoring guidelines for developers
and maintainers when removing architectural violations.
Specifically, DCLfix provides recommendations to re-
move architectural violations detected by the DCL lan-
guage [16], a domain-specific language with a simple and
self-explaining syntax for defining structural constraints
between modules. As illustrated in Figure 1, the proposed
recommendation engine has the following inputs: a set
of DCL constraints (specified by a software architect or
designer), a set of architectural violations (raised by the

DCLcheck conformance tool), and the source code of the
system. Based on these inputs, the recommendation engine
provides a set of recommendations to guide the process of
removing the detected violations. For example, the system
may suggest the use of a Move Method refactoring to fix
a given violation, including a suggestion of a target class.

Figure 1. DCLfix recommendation engine

In a recent short paper, we discussed the preliminary
design of our recommendation approach [20]. This paper
extends our early work with the following contributions:
(a) an extensive set of 32 recommendations for fixing
architectural violations, including violations due to diver-
gences and absences (in our previous work we presented
a preliminary set of ten recommendations targeting only
divergences); (b) the design and implementation of the
recommendation engine, as an Eclipse plugin; (c) a de-
tailed evaluation of DCLfix in two real-world systems. For
the first system, DCLfix has been able to recommend 31
refactorings that constitute the appropriate solution for 41
violations discovered as the result of an architecture con-
formance process. For the second system—a 728 KLOC
customer care system used by a major Brazilian telecom-
munication company—DCLfix has triggered 624 useful
recommendations, as endorsed by the system’s architect.

The remainder of this paper is structured as follows.
Section II provides an overview on the DCL language.
Section III presents a formal specification of the recom-
mendations raised by DCLfix. Section IV describes the
design and implementation of the DCLfix tool. Section V
presents and discusses results on applying these recom-
mendations in two real-world systems. Finally, Section VI
presents related work and Section VII concludes the paper.

II. DCL IN A NUTSHELL

The Dependency Constraint Language (DCL) is a stat-
ically checked domain-specific language that provides a
fine-grained model to control the establishment of inter-
module dependencies in object-oriented systems [16].
Particularly, the language provides constraints to capture
two types of architectural violations: divergences (when
an existing dependency in the source code violates the
intended architecture) and absences (when the source code
does not establish a dependency that is prescribed by
the intended architecture). To capture divergences, DCL
allows architects to specify that dependencies only can,
can only, or cannot be established by specified modules. In
addition, to capture absences, it is possible to specify that
particular dependencies must be present in the source code.

To illustrate the use of DCL, assume the following
constraints:

1: only Factory can- c r e a t e Product
2: Util can-only -depend java
3: View cannot-a c c e s s Model
4: Product must- implement Serializable

These constraints state that only classes in the Factory

module can create objects from classes in the Product

module (line 1), that classes in the Util module can
only establish dependencies with classes from the Java
API (line 2), that classes in the View module cannot
access classes in the Model module (line 3), and that
every class in the Product module must implement
Serializable (line 4).

When defining constraints, DCL allows developers
to specify dependencies caused by accessing
methods and fields (access), declaring variables
(declare), creating objects (create), extending
classes (extend), implementing interfaces (implement),
throwing exceptions (throw), or using annotations
(useannotation). It is also possible to define constraints
including any form of dependency (depend).

III. REFACTORING RECOMMENDATIONS

The proposed refactoring recommendations aim to assist
developers and maintainers to fix violations detected by
DCLcheck. They have been proposed based on the inves-
tigation of possible fixes for more than 2,200 architectural
violations we have detected in a previously evaluated
system (our training set) [16].

In this section, the following syntax is used to define
the recommendations:

dcl constraint
code_with_violation =⇒ recommendation,

if preconditions

This syntax should be interpreted as follows: when-
ever the dcl constraint is violated by the partic-
ular code with violation and the preconditions

hold, the recommendation is triggered. More specifi-
cally, dcl constraint is a constraint defined in DCL
and code with violation is the particular statement or
expression in the source code where this constraint has
been violated. A recommendation consists of a sequence
of refactoring operations, using the functions described in
Table I. This table also lists the auxiliary functions used
to define the preconditions.

Based on the proposed syntax and functions, Table II
shows a formal specification for the refactoring rec-
ommendations. The table formalizes recommendations
to both divergences (recs. D1 to D24) and absences
(recs. A1 to A8). Also, the recommendations are listed
according to their priority, i.e., when two or more rec-
ommendations match a given violation, the system only
triggers the recommendation with the highest priority. For
formalization purposes, dcl constraint in the Table II

Table I
REFACTORING (Ref) AND AUXILIARY (Aux) FUNCTIONS

Type Function Description
Aux can(T1, dep, T2) Checks whether type (class or interface) T1 can establish a dependency of the dep kind with T2
Aux call sites(f) Returns the call sites of f
Aux delegate(f) Searches for a delegate method of f
Ref extract(stm) Extracts method with statements stm
Aux factory(C, exp) Searches for a factory for class C, accepting exp as input
Ref gen decl(C, f) Declares a variable of class C to access f
Ref gen factory(C, exp) Generates a factory for class C, accepting exp as input
Ref move(f, M) Moves the method f to the most suitable class into the module M
Ref move(C, M) Moves the class C to the module M
Aux override(C, C′) Checks whether class C overrides at least a method of its superclass C′

Ref promote(f, v, exp) Promotes variable v to a formal parameter of f; exp is used as the argument in the calls to f
Ref propagate(exp, v, S) Propagates exp to the uses of the variable v in the block of code S
Ref remove(S) Removes the block of code S
Ref remove treatment(S, EX) Removes the catch clauses of the exception EX from the block of code S
Aux replace(stm1, stm2) Replaces block of code stm1 by stm2
Ref replace return(f, T, exp) Modifies the return type of the method f to the exp type and transfer creations of T to the call sites
Aux same sign(f1, f2) Checks if the method f1 has the same signature of the method f2
Aux sub(T) Returns the subtypes of type T (ascending by specialization)
Aux suitable module(E) Returns the most suitable module for a source code entity E considering its context (see III-A)
Aux super(T) Returns the supertypes of type T (descending by specialization)
Aux target(A) Returns the target type of annotation A, which can be type or method
Aux treat(S, EX) Checks whether there is a catch clause of the exception EX inside the block of code S
Aux type(v) Returns the type of the variable v
Aux typecheck(stm) Checks whether code stm type checks
Aux user code() Prompts the user for a block of code

considers the classes A ∈ MA and B ∈ MB and adopts
derive as meaning both implements and extends.

The proposed recommendations also handle divergences
detected by only can and can only rules, because they are
defined in terms of cannot rules, as described next:

only MA can-dep MB =⇒ MA cannot-dep MB

MA can-only-dep MB =⇒ MA cannot-dep MB

where MA and MB are modules (i.e., sets of classes),
MA denotes the complement of module MA (i.e., all classes
under analysis except those in MA) and dep denotes a
dependency type (i.e., access, declare, create, etc).

Section V provides concrete examples of the use of the
proposed recommendations in two real-world systems. In
addition, a detailed description of each recommendation
is available in a companion web site1.

A. Suitable Module

Many recommendations (e.g., D18, D20, D21, A2, etc)
include a suggestion to move methods or classes to
more suitable modules, as computed by the function
suitable module. Essentially, the implementation of
this function considers the structural similarity among
source code entities to make a recommendation. In order
to measure this similarity, we use the Jaccard Similarity
Coefficient, which is a statistical measure for the similarity
between two sets. To calculate this coefficient, we assume
that a given source code entity (method, class, or module)
is represented by the set of dependencies it establishes
with other program elements. This assumption is based
on the fact that our recommendations have been proposed
to handle violations in DCL constraints, which basically

1http://www.dcc.ufmg.br/∼terra/dclfix

are defined to capture divergences or absences in the
dependencies established by a given program element.

Based on such assumptions, the similarity between the
source code entities E1 and E2 is defined by:

sim(E1, E2, dep) =
|Deps(E1, dep) ∩Deps(E2, dep)|
|Deps(E1, dep) ∪Deps(E2, dep)|

where dep denotes the dependency type (e.g., access,
create, etc) that has motivated the similarity calculation.
In addition, Deps(E, dep) is a set whose elements are
pairs [dep, t], denoting the existence of a dependency of
type dep between e and a given type t, where e ∈ E. When
dep = ∗, we do not consider a particular dependency type
when calculating Deps, i.e., dependencies of any type are
included in the resulting set.

Suppose that a violation is detected in the module E1

involving a dependency of type dep. Suppose also that
the recommendation for this violation requires moving the
class responsible by the violation to another module E2.
In this case, E2 is defined as the module m that provides
the following maximal value:

max { max
∀m

sim(E1,m, dep), max
∀m

sim(E1,m, ∗) }

In other words, the most suitable module is the module
with the highest Jaccard coefficient—as returned by the
sim function—considering two posssible sets of depen-
dencies: (1) only dependencies of type dep; (2) all de-
pendencies, independently of their type (i.e., dep = ∗).
This second alternative is particularly important when
making recommendations for absences, because by def-
inition the source module E1 in this case misses a de-
pendency of type dep prescribed in a must constraint
(i.e., Deps(E1, dep) = ∅).

Table II
REFACTORING RECOMMENDATIONS

A cannot-declare B, where A ∈ MA ∧ B ∈ MB

B b; S =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([B′ b ; S]) ∧ B′ /∈ MB D1

B b; S =⇒ replace([B], [B′]), if B′ ∈ sub(B) ∧ typecheck([B′ b ; S]) ∧ B′ /∈ MB D2

B b = exp; S =⇒ propagate([exp], b, [S]), if can(A, access, B) D3

g (B b) { S } =⇒ remove([B b]), if typecheck([g(){ S }]) D4

catch (B b) { S } =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([catch(B′ b){ S }]) ∧ B′ /∈ MB D5

A cannot-access B

b.f =⇒ replace([b.f], [D; c.g]), if g = delegate(f) ∧ D = gen decl(type(c), g) ∧ type(c) /∈ MB D6

b.f =⇒ replace([b.f], [D; c.g]), if same sign(f, g) ∧ D = gen decl(type(c), g) ∧ type(c) /∈ MB D7

b.f =⇒ g = extract([b.f]), move(g, M), if M = suitable module(g) ∧ can(A, access, M) D8

b.f =⇒ remove([b.f]), if MA = ∅ D9

g { T v = exp b } =⇒ promote(g, v, [exp b]), if ∀C ∈ call sites(g), can(C, access, B) D10

A cannot-create B

new B(exp) =⇒ replace([new B(exp)], [FB.getB(exp)]), if FB = factory(B, [exp]) ∧ can(A, access, FB) D11

new B(exp) =⇒ replace([new B(exp)], [null]), if MA = ∅ D12

new B(exp) =⇒ replace([new B(exp)], [FB.getB(exp)]), if FB = gen factory(B, [exp]) ∧ can(A, access, FB) D13

g { return new B(exp) }=⇒ replace return(g, B, [exp]), if ∀C ∈ call sites(g), can(C, create, B) D14

A cannot-throw B

g (p) throws B { S } =⇒ remove([throws B]), if typecheck([g (p) { S }]) D15

g (p) throws B { S } =⇒ remove([throws B]), replace([S], [try {S} catch(B b) {S′}]), if can(A, declare, B) ∧
S′ = user code()

D16

g (p) throws B =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ B′ /∈ MB D17

g (p) throws B =⇒ move(g, M), if M = suitable module(g) ∧ M 6= MA D18

A cannot-derive B

A derive B =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([A derive B′]) ∧ ¬override(B, B′) ∧ B′ /∈ MB D19

A derive B =⇒ move(A, M), if M = suitable module(A) ∧ can(A, derive, B) D20

A cannot-useannotation B

@B A =⇒ move(A, M), if M = suitable module(A) ∧ M 6= MA D21

@B A =⇒ remove([@B]) if MA = suitable module(A) D22

@B g(p) =⇒ move(g, C), if C ∈ suitable module(g) D23

@B g(p) =⇒ remove([@B]) if MA 6= suitable module(A) D24

A must-derive B

A =⇒ replace([A], [A derive B]), if MA = suitable module(A) ∧ typecheck([A derive B]) A1

A =⇒ move(A, M), if M = suitable module(A) ∧ M 6= MA A2

A must-throw B

g (p){ S } =⇒ replace([g (p){ S }] , [g (p) throws B { S }]), remove treatment(S, B) if treat(B, S) A3

g (p){ S } =⇒ move(g, M) if M = suitable module(g) ∧ M 6= MA A4

A must-useannotation B

A =⇒ move(A, M), if M = suitable module(A) ∧ M 6= MA ∧ target(B) = type A5

A =⇒ replace([A], [@B A]), if MA = suitable module(A) ∧ target(B) = type A6

g(p) =⇒ move(g, M), if M = suitable module(A) ∧ M 6= MA ∧ target(B) = method A7

g(p) =⇒ replace([g(p)], [@B g(p)]), if MA = suitable module(g) ∧ target(B) = method A8

IV. THE DCLfix TOOL

We have implemented a prototype tool called
DCLfix that provides recommendations for architectural
violations—as defined in Table II. Our tool has been
implemented as an extension of the DCLcheck Eclipse
plug-in and therefore exploits several preexisting data
structures, such as the graph of existing dependencies,
the defined architectural constraints, and the detected
violations.

The current implementation has two main modules:

• Auxiliary and Refactoring Functions: This module
implements the functions listed in Table I, such
as searching for design patterns (e.g., factory),
checking whether the refactored code type checks,
and calculating the most suitable module, according
to the sim function described in Section III-A.
Some functions have already been implemented in
DCLcheck (e.g., function can) and hence DCLfix

simply reuses them.

• Recommendation Engine: Following the specification
shown in Table II, this module is responsible for trig-
gering the appropriate refactoring recommendation
for a particular violation (if applicable). It first obtains
information about the architectural violation—such
as the violated constraint and the code where the
violation is located—and then indicates the most
appropriate refactoring.

As an example, suppose a constraint of the form
only Factory can−create Product. Suppose also a
class Client that creates an instance of Product. When
the maintainer requests a recommendation, DCLfix in-
dicates the most appropriate refactoring. For example,
Figure 2 illustrates the DCLfix interface when providing
a recommendation for the previously mentioned con-
straint. Basically, the provided recommendation suggests
replacing the direct instantiation of the Product with
the respective factory method (which corresponds to the
recommendation D11 in Table II).

Figure 2. DCLfix interface

V. EVALUATION

A. Research Question

We designed a study to address the following
overarching research question:

RQ – Do developers consider our refactoring recom-
mendations useful when repairing software architecture
violations using DCL?

B. Subjects

Our evaluation relies on two Java-based systems. The
first one is an open-source strategic management system,
called Geplanes2. The system handles strategic manage-
ment activities, including management plans, goals, per-
formance indicators, actions, etc. The second one is the
customer care platform of a major Brazilian telecommu-
nication company. Due to a non-disclosure agreement, we
will omit the company’s name in this paper and will
refer to this second system just as TCom. This large-
size and complex system handles a full range of customer
related services, including account activation, claims and
inquiries, offers, etc. Table III shows information about
the size of both systems.

Table III
TARGET SYSTEMS

Geplanes TCom
LOC 21,799 728,814
Subsystems 1 146
Packages 25 2,289
Classes 278 4,724
Interfaces 1 1,893
External libraries 47 58

C. Methodology

To provide an answer to our research question, we
performed the following tasks:

1) Architectural constraints definition: First, the
systems’ architects defined the architectural constraints
in natural language. Next, we translated this preliminary
definitions to DCL, and validated the resulting constraints
with the architects.

2) Architecture conformance process: Using as input
the constraints defined in the previous step, we executed
the DCLcheck tool to discover architectural violations
in both systems. We also validated with the architects
whether the indicated divergences and absences are in
fact true violations, because some violations may in fact
represent exceptions to general rules.

3) Usefulness evaluation: Using as input the violations
raised in the previous step, we executed the DCLfix tool to
provide refactoring recommendations. Finally, we checked
with the architects the usefulness of the provided recom-
mendations. For each violation, we showed the triggered

2http://www.softwarepublico.gov.br

Table IV
GEPLANES RESULTS

Constraint # violations Recommendations Total
(useful – pr. useful – not useful)

GP1 Entities must-useannotation javax.persistence.Entity 3 A5(1−0−1); A6(1−0−0) 2−0−1
GP2 Entities must-useannotation javax.persistence.Id 1 A8(1−0−0) 1−0−0
GP3 Entities must-useannotation javax.persistence.GeneratedValue 1 A8(1−0−0) 1−0−0
GP4 Entities must-useannotation linkcom.neo.bean.annotation.DescriptionProperty 18 A6(18−0−0) 18−0−0
GP5 MAController must-useannotation linkcom.neo.controller.DefaultAction 1 A6(1−0−0) 1−0−0
GP6 MAController must-useannotation linkcom.neo.controller.Controller 2 A6(1−0−1) 1−0−1
GP7 GService must-useannotation linkcom.neo.bean.annotation.ServiceBean 1 A6(1−0−0) 1−0−0
GP8 only Entities can-useannotation javax.persistence.Entity 1 D21(1−0−0) 1−0−0
GP9 only MAController can-useannotation linkcom.neo.controller.Input 1 D24(1−0−0) 1−0−0
GP10 $system cannot-create GService, GDAO, MAController 5 D12(2−3−0) 2−3−0
GP11 GDAO cannot-create QBuilder 7 D11(2−0−0); D13(0−0−5) 2−0−5

41 31−3−7

recommendation to the architects who classified them as
useful, partially useful, or not useful. We instructed the
architects to classify a recommendation as useful when it
is the appropriate solution to the detected violation, as not
useful when it is definitively not part of the architectural
fix, and as partially useful when the recommendation
is only part of the required refactoring (e.g., a violation
whose fixing involves replacing an annotation by a new
one, but DCLfix has only suggested inserting the new an-
notation, without a suggestion to remove the existing one).

It is important to mention that we have only considered
the recommendations defined in Table II, which have
been collected from a previous architecture conformance
process we have been involved with [16]. In other words,
we do not refine or extend the available recommendations
when evaluating the Geplanes and TCom systems.

D. Geplanes Results

The results achieved after aplying our methodology to
Geplanes are discussed next.

Task #1: As reported in Table IV, Geplanes’ architect
has defined 15 architectural constraints, mainly related to
rules prescribed by the MVC-based framework used by
Geplanes’ current implementation. Specifically, constraints
GP1−GP7 require that classes from some modules receive
particular annotations, constraints GP8−GP9 restrict the
modules that are allowed to receive particular annotations,
and constraints GP10−GP11 forbid some modules to create
classes of specific modules. As an example of the first
group of constraints, constraint GP5 specifies that sub-
classes of MultiActionController must have at least
one method being annotated by the DefaultAction an-
notation; as an example of the second group of constraints,
GP8 forbids classes that do not belong to the Entities

module to be annotated as Entity; and as an example
of the last group of constraints, GP10 forbids any class to
create subclasses of GenericService, GenericDAO, or
MultiActionController.

It was not possible to translate four constraints to
DCL and therefore they were disregarded. We could not
translate such constraints because DCL only supports

constraints at the class level, and these particular
restrictions operate at the field or method level. For
example, they prescribe that only some methods can
receive a particular annotation or that classes must declare
a variable of a specific type only once.

Task #2: Using as input the constraints defined and
validated in the previous step, we have executed the
DCLcheck tool. Initially, the tool reported 74 architectural
violations. After that, Geplanes’ architect carefully
analyzed the reported violations and decided to refine
four constraints. More specifically, this revision was
motivated by a minor misunderstanding originally made
in the definition of some modules. After the revision, we
executed again the conformance tool and 41 violations
were raised. Table IV shows the number of violations
raised for each of the constraint considered in the study.

Task #3: We executed the DCLfix tool to provide refac-
toring recommendations for each violation discovered in
the previous task. Next, we showed the violations to
Geplanes’ architect, who ranked them as useful, partially
useful, and not useful. Table IV shows the recommenda-
tions triggered for each violation and the results of the
architect’s classification. As can be observed, a total of
31 recommendations have been ranked as useful (75%),
three recommendation have been ranked as partially useful
(7%), and seven recommendations have been considered
not useful (18%).

Most of the violations are related to constraints
GP1−GP7. In such cases, the usual recommendation was
adding the required annotation to the class or method
where the violation had been detected (recs. A6 and A8).
For the 27 recommendations provided for such constraints,
only two were classified as not useful. For example, in
the case of GP1, a recommendation to move the class
to another module (rec. A8) was not accepted because
according to the architect the class should be turned
abstract instead.

Regarding the violations due to constraint GP10,
DCLfix suggested removing the new operator responsible
by the violation (rec. D12), since the required objects

Table V
TCOM RESULTS

Constraint # violations Recommendations Total
(useful – pr. useful – not useful)

TC1 DTO must-implement java.io.Serializable 63 A1(50−0−0); A2(0−0−13) 50−0−13
TC2 SAO must-extend tcom.server.sao.AbstractSAO 1 A2(0−1−0) 0−1−0
TC3 Controller must-useannotation tcom.client.controller.Controller 1 A6(1−0−0) 1−0−0
TC4 DataSource must-useannotation tcom.client.datasource.annotation.DataSource 1 A6(1−0−0) 1−0−0
TC5 only tcom.server.persistence.dao.BaseJPADAO can-create DAO 13 D11(13−0−0) 13−0−0
TC6 only DAO can-throw tcom.server.persistence.dao.common.DAOException 15 D15(11−0−0); D16(2−0−0) 13−0−0
TC7 only ControllerLayer, DataSourceLayer can-useannotation AnnotationCtrlDS 20 D21(2−0−0); D22(18−0−0) 20−0−0
TC8 only ServiceImpl, SAOLayer can-depend SAO 5 D20(1−0−0) 1−0−0
TC9 $system cannot-create Controller, DataSource 3 D12(3−0−0) 3−0−0
TC10 ControllerLayer cannot-create java.util.Date 84 D13(0−84−0) 0−84−0
TC11 ScreenWrappers cannot-useannotation java.lang.annotation.Annotation+ 18 D21(0−0−5); D22(13−0−0) 13−0−5
TC12 $system cannot-depend java.lang.System 14 D9(14−0−0) 14−0−0
TC13 ServiceAsync cannot-declare UnallowedAbstractTypes 270 D2(270−0−0) 270−0−0
TC14 Server cannot-depend ClientUtil 279 D7(225−0−0) 225−0−0

787 624−85−18

are supposed to be provided by dependency injection
techniques. For this particular constraint, three out of
the five recommendations have been considered partially
useful by the architect because, besides removing the
instantiation, the architect has also indicated the need to
create a setter method. For the constraint GP11, DCLfix
was able to find a factory class in two cases (rec. D11).
In the remaining five violations, the tool suggested the
creation of a new factory (rec. D13), which has not been
considered useful by the architect. In fact, the architect
ascribed these violations to a missing functionality in the
application development framework used by Geplanes,
that does not provide means to create query builder objects
parameterized by wrapper types, such as Integer.

E. TCom Results

The results for TCom are discussed next.

Task #1: TCom’s architect has defined 18 architectural
constraints. However, four constraints did not raise any
architectural violation and therefore they are not discussed
in this subsection. Table V lists the constraints with at
least one violation. Constraints TC1 and TC2 require that
classes from particular modules derive from a specified
base type. Similarly, constraints TC3 and TC4 require that
Controller and DataSource classes receive particular
annotations. Constraint TC5 specifies the factory class for
Data Access Objects (DAOs) and constraint TC6 prescribes
that only DAOs can throw DAOException. Complement-
ing constraints TC3 and TC4, constraint TC7 forbids anno-
tations from the AnnotationCtrlDS module to be used
outside Controller and DataSource modules.

Constraint TC8 specifies the only two modules that
can establish dependencies with the SAO module.
Constraint TC9 forbids any class to create Controller or
DataSource classes, because objects of such classes can
only be created by the underlying application development
framework. Similarly, constraint TC10 prescribes that the
Controller layer must not create Date objects, in order

to avoid time synchronization inconsistencies because
Controller objects are located on the client side.
Constraint TC11 forbids ScreenWrappers to receive
any annotation and constraint TC12 forbids any class to
establish dependencies with the Java API System class (to
avoid for example calls to System.out.println, since
TCom is a web-based system). Due to a pattern strongly
recommended by the GWT framework, constraint TC13

forbids ServiceAsync classes to declare abstract types
such as Collection and Map. Finally, constraint TC14

forbids server classes to use Util classes designed for
use only on the client side.

Task #2: After the architect refined the initially defined
constraints, the number of violations decreased from 978
to 787 (as reported in Table V). The refinements were
mainly related to test classes that should not have been
included in the conformance process.

Task #3: DCLfix has triggered recommendations for 727
violations (92%). As presented in Table V, 624 recommen-
dations have been ranked as useful (85%), 85 recommen-
dations as partially useful (13%), and 18 recommendations
as not useful (2%).

Constraint TC1 raised violations in 63 classes. For 50
classes, DCLfix suggested the right refactoring according
to TCom’s architect, which is making the class imple-
ment Serializable (rec. A1). However, for 13 classes
DCLfix suggested instead moving the class responsible
by the violation to another module (rec. A2). Basically,
most of such classes are Data Transfer Objects (DTOs),
which by their nature rely extensively on types from the
Java API. For this reason, DCLfix—based on the most
suitable module calculated by the sim function described
in Section III-A—has improperly recommended moving
the classes to the Constants module, whose classes are
also heavily based on Java’s built-in types.
DCLfix suggested accurate refactorings for the 13 viola-

tions of constraint TC5. Essentially, the recommendations

in such cases prescribe the use of an existing factory
method (rec. D11). Furthermore, the conformance process
discovered 15 methods that throw DAOException, but are
not located in DAO modules as required by constraint TC6.
In the case of 11 methods, DCLfix suggested the right
refactoring according to TCom’s architect, which basically
consists in removing the exception from the throws

clause (rec. D15). In addition, for two methods, DCLfix
suggested removing the throws clause and handling the
exception internally (rec. D16), which was the right refac-
toring in this particular context. Finally, there were only
two cases where DCLfix could not provide a recommen-
dation because the repair prescribes the raise of a different
exception type and the current recommendations are not
prepared to suggest replacing an exception by another one.

Constraint TC7 raised 20 violations and DCLfix pro-
vided useful recommendations for all of them. Basically,
DCLfix could determine that 18 violations had been
raised in classes already located in their most suitable
module—as returned by the sim function when called
without any dependency type filter. Based on this finding,
the recommendation engine indicated the right refactor-
ing, which prescribes removing the annotation defined in
the constraint (rec. D22). Moreover, DCLfix could also
determine that two classes were located in the wrong
modules. Because most of the dependencies established
by such classes were with DataSource types, such
as DataSourceRecordIdentifier, the engine precisely
recommended moving the classes to the DataSource

module (rec. D21).
Regarding the violations due to constraints TC9 (three

violations) and TC12 (14 violations), the recommendation
engine indicated the right refactoring in each case, i.e.,
removing the new operator (rec. D12) and the references
to the System class (rec. D9), respectively. Finally, the
highest number of useful recommendations for a single
constraint has been raised for the 270 violations associated
to constraint TC13. For each detected violation, DCLfix
could suggest a more specialized type (rec. D2). For
instance, most of the violations occurred because the
used type was the interface List and DCLfix properly
suggested replacing it with ArrayList.

F. Discussion

Based on the experience gained with the Geplanes and
TCom case studies, this subsection includes a critical
analysis on the recommender approach proposed in this
paper. Our analysis is based on the following criteria:

Applicability: The evaluation provided us with
encouraging feedback on the application of our approach.
Considering two real-world systems, we could trigger
recommendations for 92% of the detected violations.
Moreover, the architects ranked 85% of the raised
recommendations as the most appropriate architectural
repair solution. As a practical result of our evaluation,
the architects of both systems have opened a maintenance
request in the issue management platform of the evaluated

systems requesting a correction for the detected violations
and suggesting the use of the recommendations provided
by DCLfix.

Coverage: Table VI provides an overview of the
recommendations used in both systems, including the
usefulness classification made by the respective software
architects. First of all, we can observe that 17 out of
the 32 proposed recommendations have been triggered
at least once in our case studies (the recommendations
not used in any of the considered systems have
not been listed in this table). However, we truly
believe that the unused recommendations are generic
enough to be triggered in other architecture erosion
fixing contexts, since they have emerged in our first
conformance experience using the DCL language [16].
For example, the unused recommendation D1—which
suggests replacing the declaration of an unauthorized type
(e.g., ProductHibernateDAO) with one of its supertypes
(e.g., IProductDAO)—has proven itself very useful in
our training system.

Table VI
RECOMMENDATIONS TRIGGERED IN THE CASE STUDIES AND THEIR

CLASSIFICATION AS USEFUL – PR. USEFUL – NOT USEFUL

D2 270−0−0 D15 11−0−0 A1 50−0−0
D7 225−0−0 D16 2−0−0 A2 0−1−13
D9 14−0−0 D20 1−0−0 A5 1−0−1
D11 15−0−0 D21 3−0−5 A6 24−0−1
D12 5−3−0 D22 31−0−0 A8 2−0−0
D13 0−89−0 D24 1−0−0

Usefulness classification: As presented in Table VI, 13 out
the 17 recommendations triggered in the case studies have
been massively classified as useful by the respective soft-
ware architects. Particularly, TCom’s architect has high-
lighted the 270 violations fixed by recommendation D2 as
one of the “most important recommendations” provided by
DCLfix. According to the architect, by not following this
recommendation (associated to the correct use of the GWT
framework), the current implementation of TCom experi-
ences an overhead in terms of the size of the generated
Javascript code which has important consequences both in
CPU performance and network bandwidth consumption.

On the other hand, recommendations D12, D13, D21,
and A2 have presented the lowest usefulness rate. Partic-
ularly, recommendations D21 and A2 have been mostly
ranked as not useful. In fact, this result is explained
by our current policy on recommending just the best
result provided by the suitable module function. More
specifically, we noticed in many cases that the correct
recommendation was in fact the module with the second
best Jaccard’s coefficient, whose value was very close
to the highest calculated coefficient. For this reason, we
are investigating a revision in our current priorization
policy, to include second or third-hand recommendations
in particular contexts.

G. Threats to Validity

We must state at least four threats inherent to the
reported evaluation. First, although we have used two
industrial-strength systems, we cannot claim that our
approach will provide equivalent results in other sys-
tems. Second, since the subject systems have presented
a moderate number of violations, we cannot claim that
our approach will provide the same precision in systems
already facing a major architectural erosion process. Third,
since the proposed architectural fix recommendations are
tightly coupled to our previously designed constraint lan-
guage (DCL), we are limited to the violations detected
by this language. For instance, four constraints in the
Geplanes case study could not be translated to DCL. On
the other hand, DCL has proved itself to be able to express
all constraints proposed for two large and complex systems
(TCom, as reported in this paper, and SGP, a 220 KLOC
system employed in a previous paper [16]). Finally, since
we have used a little over half of the proposed refactoring
recommendations, it was not possible to evaluate the
applicability of the unused recommendations.

VI. RELATED WORK

We divided the related work into two groups:
refactoring recommendation tools and remodularization
approaches.

Refactoring Recommendation Tools: Tsantalis and
Chatzigeorgiou have proposed a semi-automatic approach
to identify Move Method refactoring opportunities [21].
Later, using an adaptation of program slicing techniques,
they extended their tool to also identify Extract Method
refactorings [22]. O’Keeffe and O’Cinneide have proposed
a search-based software maintenance tool that relies on
search algorithms, such as Hill Climbing and Simulated
Annealing, to automatically suggest six inheritance-
related refactorings (Push Down Field/Method, Pull Up
Field/Method, and Extract/Collapse Hierarchy) [23]. In
general terms, the ultimate goal of the above-mentioned
tools is to suggest refactorings that can improve the
internal quality of the code—for example, in terms of
coupling and cohesion. On the other hand, the refactoring
recommendation engine we have proposed in this paper
aims to help developers handle the massive number
of violations usually discovered as the result of an
architecture conformance process [16], [18].

Remodularization Approaches: Rama and Patel have an-
alyzed several software modularization projects in order
to define recurring modularization patterns, called modu-
larization operators by the authors [24]. More specifically,
they have formalized the following operators: module de-
composition/union, file/function/data transfer, and function
to API promotion. However, they do not provide tool
support for applying the proposed operators. Hierarchical
clustering is another technique commonly proposed to
evaluate alternative software decompositions [25], [26].
However, the effectiveness of clustering in reengineering

tasks is often challenged. For example, using Eclipse
as case study, Anquetil et al. have recently shown that
software remodularizations do not necessarily improve
modularity in terms of cohesion/coupling. Therefore, this
finding undermines the validity of techniques as clustering
centered on a function of similarity that aims to minimize
coupling and maximize cohesion [27]. Glorie et al. have
reported an experiment in which clustering and formal
concept analyses have failed to produce an acceptable
partitioning of a monolithic medical imaging applica-
tion [28]. They have reported, for example, that some of
the extracted clusters have components that according to
domain experts were not semantically related.

Chern and De Volter have claimed that the static-
dynamic coupling—i.e., the degree to which changes in a
program’s modular structure imply changes in its dynamic
behavior—is a major obstacle to software remodular-
ization efforts [29]. To alleviate this kind of coupling,
they have proposed a new language, called SubjectJ, that
allows class implementations to be split across different
files. However, it is not clear whether the new classes
provide the key benefits of modularity, such as parallel
development, comprehensibility, and changeability.

VII. CONCLUSIONS

Architectural erosion is a recurrent problem faced by
software architects. Despite several approaches have been
proposed in the literature to uncover architectural viola-
tions, less research effort has been dedicated to properly
repair the detected violations. To tackle this lack of effort,
we have proposed an architecture-based recommendation
system that provides refactoring guidelines for maintainers
when repairing architectural violations.

The proposed recommendation system provides recom-
mendations for architectural violations—divergences and
absences—raised by DCL constraints. More important, we
have conducted an evaluation with two industrial-strength
systems that provided us with encouraging feedback on the
application of our approach. Considering both systems,
DCLfix has been able to indicate the most appropriate
refactoring recommendation for 655 out of 828 violations
detected as the result of an architecture conformance
process.

Future work involves the refinement of the refactoring
recommendations and then the evaluation of DCLfix in
other systems. In addition, we have plans to design an ar-
chitectural recommendation language—which exploits our
existing auxiliary and refactoring functions—and hence
allowing maintainers to produce their own domain-specific
refactoring recommendations.

The DCLfix tool—including its source code—is pub-
licly available at http://github.com/rterrabh/DCL.

ACKNOWLEDGMENTS

Our research has been supported by CAPES, FAPE-
MIG, and CNPq. We would like to thank the software ar-
chitects Gessé Dafé (TCom) and Rógel Garcia (Geplanes)
for the valuable collaboration in the case studies.

REFERENCES

[1] D. L. Parnas, “Software aging,” in 16th International Con-
ference on Software Engineering (ICSE), 1994, pp. 279–
287.

[2] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” Software Engineering Notes, vol. 17,
no. 4, pp. 40–52, 1992.

[3] J. van Gurp and J. Bosch, “Design erosion: problems and
causes,” Journal of Systems and Software, vol. 61, pp. 105–
119, 2002.

[4] J. Knodel, D. Muthig, M. Naab, and M. Lindvall, “Static
evaluation of software architectures,” in 10th European
Conference on Software Maintenance and Reengineering
(CSMR), 2006, pp. 279–294.

[5] M. Lindvall and D. Muthig, “Bridging the software archi-
tecture gap,” Computer, vol. 41, no. 6, 2008.

[6] S. Sarkar, S. Ramachandran, G. S. Kumar, M. K. Iyengar,
K. Rangarajan, and S. Sivagnanam, “Modularization of
a large-scale business application: A case study,” IEEE
Software, vol. 26, pp. 28–35, 2009.

[7] L. de Silva and D. Balasubramaniam, “Controlling software
architecture erosion: A survey,” Journal of Systems and
Software, vol. 85, no. 1, pp. 132–151, 2012.

[8] J. Knodel and D. Popescu, “A comparison of static archi-
tecture compliance checking approaches,” in 6th Working
IEEE/IFIP Conference on Software Architecture (WICSA),
2007, p. 12.

[9] L. Passos, R. Terra, R. Diniz, M. T. Valente, and N. Men-
dona., “Static architecture-conformance checking: An illus-
trative overview,” IEEE Software, vol. 27, no. 5, pp. 82–89,
2010.

[10] S. Ducasse and D. Pollet, “Software architecture recon-
struction: A process-oriented taxonomy,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 4, pp. 573–591,
2009.

[11] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models: Bridging the gap between source and high-level
models,” in 3rd Symposium on Foundations of Software
Engineering (FSE), 1995, pp. 18–28.

[12] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts, “Co-
evolving code and design with intensional views: A
case study,” Computer Languages, Systems & Structures,
vol. 32, no. 2-3, pp. 140–156, 2006.

[13] J. Brunet, D. Guerreiro, and J. Figueiredo, “Structural
conformance checking with design tests: An evaluation of
usability and scalability,” in 27th International Conference
on Software Maintenance (ICSM), 2011, pp. 143–152.

[14] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: con-
necting software architecture to implementation,” in 22nd
International Conference on Software Engineering (ICSE),
2002, pp. 187–197.

[15] D. Hou and H. J. Hoover, “Using SCL to specify and
check design intent in source code,” IEEE Transactions on
Software Engineering, vol. 32, no. 6, pp. 404–423, 2006.

[16] R. Terra and M. T. Valente, “A dependency constraint
language to manage object-oriented software architectures,”
Software: Practice and Experience, vol. 32, no. 12, pp.
1073–1094, 2009.

[17] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini,
“Defining and continuous checking of structural program
dependencies,” in 30th International Conference on Soft-
ware Engineering (ICSE), 2008, pp. 391–400.

[18] J. Knodel, D. Muthig, U. Haury, and G. Meier, “Archi-
tecture compliance checking - experiences from successful
technology transfer to industry,” in 12th European Confer-
ence on Software Maintenance and Reengineering (CSMR),
2008, pp. 43–52.

[19] F. Steimann and A. Thies, “From public to private to absent:
Refactoring Java programs under constrained accessibility,”
in 23rd European Conference on Object-Oriented Program-
ming (ECOOP), 2009, pp. 419–443.

[20] R. Terra, M. T. Valente, K. Czarnecki, and R. Bigonha,
“Recommending refactorings to reverse software architec-
ture erosion.” in 16th European Conference on Software
Maintenance and Reengineering (CSMR), Early Research
Achievements Track, 2012, pp. 335–340.

[21] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Transactions on
Software Engineering, vol. 99, pp. 347–367, 2009.

[22] ——, “Identification of extract method refactoring oppor-
tunities for the decomposition of methods,” Journal of
Systems and Software, vol. 84, no. 10, pp. 1757–1782,
2011.

[23] M. K. O’Keeffe and M. Ó. Cinnéide, “Search-based soft-
ware maintenance,” in 10th European Conference on Soft-
ware Maintenance and Reengineering (CSMR), 2006, pp.
249–260.

[24] G. M. Rama and N. Patel, “Software modularization op-
erators,” in 26th International Conference on Software
Maintenance (ICSM), 2010, pp. 1–10.

[25] N. Anquetil and T. Lethbridge, “Experiments with cluster-
ing as a software remodularization method,” in 6th Working
Conference on Reverse Engineering (WCRE), 1999, pp.
235–255.

[26] B. S. Mitchell and S. Mancoridis, “On the automatic
modularization of software systems using the Bunch tool,”
IEEE Transactions on Software Engineering, vol. 32, no. 3,
pp. 193–208, 2006.

[27] N. Anquetil and J. Laval, “Legacy software restructuring:
Analyzing a concrete case,” in 15th European Confer-
ence on Software Maintenance and Reengineering (CSMR),
2011, pp. 279–286.

[28] M. Glorie, A. Zaidman, A. van Deursen, and L. Hofland,
“Splitting a large software repository for easing future soft-
ware evolution - an industrial experience report,” Journal of
Software Maintenance, vol. 21, no. 2, pp. 113–141, 2009.

[29] R. Chern and K. D. Volder, “The impact of static-dynamic
coupling on remodularization,” in 23rd Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2008, pp. 261–276.

