
Modularity Anomalies in Software Reuse:
An Empirical Study with Software Product Lines

Names omitted due to blind review

1Department of Computer Science, Federal University of Minas Gerais (UFMG)
Belo Horizonte – MG – Brazil

Email adresses omitted due to blind review

Abstract. Software reuse requires a satisfactory code modularity to be effec-
tively applied in software development. Therefore, modularity anomalies may
difficult reuse. By detecting and solving an anomaly before reuse of a software
component, we may increase the component quality and decrease time and ef-
forts spent on maintenance, for instance. In this context, we need methods to
support the detection of these anomalies. Different detection strategies sup-
port the identification of modularity anomalies. Although the known variety of
anomalies that affect software reuse, and their respective detection strategies,
we lack an investigation of the effectiveness of available detection strategies. In
this paper, we investigate modularity anomalies in software reuse focused on
Software Product Line (SPL). For this purpose, we provide (i) an overview of
studies that relate software reuse to modularity anomalies and propose detec-
tion strategies for these anomalies, (ii) the proposal of detection strategies for
two well-known modularity anomalies, God Class and God Method, and (iii) an
empirical study of detection strategies for the cited anomalies using the Mobile-
Media SPL. As a result, our detection strategies present minimum recall (29%
and 17% for God Class and God Method, respectively) but the highest precision
results (100% and 50%) when compared to strategies from literature.

1. Introduction

Software reuse is a development technique in which existing source code is used in
the development of new software systems [Krueger 1992]. In order to be effectively
applied in software development, reuse requires a satisfactory source code modular-
ity [Johnson and Foote 1988]. Since previously implemented software components from
a an existing system may contain problems that should not be propagated to other sys-
tems, then modularity anomalies may difficult reuse. Therefore, by detecting and solv-
ing an anomaly before reusing a software component, we may increase the component
quality and decrease time and efforts spent on maintenance of the new system, for in-
stance [Moha et al. 2010, Fontana et al. 2012].

In this context, we need effective methods to support the detection of modularity
anomalies, and consequently, to support software reuse [Romero et al. 2004]. Different
detection strategies have been proposed in literature to support the identification of mod-
ularity anomalies in software systems [Fernandes et al. 2016]. Although there is a large
variety of anomalies that affect software reuse, and some strategies have been proposed to
support their detection, we lack an investigation of the effectiveness of available detection



strategies. Research to explore this gap may be helpful in the selection of appropriate de-
tection strategies for an specific software development domain, such as Software Product
Lines (SPL).

In this paper, we investigate modularity anomalies in software reuse focused on
SPL given constraints when considering all approaches that support reuse. For this pur-
pose, we provide (i) an overview of studies that relate software reuse to modularity anoma-
lies and propose detection strategies for these anomalies, (ii) an empirical study of detec-
tion strategies for well-known modularity anomalies using a largely investigated SPL,
MobileMedia, and (iii) the proposal of new detection strategies to support the identifica-
tion of two modularity anomalies: God Class and God Method.

As a results, with respect to (i) we discuss that there is a lack of studies to inves-
tigate the relation between modularity anomalies and software reuse. Regarding (ii), we
identify two main different detection strategies for each of the studied modularity anoma-
lies (namely, God Class and God Method). Finally, from (iii) we observe that our detec-
tion strategies present minimally relevant recall (29% and 17% for God Class and God
Method, respectively) and the highest precison results (100% and 50%) when compared
to strategies from literature.

The remainder of this paper is organized as follows. Section 2 provides back-
ground to support the comprehension of our study. Section 3 describes the study
settings, including goals, research questions, and the study steps. Section 4 discuss
the results we obtained through the empirical study conducted with the MobileMedia
SPL [Figueiredo et al. 2008]. Section 5 presents some threats to the validity of our study
with the respective treatments. Section 6 discusses related work. Finally, Section 7 con-
cludes this paper with the study contributions and presents suggestions for future work.

2. Background
This section provides sufficient background to support the comprehension of this paper.
Section 2.1 discusses modularity anomalies in source code. Section 2.2 discusses software
reuse. Section 2.3 presents the SPL approach in the context of software reuse.

2.1. Modularity Anomalies
Modularity anomalies, also known as bad smells, are symptoms of problems in the modu-
larity design of software systems [Fowler 1999]. There are several types of anomalies that
may affect the modularity of a system [Fernandes et al. 2016]. For instance, God Class is
a well-known anomaly that may be defined as a class that contains excessive knowledge of
the system and, in addition, many responsibilities in terms of processing [Fowler 1999].
Other modularity-related anomaly is called God Method. Given a class, a method may be
considered a God Method when it is large in terms of lines of code (LOC) and with many
responsibilities, for instance [Lanza and Marinescu 2007].

Two approaches are used to detect modularity anomalies: manual and auto-
mated detection [Moha et al. 2010]. An example of manual detection is the use of
predefined detection strategies [Lanza and Marinescu 2007]. In general, these strate-
gies are a composition of metric-based rules that defines when a specific software
component (class, method, or package, for instance) is prone to present a modularity
anomaly [Lanza and Marinescu 2007]. In turn, the automated detection is supported by



tools that essentially apply some type of detection strategy to detect modularity anomaly
occurrences in an automated fashion [Fernandes et al. 2016].

2.2. Software Reuse

Software systems have become more complex and difficult to manage given clients’
needs [Prado et al. 2014]. Reasons for this increasing complexity are the technological
evolution, the software quality required by clients, and constrains regarding the time to
delivery of software products. In this context, software reuse may be adopted to sup-
port the development of systems [Jacobson et al. 1997]. Software reuse is a development
technique in which existing source code is used in the development of new software sys-
tems [Krueger 1992].

However, an inappropriate application of software reuse may lead to more de-
velopment costs and efforts than software development without reuse [Pohl et al. 2005].
In order to be effectively applied in software development, an important issue is to as-
sure satisfactory source code modularity [Johnson and Foote 1988]. Since previously im-
plemented software components from a an existing system may contain problems that
should not be propagated to other systems, then modularity anomalies may difficult reuse.
To support reuse, many approaches have been proposed in literature, including Software
Product Lines (SPL) [Pohl et al. 2005].

2.3. Software Product Lines

A SPL is a set of software systems that share features that are designed to a specific
software domain [Pohl et al. 2005]. The feature model is an approach to model these fea-
tures of a SPL [Kang et al. 1990]. There are four types of features in product line: (i)
mandatory, features that have to be including in every product from the SPL, (ii) optional,
features that may be included in the product according to the client’s needs, (iii) OR,
features that may be co-included in a product, and (iv) XOR, features that are mutually
exclusive when included in the product [Weiss 1999]. Each product from a SPL is com-
posed by general features that define the SPL (mandatory features) and specific features
that differ a product from another (optional, OR, or XOR features) [Pohl et al. 2005].

Artifacts of a SPL may contain modularity anomalies as in other types of soft-
ware systems. However, there are few studies to investigate anomalies in this specific
context [Apel et al. 2013]. A recent systematic literature review (SLR) [Vale et al. 2014]
discusses that new anomalies may be proposed, considering the inherent complexity of
SPL design. Furthermore, anomalies proposed in other software settings may be applied
in the context of SLP. Finally, new detection strategies may be proposed to improve the
effectiveness of detecting anomalies.

3. Study Settings

This section describes the study design. Section 3.1 provides goal and research questions
we defined to guide this study. Section 3.2 describe an ad hod literature review of modu-
larity anomalies and software reuse. Section 3.3 presents the design of an empirical study
to compare different detection strategies for detection of modularity anomalies.



3.1. Goal and Research Questions

This study aims to investigate the impact of modularity anomalies on software reuse with
focus on SPL. We are specifically concerned about the detection strategies that have been
proposed to identify modularity anomalies that may hinder reuse in the SPL context.
For this purpose, we designed a study to assess (i) the current state of research on the
relation between modularity anomalies and software reuse in SPL settings, (ii) the need
of proposing new detection strategies, and (iii) a comparative study of detection strategies
from literature and, eventually, proposed by the authors of this work.

Basically, we are interested in the effectiveness of available detection strate-
gies to support the identification of modularity anomalies in SPL. Since, these anoma-
lies may affect the quality of reuse activities, then we require effective and use-
ful strategies. The scope of our study, based on the Goal-Question-Metric (GQM)
method [Wohlin et al. 2012], is: Analyze detection strategies for modularity anomalies,
from the purpose of identifying appropriate strategies to support software development,
from the point of view the authors based on statistical analysis, in the context of Software
Product Lines (SPL).

To guide our study, we designed the following research questions.

RQ1. Are there studies to related explicitly modularity anomalies to software reuse?
– Through RQ1, we expect to comprehend the current state of research on the
relation between modularity anomalies that may affect software reuse.

RQ2. Are the available detection strategies for modularity anomalies effective? – With
RQ2, we aim to investigate whether the detection strategies for modularity anoma-
lies proposed in literature are sufficiently able to support software reuse.

Figure 1 presents the steps that compose our study. We designed the nine study
steps presented in this figure based on our main study goal and research questions. To
ease the comprehension of our study design, we grouped Step 1 to 9 in study phases. We
describe each step and respective rationale, as well as the groups of steps, as follows.

Steps 1 and 2 compose a group we called Literature Review (more details in Sec-
tion 3.2). In Step 1, we conduct an ad hoc literature review of studies that relate modular-
ity anomalies to software reuse, not necessarily in the context of SPL. We aim to identify
common anomalies in the context of reuse and detection strategies proposed for them, for
instance. In Step 2, we focus our ad hoc review on modularity anomalies that may occur
in product lines.

The remaining steps, Steps 3 to 9, compose other group called Comparative Study.
In Step 3, we select a SPL to assess the effectiveness of modularity anomalies detection
using different detection strategies, through an empirical study. Step 4 consists of the
selection of modularity anomalies for investigation trough an em, based on anomalies
that may be detected in the system chosen at Step 3. Step 5 defines the selection of
detection strategies from literature to be compared in this study. Step 6 is dedicated to the
proposal of new detection strategies for the modularity anomalies chosen in Step 3 to be
compared with the strategies from literature provided by Step 5.

In Step 7, we select a method for threshold derivation to support the manual detec-
tion of modularity anomalies using detection strategies. Thresholds are numerical values



Figure 1. Steps of the study

that defines ranges for a measure. These ranges, also called labels, may be used to classify
a measure in a given context. As example, a threshold 100 may be proposed to define that
a value for LOC > 100 is a high value. Step 8 is the detection of selected bad smells
from Step 4, using the strategies selected and proposed in Steps 5 to 6, and with support
of the method selected in Step 7, in the SPL selected in Step 3. Finally, Step 9 is the
computation of recall and precision for comparative analysis of detection strategies.

3.2. A Literature Review

With respect to Steps 1-2, we conducted a literature review using the Google Scholar1

platform. In a first moment, we decided not to use specific electronic data sources (such
as ACM Digital Library2 and IEEE Xplore3) because we expected the ad hoc review
would lead us to a systematic literature review (SLR) [Kitchenham and Charters 2007]
in the future. Therefore, our goal in this preliminary review is to provide an overall of
studies that relate modularity anomalies and software reuse.

First, we defined the following search string to run in Scholar: (“software reuse”
OR “software reutilization”) AND (“modularity smell*” OR “modularity anomal*” OR
“architecture smell*” OR “architecture anomal*” OR “design smell*” OR “design
anomal*”). As a pilot-search, we pairwise combined terms from the first and second
clauses of string to run in the search platform. However, we obtained few results and,
then, we decided to discard this string and conduct a more specific ad hoc search.

Second, we decided to focus on specific approaches to support software reuse. The
search string we designed to run in the electronic source is: (“modularity anomalies” OR

1https://scholar.google.com.br/
2http://dl.acm.org/
3http://ieeexplore.ieee.org/Xplore/home.jsp



“bad smell”) AND (“component-based” OR “service-oriented” OR “software product
line”). In turn, this string provided some interesting results discusses in Section 4.1. We
observed, then, an opportunity to focus on the SPL context because of the number of
retrieved studies by through this search.

3.3. A Comparative Study
Regarding Steps 3-9, we conducted an empirical study to compare different detection
strategies for modularity anomalies. Our goals is to assess the effectiveness of each strat-
egy when compared to others. In Step Step 3, we chose the MobileMedia SPL for anal-
ysis, extracted from a benchmark of SPLs [Vale and Figueiredo 2015]. We took this de-
cision based on the availability of source code, pre-calculated software metrics, and the
existence of a reference list for two types of modularity anomalies in the system: God
Class and God Method. MobileMedia is implemented using feature-oriented program-
ming (FOP) in AHEAD programming language. We used the version 7 of the system
with 2691 LOC. Table 1 presents the list of software metrics that are pre-calculated for
MobileMedia.

Class-level Metrics
Coupling between Objects (CBO): the number of dependencies among a given class
and other classes [Chidamber and Kemerer 1994].
Lines of Code (LOC): it counts the number of lines of code from a given
class [Lorenz and Kidd 1994].
Number of Constant Refinements (NCR): it counts the number of refinements for a
given constant [Abilio et al. 2015].
Number of Attributes (NOA) a.k.a. Number of Fields (NOF): the number of attributes
of the class [Lorenz and Kidd 1994].
Number of Methods (NOM): it counts the number of methods of the
class [Lorenz and Kidd 1994].
Weighted Methods per Class (WMC): it computes a weight for the class based on
the sum of weights for each method. This weight can be defined using LOC, for
instance [Chidamber and Kemerer 1994].
Method-level Metrics
McCabe’s Cyclomatic Complexity (Cyclo): it counts the number of possible deviations
in the method execution, based on the number of branches such as if, while, and
for [McCabe 1976].
Method Lines of Code (MLOC): it counts the number of code lines of the
method [Lorenz and Kidd 1994].
Number of Operations Overrides (NOOr): it counts the number of overrides of a
method [Miller et al. 1999].
Number of Method Refinements (NMR): it counts the number of refinements of the
methods [Abilio et al. 2016].
Number of Parameters (NP): it counts the number of parameters of the
method [Lorenz and Kidd 1994].

Table 1. Software metrics for MobileMedia

The benchmark that provides MobileMedia also provides reference lists for mod-
ularity anomalies in the system. These lists were composed by experienced developers



from the MobileMedia development team. In this study, we investigate the occurrence
of two modularity anomalies: God Class and God Method. Therefore, the reference lists
provide us data to compute recall and precision of the detection strategies we compare.
Table 2 presents the reference lists for the two investigated anomalies.

God Classes: 7 God Methods: 6
AlbumController AlbumController.handleCommand()
MediaController MediaController.handleCommand()

PhotoViewController MediaListController.showMediaList()
MediaAccessor PhotoViewController.handleCommand()

CaptureVideoScreen PlayVideoController.handleCommand()
MediaUtil MainUIMidlet.startApp()

SmsMessaging -

Table 2. Reference lists for God Class and God Method in MobileMedia

In Step 4, we decided to evaluate God Class and God Method because we have
reference lists of these modularity anomalies for MobileMedia. In Step 5, we selected
detection strategies for each anomaly using the following search strings: (“detection
strategy” AND (“god class” OR “large class” OR “brain class”)) for God Class and
(“detection strategy” AND (“god method” OR “long method” OR “brain method”)) for
God Method. We based our string on a systematic view of tools for anomaly detec-
tion [Fernandes et al. 2016]. For each anomaly, we obtained two detection strategies for
God Class, and other two for God Method, that we are able to use with the metrics pro-
vided for MobileMedia. Table 3 present these strategies adapted according to the available
metrics (we only discarded terms with metrics that our data source does not provide).

God Class
GC1: Detection Strategy 1 [Vale and Figueiredo 2015]

[(LOC > High) AND (WMC > High) AND (CBO > Low)]
OR (NCR > High)

GC2: Detection Strategy 2 [Filó et al. 2015]
(WMC > 34) AND (NOM > 14) AND (NOA > 8)

God Method
GM1: Detection Strategy 1 [Fard and Mesbah 2013]

(MLOC > 50)
GM2: Detection Strategy 2 [Lanza and Marinescu 2007]

(MLOC > High) AND (Cyclo ≥ High)

Table 3. Detection strategies from literature

In Step 6, considering the few detection strategies we were able to collect, we
proposed a new strategy for each anomaly. Table 4 presents the new detection strategies.
The rationale for each strategy is describe as follows.

We designed C3 based on: (i) LOC, because a high number of code lines may indi-
cate excessive processing and responsibilities of the class, (ii) NOA and NOM, because a
high number of attributes (NOA) and (NOM) points excessive knowledge of the class (at-
tributes) and responsibilities (methods), and (iii) WMC, because a high weight of the class



indicates that the class is doing more than it should do. In turn, we designed GM3 based
on: (i) MLOC, because a high number of code lines is a symptom of complex method,
(ii) NP, because a large list of parameters may point that the method requires excessive
knowledge of the current or external classes, and (iii) Cyclo, because high complexity is
an indication of many responsibilities of the method.

God Class
GC3: Detection Strategy 3

(LOC > High) AND (NOA > High)
AND (NOM > High) AND (WMC > High)

God Method
GM3: Detection Strategy 3

(MLOC > High) AND (NP > High) AND (Cyclo > High)

Table 4. New detection strategies we propose

In Step 7, we selected a method for threshold derivation. We chose Vale’s
method [Vale and Figueiredo 2015] because it supports five different labels and uses is
benchmark-based. The labels, calculated in terms of percentiles considering entities from
the an entire benchmark, are: Very Low (> 0% of the values), Low (> 3%), Moderate
(> 15%), High (> 90%), and Very High (> 95%). Therefore, this method provides us the
sufficient flexibility to define detection strategies, and also the computation of thresholds
based on a set of software systems from the same domain. To support the computation
of labels, we used the R4 statistical environment. Moreover, to apply Vale’s method and
derive thresholds for the metrics described in Table 1, we used the entire SPL-benchmark
from which we obtained MobileMedia. This benchmark has 35 product lines from 17
LOC to 42 KLOC. Table 5 presents the derived thresholds.

Class-level Metrics Method-level Metrics

Metrics Thresholds Metrics Thresholds
3% 15% 90% 95% 3% 15% 90% 95%

LOC 2 4 77 133 Cyclo 0 1 3 5
NCR 0 0 1 2 MLOC 0 2 13 22
NOA 0 0 4 8 NOOr 0 0 0 0
NOM 0 1 10 16 NMR 0 0 1 1
WMC 0 1 17 31 NP 0 0 2 3

Table 5. Derived thresholds for metrics from Table 1

In Step 8, we combined the detection strategies from Tables 3 and 4 to the thresh-
olds from Table 5 that we derived to detect God Class and God Method. This procedure
was conducted with support of spreadsheets with the computed software metrics. The
results are presented and discussed in Section 4. Finally, in Step 9 we computed recall
and precision for each detection strategy. The results of this analysis are also presented
and discussed in Section 4.

4https://www.r-project.org/



4. Results and Discussion
This section presents and discusses the results of our study. Section 4.1 presents the
results obtained trough the literature review of modularity anomalies and software reuse
(described in Section 3.2). Section 4.2 discusses the results we obtained with the empirical
comparative study of detection strategies (as presented in Section 3.3).

4.1. Results from Literature Review

In this section, we discuss the results from our ad hoc literature review of modularity
anomalies and software reuse. Therefore, we aim to answer RQ1.

RQ1. Are there studies to related explicitly modularity anomalies to software reuse?

Through our first search in Scholar, we did not find studies that explicitly relate
modularity anomalies to software reuse. However, in our first attempt to search for studies
in the electronic source, using terms for specific software reuse approach, we were able
to extract some interesting studies. For instance, we found studies that cover Component-
Based Software Engineering (CBSE) [von Detten and Becker 2011, Platenius et al. 2012]
and Service-Oriented Architecture (SOA) [Palma 2012, Moha et al. 2012].

We were able to found a more significant number of studies in the context of
SPL [Niu and Easterbrook 2009, Andrade et al. 2014, Vale et al. 2014]. In general, these
studies investigate the occurrence of different types of modularity anomalies that may
affect not only SPLs, but other software systems. They also discuss the use of detection
strategies that cover traditional and SPL-specific software metrics. However, we did not
find a study that compares different detection strategies. That is one of the reasons we
propose a comparative study of strategies for modularity anomalies.

4.2. Results from Comparative Study

In this section, we discuss the results from our comparative study of detection strategies
for modularity anomalies. Then, we discuss RQ2.

RQ2. Are the available detection strategies for modularity anomalies effective?

Table 6 presents recall and precision that we computed in the comparative study,
considering both God Class and God Method. Note that: (i) TP is the number of true
positives (correct answers in the identification of real anomalies), (ii) FP is the number
of false positives (incorrect answers for identification of real anomalies), (iii) TN is the
number of true negatives (correct answers for non-identification of anomalies), and (iv)
FN is the number of false negatives (incorrect answers for non-identification of anoma-
lies) [Fawcett 2006].

With respect to God Class detection strategies, we observe that the best precision is
provided by our strategy GC3 (100%), with a significant different of 67% when compared
to the second best precision by GC1. In turn, regarding recall, GC1 provides the best
results (71%), although our strategy GC3 has a significant recall of 29%, more than the
results from GC2 (0%).

With respect to God Method, we observe that the best precision is provided by our
GM3 (50%). This results is 44% better than the second best precision (GM2). Finally,
GM2 has the best recall (33%), but with a minimum different of 16% when compared to



God Class God Method

Value Strategy Value Strategy
GC1 GC2 GC3 GM1 GM2 GM3

TP 5 0 2 TP 0 2 1
FP 10 0 0 FP 1 31 1
TN 126 7 136 TN 366 336 366
FN 2 136 50 FN 6 4 5

Recall 71% 0% 29% Recall 0% 33% 17%
Precision 33% 0% 100% Precision 0% 6% 50%

Table 6. Recall and precision for each detection strategy

our strategy GM3. Therefore, we conclude that our proposed strategies are an improve-
ment in terms of precision for both God Class and God Method, but with respect to recall,
our strategies present an average but significant performance.

5. Threats to Validity
We designed and conducted carefully an ad hoc literature review, as presented in Sec-
tion 3.2, and an experiment as described in Section 3.3. For instance, we delimited our
experiment scope prior to the execution of the experiment, defined our research ques-
tions, and how to assess them, after study and based on previous studies. However, there
are some threats to the validity of our findings. We discuss, as follows, each of the four
threats, with respective treatments, as presented by Wolin et al. [Wohlin et al. 2012]: in-
ternal, conclusion, construct, and external validity.

Construct Validity. We designed our experiment to be replicated with different detection
strategies, methods for threshold derivation, and so on. For this purpose, we conducted
various searches on electronic bases to find similar studies to base our experiment design.
In addition, we conducted many searches to retrieve studies relate modularity anomalies
to software reuse, and also to identify proposed detection strategies. These treatments aim
to minimize threats related to the coverage of our study. Therefore, we expect that our
results are enough meaningful and consistent in the context of reuse with focus on SPL.

Internal Validity. We conducted a careful data collection to minimize problem with
respect to missing data, incorrect selection of metrics, and inappropriate use of threshold
derivation methods, for instance. Therefore, we expect that our data collection is reliable
to provide our the correct data analysis. Since we provide the data used for study and
the experiment design (protocols, steps, etc.), we allow other researches to assure the
correctness in our data management process.

Conclusion Validity. We carefully performed the data analysis to draw conclusions re-
garding effectiveness of evaluated detection strategies. This procedure minimize prob-
lems related to data interpretation. We based the choice of mathematical computation
(recall and precision) on previous studies to provide the appropriateness of the techniques
we adopted in the data analysis presented in Section 4. Moreover, we used a reliable and
largely used supporting tool for data analysis.

External Validity. Some factor may prevent the generalization of our research findings.
For instance, we conducted an ad hoc literature review of studies that relate anomalies



to reuse, and also regarding detection strategies for modularity anomalies in SPL. This
procedure may not cover all existing studies in the target topic. However, we defined
search string composed by diverse popular and related terms to minimize this problem.
With respect to the experiment execution, we proposed detection strategies based on the
subjective authors’ knowledge of metrics and anomalies. To minimize this problem, we
carefully analyzed the available metrics in the context of our study, and we based our
definitions of each covered anomaly in the literature.

6. Related Work
To the best of our knowledge, we were not able to find studies that are similar to ours.
One of the closely related studies is proposed by Fernandes et al. (2016). The authors
conduct a systematic literature review of bad smell detection tools. They were able to
find 84 different supporting tools, 29 of them available online for download. In addition,
the authors conduct a comparative study of four tools to compute recall, precision, and
agreement of the tools. They observe that most of the proposed tools are metric-based,
therefore they apply detection strategies based on software metrics. Moreover, in general,
the authors observe that tools are redundant in terms of detected anomalies and, then, new
detection strategies may be explored in order to improve their effectiveness.

In this study, we aim to contribute by the filling of the gap observed by Fernandes
et al. (2016), although we focus on software reuse and SPL specifically. For this purpose,
we investigate the current state of proposed detection strategies to observe whether there
is a sufficient variety of strategies to support the implementation of new detection tools,
for instance. Moreover, we compare detection strategies to identify their effectiveness. At
last, we propose new detection strategies to improve the state of the art on detection of
modularity anomalies.

7. Conclusion and Future Work
This paper investigates modularity anomalies that affect software reuse. We focus on the
Software Product Line (SPL) reuse approach. For this purpose, we provide an overview
of studies that relate software reuse to modularity anomalies, specially in the SPL con-
text. Furthermore, we propose new detection strategies for two well-known modularity
anomalies: God Class and God Method. Moreover, we compare our new strategies to oth-
ers proposed in literature, to assess their effectiveness it terms of recall and precision. We
use the MobileMedia SPL, with reference lists of God Class and God Method anomalies,
for assessment of effectiveness of the compared strategies.

As a result, we observe that there is a lack of studies to investigate modularity
anomalies to software reuse. However, considering the context of SPL, some studies
have been investigating anomalies and detection strategies that affect reuse. Moreover,
we observe that our proposed detection strategies provide minimum recall (29% and 17%
for God Class and God Method, respectively) and the highest precision results (100%
and 50%) when compared to strategies from literature. Data from this work are available
online in the website of this study5, for assessment and and replication.

As future work, we suggest the investigation of other modularity anomalies such
as Lazy Class, Shotgun Surgery, and Divergent Change that may affect software reuse. We

5Website omitted due to blind review



also suggest the proposal of new detection strategies for these anomalies for evaluation
and comparison, given the lack of proposed strategies for modularity anomalies in general.
Finally, we suggest the replication of our study in other software development contexts
that apply reuse of source code using different approaches than SPL.

References

Abilio, R., Padilha, J., Figueiredo, E., and Costa, H. (2015). Detecting Code Smells
in Software Product Lines: An Exploratory Study. In Proceedings of the 12th In-
ternational Conference on Information Technology: New Generations (ITNG), pages
433–438.

Abilio, R., Vale, G., Figueiredo, E., and Costa, H. (2016). Metrics for Feature-Oriented
Programming. In Proceedings of the 7th International Workshop on Emerging Trends
in Software Metrics (WETSoM), pages 36–42.

Andrade, H., Almeida, E., and Crnkovic, I. (2014). Architectural Bad Smells in Software
Product Lines: An Exploratory Study. In Proceedings of the 11th Working Conference
on Software Architecture (WICSA), page 12.

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013). Feature-Oriented Software Prod-
uct Lines: Concepts and Implementation. Springer Science & Business Media.

Chidamber, S. and Kemerer, C. (1994). A Metrics Suite for Object Oriented Design.
Transactions on Software Engineering (TSE), 20(6):476–493.

Fard, A. and Mesbah, A. (2013). JSNOSE: Detecting JavaScript code smells. In Pro-
ceedings of the 13th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 116–125.

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition Letters,
27(8):861–874.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figueiredo, E. (2016). A Review-based
Comparative Study of Bad Smell Detection Tools. Proceedings of the 20th Interna-
tional Conference on Evaluation and Assessment in Software Engineering (EASE).

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares,
S., Ferrari, F., Khan, S., Castor Filho, F., and Dantas, F. (2008). Evolving Software
Product Lines with Aspects. Proceedings of the 30th International Conference on
Software Engineering (ICSE), pages 261–270.

Filó, T., Bigonha, M., and Ferreira, K. (2015). A Catalogue of Thresholds for Object-
Oriented Software Metrics. Proceedings of the 1st International Conference on Ad-
vances and Trends in Software Engineering (SOFTENG).

Fontana, F., Braione, P., and Zanoni, M. (2012). Automatic Detection of Bad Smells in
Code: An Experimental Assessment. Journal of Object Technology (JOT), 11(2):5–1.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Programs. Addison-
Wesley Publishing.

Jacobson, I., Griss, M., and Jonsson, P. (1997). Software Reuse: Architecture, Process
and Organization for Business Success. Addison-Wesley Publishing.



Johnson, R. and Foote, B. (1988). Designing Reusable Classes. Journal of Object-
Oriented Programming (JOOP), 1(2):22–35.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report, DTIC Document.

Kitchenham, B. and Charters, S. (2007). Guidelines for Performing Systematic Literature
Reviews in Software Engineering. In Technical report, Ver. 2.3 EBSE Technical Report.
EBSE.

Krueger, C. (1992). Software Reuse. Computing Surveys (CSUR), 24(2):131–183.

Lanza, M. and Marinescu, R. (2007). Object-Oriented Metrics in Practice: Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer Science & Business Media.

Lorenz, M. and Kidd, J. (1994). Object-Oriented Software Metrics: A Practical Guide.
Prentice-Hall.

McCabe, T. (1976). A Complexity Measure. Transactions on Software Engineering
(TSE), (4):308–320.

Miller, B., Hsia, P., and Kung, C. (1999). Object-Oriented Architecture Measures. In
Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences
(HICSS).

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur, A.-F. (2010). DECOR: A
Method for the Specification and Detection of Code and Design Smells. Transactions
on Software Engineering (TSE), 36(1):20–36.

Moha, N., Palma, F., Nayrolles, M., Conseil, B. J., Guéhéneuc, Y.-G., Baudry, B., and
Jézéquel, J.-M. (2012). Specification and Detection of SOA Antipatterns. In Proceed-
ings of the 10th International Conference on Service Oriented Computing (ICSOC),
pages 1–16.

Niu, N. and Easterbrook, S. (2009). Concept Analysis for Product Line Requirements.
In Proceedings of the 8th ACM International Conference on Aspect-Oriented Software
Development (AOSD), pages 137–148.

Palma, F. (2012). Detection of SOA Antipatterns. In Proceedings of the 10th International
Conference on Service-Oriented Computing (ICSOC) Workshops, pages 412–418.

Platenius, M., Von Detten, M., and Becker, S. (2012). Archimetrix: Improved Soft-
ware Architecture Recovery in the Presence of Design Deficiencies. In Proceedings of
the 16th European Conference on Software Maintenance and Reengineering (CSMR),
pages 255–264.

Pohl, K., Böckle, G., and van Der Linden, F. (2005). Software Product Line Engineering:
Foundations, Principles and Techniques. Springer Science & Business Media.

Prado, E., Ornellas, R., and Araújo, L. (2014). Fundamentos de Sistemas de Informação.
Elsevier Brasil.

Romero, S., de Almeida, E., Alexandre, A., Lucredio, D., and Garcı́a, V. (2004). RiSE
Project: Towards Robust Framework for Software Reuse. In Proceedings of the 5th
International Conference on Information Reuse and Integration (IRI), pages 48–53.



Vale, G. and Figueiredo, E. (2015). A Method to Derive Metric Thresholds for Software
Product Lines. In Proceedings of the 29th Brazilian Symposium on Software Engineer-
ing (SBES), pages 110–119.

Vale, G., Figueiredo, E., Abilio, R., and Costa, H. (2014). Bad Smells in Software Prod-
uct Lines: A Systematic Review. In Proceedings of the 8th Brazilian Symposium on
Software Components, Architectures and Reuse (SBCARS).

von Detten, M. and Becker, S. (2011). Combining Clustering and Pattern Detection for
the Reengineering of Component-based Software Systems. In Proceedings of the In-
ternational Symposium on Architecting Critical Systems (ISARCS) and International
Conference on Quality of software Architectures (QoSA), pages 23–32.

Weiss, D. (1999). Software Product-Line Engineering: A Family-based Software Devel-
opment Process.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012).
Experimentation in Software Engineering. Springer Science & Business Media.


