
A Tool for Detection of Co-Occurrences between Design
Patterns and Bad Smells

Bruno. L. Sousa1, Mariza A. S. Bigonha1, Kecia A. M. Ferreira2

1Computer Science Department – Federal University of Minas Gerais (UFMG)
Belo Horizonte – MG – Brazil

2Department of Computing – Federal Center for Technological Education of
Minas Gerais (CEFET-MG) – Belo Horizonte – MG – Brazil

{bruno.luan.sousa,mariza}@dcc.ufmg.br, kecia@decom.cefetmg.br

Abstract. A design pattern is a general reusable solution to recurring problems
in software design. These solutions are considered good programming practices
and aim to produce flexible, extensible and maintainable software. Bad Smells
are symptoms present in the software source code that indicate occurrence of
possible problems that can impair the quality of the project. Despite that these
two structures may have opposite concepts, studies have indicated that they may
present relations of co-occurrence during the implementation phase. Since these
relationships represent the degenerate structure of a design pattern and conse-
quently reduce the quality of the software, they should be identified and removed.
In this paper, we propose Design Pattern Smell, a tool for co-occurrences de-
tection between design patterns and bad smell in software systems. With Design
Pattern Smell, the user may identify the artifacts that hold such relationships
and the intensity with which they occur in the design patterns analyzed. In addi-
tion, Design Pattern Smell may be used as a refactoring guide, since all artifacts
detected with co-occurrences are displayed to the user.
Video: https://youtu.be/hFwyId9nHnM

1. Introduction

Design pattern is a general solution applied to a given context in the software design
[Gamma et al. 1994], aiming to achieve a high reusability and extensibility in the created
modules. These solutions encourage the use of structures composed by inheritance and
polymorphism, in order to flex the communication between objects reducing the degree
of coupling between modules and improving the software maintainability. The Gang of
Four’s (GOF) book [Gamma et al. 1994] describes 23 design patterns that are highly used
by researchers and developers, and have a major influence in the software engineering.

In contrast, bad smells are symptoms present in a particular region of the
software that may indicate a more serious problem in its design or source code
[Fowler and Beck 1999]. Fragments of code displaying these symptoms are not consid-
ered errors. However, they contribute negatively to the quality of software, increasing its
complexity and impairing important features such as modularity, extensibility, reuse and
maintainability. Therefore is important to identify these structures and remove them from
the source code of a project. In most cases, refactoring techniques are applied to eliminate
them.

https://youtu.be/hFwyId9nHnM


Although the definitions of design pattern and bad smell are completely oppo-
site, these two structures may have co-occurrence in the software source code. In fact,
some researches have investigated this theme and identified these co-occurrence. How-
ever, none of these researches have proposed tools to identify them, [Jaafar et al. 2013,
Cardoso and Figueiredo 2015, Jaafar et al. 2016, Walter and Alkhaeir 2016]. For in-
stance, analysing the above related works, we perceive that the authors of these studies
used their own scripts or manual processing to identify these relationships.

Based on this context, this paper presents a tool, Design Pattern Smell, which
supports the detection of co-occurrence between design patterns and bad smell based on
computed information from software systems. The tool receives as input XML files con-
taining the design patterns instances and a CSV file containing the code artifacts1 with
bad smell. Design Pattern Smell parses this information and then a data crossing (Vide
Section 2.3) to detect the co-occurrences. In addition, it allows the user to apply associa-
tion rules [Agrawal et al. 1993, Brin et al. 1997] on these data to identify the strength of
those relationships. To evaluate the tool, a case study was carried out with five Java soft-
ware systems from the Qualitas.class Corpus [Terra et al. 2013]. The results of this case
study suggest that Design Pattern Smell may be effectively used to support the detection
of co-occurrences between design patterns and bad smell in an easy and simple way.

The remainder of this paper is organized as follows. Section 2 describes the main
features and technical details of Design Pattern Smell. Section 3 provides the tool’s run-
ning example. Section 4 presents the evaluation of the tool. Section 5 discusses the related
work. Section 6 concludes this paper with suggestion for future work.

2. Design Pattern Smell
This section describes the Design Pattern tool.

2.1. Proposed Approach
Design Pattern Smell is a static analysis tool proposed for identifying co-occurrences of
design patterns with bad smell based on information extracted from the source code. The
decision to construct it was taken based on the purpose of assisting the identification
of existing code that present both design pattern and bad smells, as well as to support
an exploratory analysis in order to understand the reasons that contributed to the co-
occurrences of these two structures. Although Design Pattern Smell requires information
about design patterns and bad smell previously extracted, such information can be eas-
ily obtained by tools like: Desing Pattern Detection [Tsantalis et al. 2006], JDeodorant
[Tsantalis et al. 2008], JSpIRIT [Vidal et al. 2014] and RAFTool [Filó et al. 2014].

Thus, the main objective of Design Pattern Smell is to support the evaluation of
software quality by identifying code structures which the presence of a bad smell can
degenerate the application of a design pattern. Design Pattern Smell supports the detection
of co-occurrences of bad smells at class and method level with 14 design patterns from
the GOF catalog [Gamma et al. 1994].

2.2. Main Features
The main features of Design Pattern Smell are described as follows.

1Artifact in this paper is a class or method of a system.



Import of Computed Design Pattern Instances. To identify the co-occurrences
between design pattern and bad smell, Design Pattern Smell requires that the user imports
XML files with design pattern instances in a given system. This input file follows the
same format exported by the Design Pattern Detection tool [Tsantalis et al. 2006] and is
described on the Design Pattern Smell’s website [Sousa et al. 2016].

Import of Computed Artifacts with Bad Smells. Another requirement for iden-
tifying co-occurrences is a CSV file containing artifacts with the presence of bad smell.
After importing this file, Design Pattern Smell performs the parser of its contents and then
crosses the information contained in the CSV file with those in the XML files, identify-
ing the artifacts that have co-occurrence of those two structures. The input file has to be
written according to the format specified on the tool’s website [Sousa et al. 2016].

Application of Association Rules. The user may apply association rules in
the data used, in order to analyze the intensity of co-occurrence between the design
patterns and the bad smell. Design Pattern Smell provides a module that applies
these association rules automatically, preventing the user from doing this work manu-
ally. For the application of the rules, (i) a field is provided where the user enters the
number of transactions in the analyzed system and (ii) a panel with 4 types of rules,
[Agrawal et al. 1993, Brin et al. 1997], which can be calculated by tool. By default, the
4 rules are pre-selected to be computed. However, the user can filter and calculate only
those of his interest. Transaction in association rules, refers to the total number of classes
or methods belonging to the system, according to the granularity of the bad smell used.

Result Generation, Visualization and Export. After data crossing, the user
may consult the following reports: number of design pattern instances in the system, and
amount and information about the artifacts that presented co-occurrences of design pat-
terns with bad smell. In addition, after applying the association rules, the report with the
results are displayed to the user. These reports are presented in a data grid view. Design
Pattern Smell exports these results to a CSV file for easy analysis and future manipulation.

Data Management. This functionality allows the user to use data from design
patterns already stored in Design Pattern Smell to crossing with data from another bad
smell. In this case, the user must clear the information regarding bad smell under analysis
and perform the import of the other CSV file. This process may also be performed for
design patterns when the user wants to change the system under review.

Help. For users unfamiliar with association rules, this functionality describes this
method of analysis, as well as the formulas used to calculate relationships, an overview
of how to analyze results, and the definition of technical terms used to calculate formulas.
In addition, this functionality presents general information about the version of this tool,
and provides a link of a video tutorial that presents a running example of the tool.

2.3. Architecture

Design Pattern Smell architecture consists of six internal modules, as shown in Figure 1.

Input Manager. This module is responsible for managing the input files as well as
performing the verification and validation of the format required by Design Pattern Smell.
In addition, it performs data cleaning and prepares the tool for receiving new information
on instances of design patterns or bad smell.



Figure 1. Design Pattern Smell Architecture.

Data Parser. This module is responsible for parsing the information in the input
files. It can receive one or more XML files containing computed design pattern instances.
Each instance may be composed of several components that play a certain role within
these instances. In this module these components are separated and classified according
to their granularity: class, method or attribute. The CSV file is parsed, and the informa-
tion in each row of that file is grouped as a component type and sorted according to the
granularity specified by the user. All information extracted from both the XML files and
the CSV file is persisted in memory and used in the other modules. The default format
for input files is available for viewing on the tool’s website [Sousa et al. 2016].

Data Crossing. This module performs the crossing of extracted data in Data
Parser to identify artifacts that have co-occurrence of design pattern and bad smell. In this
data crossing, it is checked whether each class or method with presence of bad smell is
part of some design pattern instance. If yes, the tool lists these artifacts as co-occurrences.

Association Rules Calculator. This module implements the application of asso-
ciation rules in the information provided for the tool, in order to identify the intensity
of co-occurrence between the design patterns and bad smell. It uses quantitative infor-
mation, computed in the Data Crossing module, along with the total amount of system
transactions provided by the user to calculate the rules.

Data Viewer. This module allows reporting in a data grid view format. From
there, the user can navigate in the list of affected artifacts identified with co-occurrence.
In addition, it is possible to issue other types of reports with the information computed
by both the Data Crossing module and the Association Rules Calculator, such as: design
pattern instances in a system, rate of artifacts affected by co-occurrence, and intensity of
co-occurrence identified in each pattern existing in the system.

Output Data Parser. This module performs a parser of the reports issued by the
Data Viewer and generates an output CSV file that is stored in a user-defined location on
the user machine. This file contains the same information of the data grid view and it may
be useful to analyze co-occurrences.

2.4. Implementation

Design Pattern Smell was developed in the Java programming language with JDK 1.7
support and the Java Swing API to create the graphical user interface. Java was chosen
because of its portability, and because it is a widespread language both in academia and



industry. To parse the input XML files, we used the JDOM API2 to interpret and manipu-
late XML data from Java source code. In order to present the association rules, in the Help
option, we used the JLaTeXMath 1.0.3 API3 to show the mathematical formulas used in
each of its metrics. Design Pattern Smell was constructed by means of the Netbeans IDE
8.0.24, which provides drag and drop functionality for constructing User interface. Design
Pattern Smell is available in version 1.0 on the tool’s website [Sousa et al. 2016].

3. Running Example
This section presents an example of using the main features of Design Pattern Smell.

Figure 2 (i) shows the main Design Pattern Smell screen. This screen provides
three types of functionality: (i) in the Import XML Files with Design Pattern Instances,
the user imports the input XML files from a target system. In addition, it is necessary to
inform the name of the system, whose imported instances are referent; (ii) in the Data
Crossing, the user imports a CSV file with classes or methods of the target system that
have bad smell. When importing this file, the name of the bad smell and its granularity
should be given; (iii) at the top of the main screen there is a menu with four options:
File allows the user to enter new information regarding other bad smells and design pat-
terns; Results provides information and reports on design patterns instances and affected
artifacts; Statistics allows the user to apply association rules in the data used to identify
co-occurrences; and Help contains a reference and description of the association rules
used by Design Pattern Smell, as well as information about the version of that tool, list of
developers and links to the source code and a video tutorial.

Figure 2. (i) Main Screen to Import XML Files and CSV File; (ii) Screen for Appli-
cation of Association Rules.

Figure 2 (ii) shows the screen for applying association rules. In this screen, the
user enters a value indicating the number of transactions in the target system. Transaction
in this context refers to the total number of classes or methods that the target system has.

2http://www.jdom.org/
3https://forge.scilab.org/index.php/p/jlatexmath/
4https://netbeans.org/

http://www.jdom.org/
https://forge.scilab.org/index.php/p/jlatexmath/
https://netbeans.org/


The user can still filter the rules that will be calculated. By default, the four rules (support,
confidence, lift, and conviction) are pre-selected to be calculated. However, the user can
select the rules to be calculated. After calculating the association rules, the values are
displayed in Association Rules Results in table format that can be exported to a CSV file.

After performing the crossing of the imported data in the screen of Figure 2 (i),
Design Pattern Smell allows the user to visualize the number of identified artifacts with
co-occurrence of design patterns and bad smell. Figure 3 (i) illustrates the screen respon-
sible for displaying this information. This screen is formed by a table whose lines refer
to a particular design pattern. For each line, it is informed the total of artifacts that make
up the respective design pattern, the number of artifacts that were affected by bad smell,
and the percentage of affected artifacts. These results can be exported to a CSV file via
the button in the lower right corner called Export Results in CSV.

Figure 3. (i)Visualizing the Amount of Affected Artifacts by Co-occurrence; (ii)
Screen for Viewing Artifacts Affected by Co-occurrences.

Finally, after crossing the data, the user can visualize the artifacts in which the
co-occurrences have been identified. To access this information the user must select the
Artifacts with Co-occurrence option from the Results menu and will be redirected to the
screen shown by Figure 3 (ii). This screen displays a table with the list of affected arti-
facts. Each line refers to an artifact type and displays information such as: name, file (in
the case of methods), package, design pattern on which this artifact is referenced, and role
exercised within the pattern. In addition, the user may restrict the information displayed
on this screen to specific design pattern. To do this, the user have to select the desired
options and press the Filter button. The results may be exported to a CSV file.

4. Tool’s Evaluation
First, Design Pattern Smell was evaluated in a case study to identify co-occurrences
between GOF design patterns with bad smells God Class and Long Method
[Sousa et al. 2017]. Subsequently, in an empirical study conducted within a research that
is underway, we extended this evaluation to the bad smells: Data Class, Feature Envy, and
Refused Bequest. In both evaluations, we used a dataset with five Java systems, from the
Qualitas.class Corpus [Terra et al. 2013]. From this dataset we extract the GOF design
pattern instances and the classes and methods with the presence of bad smell. The results
suggest that Design Pattern Smell is able to correctly detect artifacts with co-occurrence



and apply association rules identifying the intensity of the relationships for each design
pattern. The results of the evaluation are available on the tool website [Sousa et al. 2016].

5. Related Work
The literature has provided several tools for detection of design patterns and bad
smells in software systems. Design Pattern Detection [Tsantalis et al. 2006], PINOT
[Shi and Olsson 2006] and DPFinder [Bernardi et al. 2013] are examples of tools that by
means of a static analysis in the source code of Java projects, identify GOF design pat-
terns instances. These tools have been used by researchers and developers. JDeodorant
[Tsantalis et al. 2008], JSpIRIT [Vidal et al. 2014] and RAFTool [Filó et al. 2014] are ex-
amples of tools that detect bad smells. While JDeodorant uses an AST approach to symp-
tom identification, JSpIRIT and RAFTool use a metric-based approach. These tools have
also been used by researchers and developers for quality assessment in software projects.

Although there is a wide range of tools that detect design patterns and bad smells
in software projects, the literature lacks of tools that identify the co-occurrences of
these two structures. Some studies, [Jaafar et al. 2013, Cardoso and Figueiredo 2015,
Jaafar et al. 2016, Walter and Alkhaeir 2016], have used their own scripts or manual pro-
cessing of data extracted from software projects to identify these relationships, without
providing any kind of tool to automate this task. To overcome this limitation, we presented
the Desisn Pattern Smell that helps the user to detect these relationships in a software
project, based on information about design patterns and bad smell computed.

6. Conclusion
This paper presented Design Pattern Smell, a tool for detecting co-occurrences between
design patterns and bad smell. This tool receives as input XML files with design pattern
instances and a CSV file with code artifacts that have bad smell presence. Design Pattern
Smell provides a simple and intuitive interface for selecting input files and provides agility
in the detection of artifacts with co-occurrence. In addition, Design Pattern Smell allows
the user to apply association rules on the data collected to identify the intensity of the co-
occurrences, and to export reports. Design Pattern Smell currently supports co-occurrence
detection of bad smells at class and method level with 14 GOF design patterns.

As future work, we want to expand the set of design pattern to all 23 that make up
the GOF catalog. In addition, it is desired to add a static analysis module in the source
code of Java software systems for automatically identification of design pattern instances,
and to add other statistical methods for analysis of intensity of co-occurrences.

7. Acknowledments
This work was sponsored by CAPES.

References
[Agrawal et al. 1993] Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining associa-

tion rules between sets of items in large databases. SIGMOD Rec., 22(2):207–216.

[Bernardi et al. 2013] Bernardi, M. L., Cimitile, M., and Di Lucca, G. A. (2013). A model-
driven graph-matching approach for design pattern detection. In Reverse Engineering
(WCRE), 2013 20th Working Conference on, pages 172–181.



[Brin et al. 1997] Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997). Dynamic item-
set counting and implication rules for market basket data. SIGMOD Rec., 26:255–264.

[Cardoso and Figueiredo 2015] Cardoso, B. and Figueiredo, E. (2015). Co-occurrence of
design patterns and bad smells in software systems: An exploratory study. In Proc. of
the Conference on Brazilian Symposium on Information Systems, pages 347–354.

[Filó et al. 2014] Filó, T. G. S., Bigonha, M. A. S., and Ferreira, K. A. M. (2014). Raftool
- filtering tool of methods, classes and packages with uncommon measurements of
software metrics (in portuguese). In Proceedings of the X WAMPS 2014, pages 1–6.

[Fowler and Beck 1999] Fowler, M. and Beck, K. (1999). Refactoring: Improving the De-
sign of Existing Code. Addison-Wesley.

[Gamma et al. 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[Jaafar et al. 2013] Jaafar, F., Guéhéneuc, Y., Hamel, S., and Khomh, F. (2013). Analysing
anti-patterns static relationships with design patterns. ECEASST, 59.

[Jaafar et al. 2016] Jaafar, F., Gueheneuc, Y.-G., Hamel, S., Khomh, F., and Zulkernine,
M. (2016). Evaluating the impact of design pattern and anti-pattern dependencies on
changes and faults. Empirical Software Engineering, 21(3):896–931.

[Shi and Olsson 2006] Shi, N. and Olsson, R. A. (2006). Reverse engineering of design
patterns from java source code. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, ASE ’06, pages 123–134.

[Sousa et al. 2016] Sousa, B., Bigonha, M., and Ferreira, K. (2016). Design pat-
tern smell. http://www2.dcc.ufmg.br/laboratorios/llp/Products/
indexProducts.html. Accessed on October 17, 2016.

[Sousa et al. 2017] Sousa, B., Bigonha, M., and Kecia, F. (2017). Evaluating co-occurrence
of gof design patterns with god class and long method bad smells. In Proceedings of
the Brazilian Symposium on Information Systems, pages 1–8. (paper accepted).

[Terra et al. 2013] Terra, R., Miranda, L. F., Valente, M. T., and Bigonha, R. S. (2013).
Qualitas. class corpus: A compiled version of the qualitas corpus. ACM SIGSOFT
Software Engineering Notes, 38(5):1–4.

[Tsantalis et al. 2008] Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. (2008). JDeodor-
ant: Identification and Removal of Type-Checking Bad Smells. In Proc. of the 12th
CSMR, pages 329–331.

[Tsantalis et al. 2006] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and Halkidis, S. T.
(2006). Design pattern detection using similarity scoring. Software Engineering, IEEE
Transactions on, 32(11):896–909.

[Vidal et al. 2014] Vidal, S. A., Marcos, C., and Dı́az-Pace, J. A. (2014). An approach to
prioritize code smells for refactoring. Automated Software Engineering, 23:501–532.

[Walter and Alkhaeir 2016] Walter, B. and Alkhaeir, T. (2016). The relationship between
design patterns and code smells: An exploratory study. Information and Software
Technology, 74:127–142.

http://www2.dcc.ufmg.br/laboratorios/llp/Products/indexProducts.html
http://www2.dcc.ufmg.br/laboratorios/llp/Products/indexProducts.html

	1 Introduction
	2 Design Pattern Smell
	2.1 Proposed Approach
	2.2 Main Features
	2.3 Architecture
	2.4 Implementation

	3 Running Example
	4 Tool's Evaluation
	5 Related Work
	6 Conclusion
	7 Acknowledments

