A systematic literature mapping on the relationship between
design patterns and bad smells: Papers Summary

Bruno L. Sousa
Computer Science Department
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil
bruno.luan.sousa@dcc.ufmg.br

1 INTRODUCTION

This document presents a summary of the studies selected for
conducting a Systematic Literature Review on the relationship
between design patterns and bad smells. In this summary the main
idea of each selected studies is discussed. In addition, during the
preparation of these abstracts, the papers were analyzed and the
main and most relevant information was extracted based on the
research questions proposed in the Systematic Literature Review.

The Systematic Literature Review was conducted with 16 stud-
ies that address the relationship between design patterns and bad
smells. Table 1 lists all 16 selected primary studies. The studies are
ordered by year of publication. For each study, we extracted title,
authors, publisher and the relation between design patterns and bad
smells established with them. During the data summarization, three
types of relationships were established: co-occurrences, refactoring
and impact on software quality.

The remainder of this document is organized as follows. Section 2
describes the studies that explore the relationships of co-occurrence
between design patterns and bad smells. Section 3 reports the stud-
ies that apply the design patterns as refactoring solutions for certain
structures with the presence of bad smells. Section 4 is intended
for studies that analyze the impact of design patterns on software
quality.

2 CO-OCCURRENCE BETWEEN DESIGN
PATTERNS AND BAD SMELLS
RELATIONSHIP

Four of 16 studies establish a relationship of co-occurrence between
design patterns and bad smells. This section presents a description
of these studies, following the same order as they appear in Table 1.

2.1 Analysing Anti-Patterns Static
Relationships with Design Patterns

Jaafar et al. [7] stress that software systems are constantly changing.
In the midst of this, inappropriate developer knowledge may be a
key factor in introducing anti-patterns. Large, long-lasting systems

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SAC’18, April 9-13, 2018, Pau,France

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5191-1/18/04. .. $15.00

https://doi.org/xx.xxx/XxXx_x

Mariza A. S. Bigonha
Computer Science Department
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil
mariza@dcc.ufm.br

Kecia A. M. Ferreira
Department of Computing
Federal Center for Technological
Education of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil
kecia@decom.cefetmg

can present both anti-pattern and design patterns in the source
code. In addition, there may be cases where entities of these two
structures end up having some relationship. From these facts, Jaa-
far et al. [7] analyzed the existence, evolution and impact of static
relationship between anti-patterns and design patterns in software
systems. During the investigation, a case study was conducted, from
snapshots of three open source Java systems: ArgoUML, JFreeChart
and Xerces]. Information was extracted from design patterns, bad
smells, and static relationship between both. Using a contingency
table, Fisher’s exact test and Odds ratio ([14]), the data were ana-
lyzed and the statistical significance of the relationship investigated
were verified.

Jaafar et al. [7] concluded that (i) design patterns may have dif-
ferent proportions of static relationship with anti-patterns, (ii) the
Command design pattern was identified as having the greatest
relationship with the investigated anti-patterns, (iii) existing re-
lationships between these two structures are not random, since
they are constantly growing during the evolution of the project,
and finally, (iv) classes that participate in static relations between
anti-patterns and design patterns are more prone to change and
less prone to failures in relation to classes that have the presence
of anti-pattern, but do not participate in this relation.

2.2 Co-Occurrence of Design Patterns and Bad
Smells in Software Systems: An
Explorato-ry Study

Cardoso and Figueiredo [1] report the importance of design patterns
in the literature, and emphasize that these solutions are considered
good programming practices and encourage the construction of
flexible and reusable structures. However, the authors have identi-
fied previous studies that point out relations of these solutions with
bad smells, originating mainly from the inappropriate application
of design patterns. Based on these clues, the authors carried out
an exploratory study in order to identify co-occurrences between
design patterns and bad smells. This study focused on two types of
analysis. The first of these is based on the identification of possible
design patterns that can co-occur with bad smells. To conduct this
first analysis, Cardoso and Figueiredo [1] extracted data on design
patterns and bad smells from five software projects, and applied
association rules to detect possible relationships between these
structures. The second analysis is based on the discovery of facts
that explain the emergence of these relations.

https://doi.org/xx.xxx/xxx_x

SAC’18, April 9-13, 2018, Pau,France

B. Sousa et al.

Title Author

Publisher Relationship

1. Assessment of Design Patterns During Software — Wendorff [19]
Reengineering: Lessons Learned from a Large Commer-
cial Project

2. Coupling of Design Patterns: Common Practices and
Their Benefits

3. Defect frequency and design patterns: An empirical
study of industrial code

4. Do Design Patterns Impact Software Quality Posi-
tively?

5. Automated refactoring to the Strategy design pattern
6. Analysing Anti-patterns Static Relationships with De-
sign Patterns

7. A multiple case study of design pattern decay, grime,
and rot in evolving software systems

8. Code Quality Cultivation

McNatt and Bieman [11]

Vokac [16]

Christopoulou et al. [2]
Jaafar et al. [7]

Izurieta and Bieman [6]
Speicher [15]

9. Automated pattern-directed refactoring for complex
conditional statements

10. Automatic recommendation of software design pat-
terns using anti-patterns in the design phase: A case
study on abstract factory

11. A proposal of software maintainability model using
code smell measurement

12. Co-Occurrence of Design Patterns and Bad Smells in
Software Systems: An Exploratory Study

13. ACDPR: A Recommendation System for the Cre-
ational Design Patterns Using Anti-patterns

14. Evaluating the impact of design pattern and anti-
pattern dependencies on changes and faults

15. The relationship between design patterns and code
smells: An exploratory study

16. Automated refactoring of super-class method invo-
cations to the Template Method design pattern

Liu et al. [10]

Nahar and Sakib [12]

Wagey et al. [17]

Cardoso and Figueiredo [1]
Nahar and Sakib [13]
Jaafar et al. [8]

Walter and Alkhaeir [18]

Zafeiris et al. [20]

Khomh and Gueheneuce [9]

European Conference on Software Maintenance
and Reengineering

Impact on software quality

International Computer Software and Applications
Conference
IEEE Transactions on Software Engineering

Impact on software quality
Impact on software quality

European Conference on Software Maintenance
and Reengineering

Information and Software Technology

Electronic Communications of the EASST

Impact on software quality

Refactoring

Co-occurrence
Software Quality Journal Impact on software quality
Communications in Computer and Information Sci-

ence
Journal of Central South University

Impact on software quality
Refactoring

Central Europe CEUR Workshop Proceedings Refactoring

International Conference on Data and Software
Engineering
Brazilian Symposium on Information Systems

Impact on software quality
Co-occurrence
IEEE International Conference on Software Analy-

sis, Evolution and Reengineering
Empirical Software Engineering

Refactoring
Co-occurrence
Co-occurrence

Information and Software Technology

Information and Software Technology Refactoring

Table 1: Final result of the implementation phase of the Systematic Review.

At the end of the study, Cardoso and Figueiredo [1] identified
co-occurrences between (i) Command with God Class and (ii) Tem-
plate Method with Duplicate Code. When analyzing the entities
that presented these two structures, the authors concluded that the
excessive use of a simple receiver class in the application of the
Command design pattern to different interests caused the appear-
ance of God Class bad smell. In the case of the Template Method
design pattern, the multiple duplications of implementations were
responsible for its co-occurrence with the Duplicate Code bad smell.

2.3 Evaluating the Impact of Design Pattern
and Anti-Pattern Dependencies on
Chan-ges and Faults

Jaafar et al. [8] argue that previous studies have pointed out that
design patterns can correlate with complex structures and result
in failure occurrences. In addition, there are reports of problem
propagation in classes with design patterns and bad smells that have
static or commonality dependencies with other classes. Dependency
of commutation is defined by the authors as change in one class that
directly impacts on the change of another. In view of this finding,
the authors decided to investigate the impact of such dependencies
on object-oriented systems and to analyze their relationship with
(i) propensity for failure, (2) types of exchanges, and (iii) types of
failures that classes exhibit.

In order to conduct this investigation, they extracted data re-
ferring to design patterns, anti-patterns, static relationship of de-
sign patterns and anti-patterns, design patterns and anti-pattern
commonality relations, and class failures. Such information was ob-
tained from snapshots of three open source Java systems: ArgoUML,
JFreeChart and Xerces] by means of the Fischer statistical test and
Odds ratio [14]. Jaafar et al. [8] examined the significance of the
relationships between the occurrence of a static or commutative
dependency on classes with design patterns or anti-patterns and
the risk of failure.

As the main results, the authors concluded that (i) classes that
have a static or commonality relationship with anti-pattern classes
have significantly more failures than other classes, (ii) classes that
have commutation dependencies with classes of design patterns
have significantly more (iii) structural changes are more likely
to occur in classes with anti-pattern dependencies than in other
classes, (iv) code additions are more prone to (v) specific types of
failures are more prevalent in certain anti-patterns, such as Blob
Class and Complex Class, which mainly propagate logical failures.

2.4 The Relationship Between Design Patterns
and Code Smells: An Exploratory Study
Walter and Alkhaeir [18] carried out an exploratory study with the
goal of (i) determining if and how the presence of design patterns
are related to the presence of bad smells, (ii) investigating if and
how the presence of these relations changes along the evolution of

A systematic literature mapping: Papers Summary

the code, and (iii) identify relationships between design patterns
and bad smells. To achieve these objectives, the authors performed
an analysis of the evolution of two systems, Apache Maven and
JFreeChart. A total of 87 versions were analyzed, where 32 were
related to the first system and 55 were related to the second. In
addition, the study was conducted with 7 different types of bad
smells and nine design patterns from the GOF catalog [5]. The
information concerning design patterns and bad smells instances
in these projects were extracted and, through the hypothesis test,
non-parametric trend test (Mann-Kendall) and association rules,
the authors performed the analysis of the information extracted,
the order to reach a conclusion for i, ii and iii goal, respectively.

The main results obtained in this study showed that the presence
of design patterns is related to the absence of bad smells in the same
class. In other words, a class that makes use of the design pattern
tends not to display bad smells. In addition, some design patterns
have been pointed out as more likely to lack bad smells. It is the case
of the design patterns: State-Strategy, Adapter-Command, Factory
Method and Singleton. However, the Composite design pattern
showed a stronger relation with the presence of bad smells, being
an exception to this trend. According to the authors, the results
obtained in relation to the Singleton design pattern were surprising,
due to the fact that other research points the contrary.

Finally, on ii goal, the authors conclude that during the evolu-
tion of a project, the presence of bad smells in classes with design
patterns is not greater than in the creation phase of the software.
Therefore, this result implies in the fact that software systems are
already designed with bad smells.

3 REFACTORING RELATIONSHIP

Five of the 16 studies establish a refactoring relationship between
design patterns and bad smells. In these studies, design patterns
are proposed as possible solutions to eliminate occurrences of bad
smells or complex structures that impair the quality of software.
This section presents a description of these studies following the
order in which they appear in Table 1.

3.1 Automated Refactoring to the Strategy
Design Pattern

Christopoulou et al. [2] proposed a code refactoring approach with
the Complex Conditional Statements bad smell, from the appli-
cation of the Strategy design pattern. The Complex Conditional
Statements bad smell has been reported by Fowler and Beck [4]
as complex conditional structures that propagate along a software
source code, reducing its readability and making it more complex.
These conditional structures may be replaced by a inheritance hier-
archy, in which the polymorphism is made, leaving the code more
modularized and flexible to modifications. The Strategy design
pattern, proposed by Gamma et al. [5], uses this hierarchy in its
structure and, therefore, giving to Christopoulou et al. [2] a choice
to combat this bad smell.

In the proposed implementation, Christopoulou et al. [2] have
created two types of algorithms. The first consists of identifying the
anomalous structures in a Java source code. The second applies the
Strategy design pattern to transform complex conditional structures
into an inheritance hierarchy, replacing the use of conditionals with

SAC’18, April 9-13, 2018, Pau,France

polymorphisms. This approach was implemented in the JDeodorant
plugin of Eclipse IDE as support for automatic refactoring in Java
projects.

After the implementation, the authors conducted an experiment
involving 8 Java software projects, where six are open source and
two are proprietary code. To evaluate this approach, they used the
metrics: precision and recall. The results of the evaluation showed
good efficacy in relation to quality, since almost half of the sug-
gested refactorings were significant. In addition, efficiency over time
was another relevant and quite satisfactory factor. The processing
time of the algorithm did not exceed 30 seconds for medium-sized
projects and 2.5 minutes for large projects.

3.2 Automated Pattern-Directed Refactoring
for Complex Conditional Statements

Liu et al. [10] discuss the importance of avoiding the use of complex
conditional statements in the source code of a project. If a program
uses these claims on a large scale, there is a high probability that
the Switch Statements bad smell [4] be present in the structure of
that program. One way to eliminate it is via the application of refac-
toring techniques, in which a inheritance hierarchy is created and
polymorphisms are introduced in place of conditional structures.

Although many developers are aware of the importance of refac-
toring for quality assurance, there is still some sub-use of this tech-
nique. Thus, Liu et al. [10] proposed a refactoring approach using
the Factory Method and Strategy design patterns, which consists
of (i) identifying refactoring opportunities in the code, i.e. points
where there are conditional structures, and (ii) applying refactor-
ing in those points using the Factory Method or Strategy design
pattern. In this approach, four algorithms were constructed, two of
which were used to identify refactoring opportunities and two for
refactoring.

In the evaluation of this approach, the following metrics were
used: precision, recall and accuracy. By the results, the refactoring
approach, both by the Factory Method and Strategy design pattern,
were efficient in relation to the reduction of cyclomatic complexity
and number of methods code lines. However, some cases of false
positives and false negatives were found, originating from some
deficiencies in the approach. The authors intend to correct these
cases in future works.

3.3 Automatic Recommendation of Software
Design Patterns Using Anti-Patterns in the
Design Phase: A Case Study on Abstract
Factory

Nahar and Sakib [12] believe that choosing the design pattern
could be made easier if done in conjunction with a recommenda-
tion tool. As a result, the authors created a tool, based on UML class
diagrams, which incorporates both the detection of anti-patterns
and the recommendation of design patterns in the design phase
of the software. Anti-pattern based Design Pattern Recommender
(ADPR) is composed of two phases. The first phase consists in ana-
lyzing the possible existence of anti-patterns in the software. The
second phase detects the existing anti-patterns and recommends

SAC’18, April 9-13, 2018, Pau,France

solutions composed of design patterns that eliminate the detected
anti-patterns.

The authors carried out a case study to evaluate the recommen-
dation of solutions with the Abstract Factory design pattern. The
case study used an open source software developed in the Java lan-
guage, called Painter. This software was chosen because the poor
application of the Abstract Factory design pattern led to the occur-
rence of anti-patterns. In this evaluation, the effectiveness of the
proposed approach was proven, which allowed the execution of an
experiment with a larger number of software and the comparison
of ADPR with other types of tools.

In a second evaluation, the authors compared the proposed tool
with a code-based tool. Five Java open source projects were used,
which are hosted on Github. In the comparison of the results, the
authors concluded that the ADPR achieved a high precision, identi-
fying all the points in which the application of the Abstract Factory
design pattern was degraded and culminated in the presence of
anti-patterns. The code-based tool did not perform well and had
false-negative occurrences.

3.4 ACDPR: A Recommendation System for
the Creational Design Patterns Using
Anti-Patterns

Nahar and Sakib [13] have proposed a tool for recommending cre-
ative design patterns in the design phase of software. This tool
uses anti-pattern characteristics to make possible recommenda-
tions. Anti-patterns in this study are considered by the authors as
source code structures in which there was loss of effectiveness of
the design patterns. For example, a structure with a class group
instantiated directly without using a factory for its instantiation
is considered a loss of the Abstract Factory project pattern. Each
breeding design pattern has characteristics that drive its indica-
tion as a possible refactoring candidate. A punctuation system was
included in the approach to classify the structures that can be refac-
tored and indicate a type of design pattern more likely to be applied
in this activity.

The tool was implemented in Java. The authors used a data set
consisting of 21 open source projects also developed in the Java
programming language for tool evaluation. For this evaluation, the
metrics: precision, recall and f-measure were used to analyze the
effectiveness of the recommendations. The results of this experi-
ment were considered satisfactory, since the tool did not present
cases of false positives and only a single case of false negative was
returned.

3.5 Automated Refactoring of Super-Class
Me-thod Invocations to the Template
Method Design Pattern

Zafeiris et al. [20] point out that inheritance is the mechanism
used in object-oriented programming and supports the implemen-
tation of polymorphism in the development of a software project.
These features enable the creation of modular and flexible software.
However, the application of this mechanism must be specified and
implemented with care so as not to lead to the occurrence of a bad
smell called by Fowler and Beck [3] as Call Super. This bad smell

B. Sousa et al.

consists of an extension of behavior of a concrete method, through
the use of the keyword super. Gamma et al. [5] recommend using
the Template Method design pattern for controlled extension of the
behavior of a method.

Thus, the authors suggest a refactoring technique that aims to
use the Template Method design pattern to eliminate structures
with the Super Call symptom existing in the source code. Initially,
the authors proposed an algorithm that performs static analysis in
the source code of Java projects and identifies refactoring opportuni-
ties. This algorithm converts all classes of a project into an abstract
syntax tree (AST) and parses the instances of methods that include
super invocations. After this initial phase of identifications, an-
other algorithm is applied in order to perform the transformations
in the source code. This second algorithm consists of seven steps
that specify the introduction of the Template Method design pat-
tern into the identified opportunities. The proposed approach was
implemented as an extension to the JDeodorant plugin of Eclipse
IDE.

For the evaluation, Zafeiris et al. [20] used a set composed of 12
open source projects, developed in Java. The proposed approach
was tested in this benchmark, and through an experimental analy-
sis, the authors verified that the identification algorithm suggested
20.5% of refactoring candidate instances. According to the authors,
most of the rejected refactorings were related to trivial or semanti-
cally irrelevant cases, thus making them their satisfactory behavior.
In addition, the application of refactorings in the identified opportu-
nities impacted on the reduction of the Specialization Index (SIX) in
the affected subclasses. Finally, the approach proved to be scalable,
consuming a runtime of 7 to 25 seconds for small to medium-sized
projects, not exceeding 1 minute for large projects.

4 IMPACT ON SOFTWARE QUALITY
RELATIONSHIP

Seven of the 16 studies establish an impact on software quality
relationship. These studies carry out empirical analyzes in which
aspects and issues related to the application of design patterns are
assessed, which can improve the quality of software or generate im-
pacts that degrade the structure of the design pattern. This section
presents a description of these studies, following the same order as
they appear in Table 1.

4.1 Assessment of Design Patterns During
Software Reengineering: Lessons Learned
from a Large Commercial Project

Wendorft [19] evaluated the application of design patterns in com-
mercial software in order to discover possible negative impacts
generated by this technique. This analysis was conducted by a
software engineer with eight years of professional experience. A
proprietary software developed in the C++ language was used. In
the study, Wendorff [19] realized that this technique can generate
some negative impacts. According to him, the first results extracted
from this analysis refers to the misuse of these solutions by the de-
velopers, due to the lack of understanding of the logic involved in its
implementation. Other interesting results are that the application of
design patterns does not fit the requirements of the project. In other
words, the non-framing of these techniques can be represented by

A systematic literature mapping: Papers Summary

situations such as: overestimation and change of requirements as
well as application of the solution without necessity.

At the end of the study, the author developed a simple procedure
to mitigate the negative impacts caused and guide the developer in
removing inappropriate source code patterns. This guide consists
of seven steps: (i) identification of quality attributes relevant to the
software, (ii) identification of the patterns used in the code, (iii)
attempt to reconstruct the existing reasoning behind the patterns,
(iv) evaluation of the concrete benefit, (v) evaluation of the concrete
extra cost, (vi) evaluation of the effort required for removal and
(vii) application of a decision to remove the pattern. This script was
evaluated during the process of reengineering the analyzed soft-
ware. According to the author, the decisions became more objective,
well documented and more solid. However, the removal decision
still remained subjective in some places.

4.2 Coupling of Design Patterns: Common
Practices and Their Benefits

McNatt and Bieman [11] point out that in the software development
process, design patterns can relate to one another by generating
pattern couplings. This type of coupling is defined by the authors as
two different design patterns that have at least one class in common.

In this study, the authors decided to evaluate the impact of these
structures in the context of software quality through works that
report occurrences of pattern matching. The set of papers selected
for analysis included 16 documents, distributed among industrial
applications and analytical studies. These documents were divided
into four categories: pure analytical study, analytical study with
synthetic examples, industry case studies considering existing code
and case study of the new project industry. The coupling types
were also classified into loosely, referring to patterns with few
connections and simpler to be modified in the future, and tightly,
referring to strongly connected patterns with many dependencies,
where small changes in one pattern can impact others.

Analyzing the impact of these relationships, the authors con-
cluded that: (i) the tightly coupling type results in a difficult design
to be modularized, making it difficult to modify; (ii) the loosely
coupling type is more flexible and a possible modification in this
type of structure does not generate a large impact compared to
the coupling tightly; (iii) the Singleton design pattern presented a
detrimental tendency to the attribute of modularity quality, due to
the fact that tightly coupling instances were found involving this
pattern.

4.3 Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code

Vokac [16] argues that, while there is great acceptance of design
patterns by researchers and practitioners, some studies show that
such solutions can lead to defects in software. As a result, the author
proposed to investigate them. Thus, a case study with proprietary
software developed in the C++ language, called SuperOffice CRMS5,
was carried out. The owner of this product provided the author
full access to the source code and version history of the software.
During the investigation, snapshots for the three-year period were
analyzed. For the extraction of instances of design patterns, Vokac
[16] has built its own tool that supports the identification of five

SAC’18, April 9-13, 2018, Pau,France

design patterns proposed by Gamma et al. [5]: Singleton, Template
Method, Decorator, Observer, and Factory Method. The defects in
the project were extracted through an integration of the version
control system (CSV) with the defect detection system, and a textual
analysis of the comments in the CSV to recover defects that had no
direct connection between both systems.

Data analysis was performed using a logistic regression model [?
]. The author found some significant correlations for the patterns
explored. The Factory design pattern had a lower defect rate. On
the other hand, the Observer design pattern was correlated with
higher occurrence rates of defects. The Template Method design
pattern presented an inconclusive characteristic in the study, since
it occurred in several different contexts. The Decorator design pat-
tern did not present statistically significant results due to its low
frequency of occurrence. Another interesting result of this study
was that the combination of the Singleton design pattern with
Observer tends to be used in complex areas with more code and
higher frequency of defects. Therefore, the author concluded that
both Singleton and Observer tend to associate complexity within a
software.

4.4 Do Design Patterns Impact Software
Quality Positively?

Khomh and Gueheneuce [9] raise a hypothesis that design patterns
may not improve quality attributes as expected and, in addition, may
generate negative impacts. In order to confirm the hypothesis raised,
the authors prepared a survey to provide evidence on the impact of
design patterns on software quality. In this survey, the following
attributes were considered: expandability, simplicity, reusability,
learning, comprehensibility, modularity, generalization, real-time
modularity, scalability and robustness. The design patterns used
in this study were the 23 standards proposed by Gamma et al. [5].
The questionnaire used to apply the survey was constructed based
on these data. Thus, for each design pattern, one should classify
the impact that design pattern has on each of the quality attributes.
The scale used in the classification is composed of 6 different types
of responses: very positive, positive, not significant, negative, very
negative and not applicable. This questionnaire was applied during
the period from January to April 2007 and, after this period, the
authors started the analysis of the answers and applied a hypothesis
test and a statistical test called Bernoulli distribution.

Khomh and Gueheneuce [9] have concluded that the use of de-
sign patterns does not always improve system quality. Some design
patterns, such as Flyweight, for example, decrease some attributes,
negatively impacting software quality. For this reason, some care is
required in the use of these solutions during development, as they
may hinder the maintenance and evolution of the software.

4.5 A Multiple Case Study of Design Pattern
Decay, Grime, and Rot in Evolving Software
Systems

Izurieta and Bieman [6] report that design patterns can degrade over

time. The demand for requirements and maintenance performed

on the project may imply the inclusion of class responsibilities and
modifications to the project structure that increase the complex-
ity of the source code and cause possible design patterns in the

SAC’18, April 9-13, 2018, Pau,France

source code to lose their effectiveness. Due to these possibilities,
the authors of this study proposed an investigation to understand
to what extent, in the evolution of a software, the design patterns
keep its structure flexible and easy to maintain. Furthermore, it
was investigated whether the system maintain the initial levels of
quality.

A multiple case study was conducted with three open source
software projects developed in Java. In this case study, some time
versions of these projects were obtained so that the effectiveness of
the design patterns could be evaluated in the course of the evolution
of each project. To extract the design patterns, they used the tools:
Design Pattern Finder and PatternSeeker Tool. The evaluated design
patterns were: Factory Method, Adapter, Singleton, State, Iterator,
Proxy and Visitor. While conducting this study, the authors (i)
identified the instances of the design patterns in each version of the
software projects, (ii) reverse-engineered the UML diagram of the
design patterns to verify entity relationships, (iii) mined software
versions to capture information about the loss of effectiveness of
design patterns, (iv) analyzed the results obtained and (v) evaluated
twelve prepositions elaborated at the beginning of this evaluation.

Izurieta and Bieman [6] did not identify evidence of structural
integrity decomposition of design patterns in these systems. How-
ever, considerable evidence of pattern decay has been found due
to the accumulation of non-class artifacts that play roles in the
patterns. Dependencies among components have increased, thus
reducing modularity, testability, and adaptability of systems. Such
occurrences are directly related to the increase of the coupling in
the evolution of these projects.

4.6 Code Quality Cultivation

Speicher [15] argues that design patterns are considered as good
programming practices and encourage the production of flexible
and extensible software. However, these structures can still lead
to bad smells in the source code of the project. One motivation
regarding the Visitor design pattern is discussed by the author. This
pattern tends to exhibit the bad smell Feature Envy. Speicher [15]
presents an example in which this pattern separates the functional-
ities of the data, in order to aid the construction of complex objects
and extend them to the use of new functionalities. However, how
the Visitor design pattern accesses the elements data contributes to
a false Feature Envy identification. Other design patterns such as
Flyweight, Interpreter, Mediator, Memento, State, and Strategy are
discussed and the author suggests that, in addition to separating
objects and data, some properties of the patterns may be responsible
for the occurrences of bad smells in the code.

Based on this discussion, an approach to automated identifi-
cation of bad smells is proposed, which takes into account some
decisions of the developers that may be considered false indications
of bad smells. This approach was implemented based on a logical
meta-programming, where Java code was represented as Prolog
facts, and detection strategies and design patterns were defined as
predicates. Amid the modeling of this approach, possible decisions
of the developers that could be considered false indications of bad
smells were modeled as verifications in their respective predicates.
For example, in the Visitor design pattern, Visitor class access to
data from other objects can be considered an envious feature, even

B. Sousa et al.

though this is a responsibility of this class. Such occurrence rep-
resents a kind of natural odor and should be disregarded in the
identification of bad smells.

As a way of evaluating the approach, a case study was carried
out, in which an example is presented to identify bad smells taking
into account intentions of developers. In this case study, an open
software developed in the Java language, called ArgoUML, was
used. After the execution of this case study, the author concludes
that the proposed approach for identifying bad smell obtained a
good precision.

4.7 A Proposal of Software Maintainability
Mo-del Using Code Smell Measurement

Wagey et al. [17] highlight the importance that the maintenance
phase has on a software. They emphasize that 66% of the software
lifecycle and 60% of the costs are spent just at this stage. This in-
formation shows that in the planning of a project it is necessary to
take into account the maintainability of the same to guarantee a
reduction of costs. Some solutions, such as design patterns, for ex-
ample, tend to have a positive impact on the design of applications,
avoiding the emergence of complex structures.

From this, the authors proposed a new model for measuring
the external maintainability attribute in a software application,
examining bad smells. This model was built based on an attribute
dependency graph consisting of three levels: low, medium and high.
The low level is responsible for including the metrics used in this
model. They used 11 different metrics according to the bad smells
characteristics to be identified in this model. The average level is
composed of five bad smells, proposed by Fowler and Beck [4].
The high level contains maintainability characteristics: modularity,
reusability, analysability, modifiability and testability. During the
creation of this quality model, the authors derived metric scales for
each of the bad smells. The scales used varied between the following
characteristics: Very Good, Good, Medium, Bad, Very Bad.

To evaluate this model, Wagey et al. [17] conducted a case study
with six open source Java applications. In these applications, data
were collected regarding design patterns, metric values in each soft-
ware and the density of each application’s pattern. When analyzing
the data obtained, the authors realized that the density value of the
pattern has a positive impact on the maintainability of a software.
Therefore, the higher the density of the pattern, the greater the
maintainability of a project.

REFERENCES

[1] Bruno Cardoso and Eduardo Figueiredo. 2015. Co-Occurrence of Design Pat-
terns and Bad Smells in Software Systems: An Exploratory Study. In Proc. of the
Brazilian Symposium on Information Systems. 347-354.

Aikaterini Christopoulou, E. A. Giakoumakis, Vassilis E. Zafeiris, and Vasiliki

Soukara. 2012. Automated refactoring to the Strategy design pattern. Information

and Software Technology 54, 11 (2012), 1202-1214.

Martin Fowler. 2015. CallSuper. https://martinfowler.com/bliki/CallSuper.html.

(2015). Accessed March 2017.

[4] M. Fowler and K. Beck. 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[6] Clemente Izurieta and JamesM. Bieman. 2013. A multiple case study of design
pattern decay, grime, and rot in evolving software systems. Software Quality
Journal 21, 2 (2013), 289-323.

[2

3

https://martinfowler.com/bliki/CallSuper.html

A systematic literature mapping: Papers Summary

(71

(8]

=

[10]

(11

[12]

[13]

[14]

[15]

[16

[17]

(18

[19]

[20]

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and Foutse Khomh. 2013.
Analysing Anti-patterns Static Relationships with Design Patterns. Electronic
Communications of the EASST 59 (2013).

Fehmi Jaafar, Yann-Gael Gueheneuc, Sylvie Hamel, Foutse Khomh, and Moham-
mad Zulkernine. 2016. Evaluating the impact of design pattern and anti-pattern
dependencies on changes and faults. Empirical Software Engineering (2016),
896-931.

Foutse Khomh and Yann-Gael Gueheneuce. 2008. Do Design Patterns Impact
Software Quality Positively?. In Proceedings of the 2008 12th European Conference
on Software Maintenance and Reengineering. 274-278.

W.a Liu, Z.-G.a b Hu, H.-T.b Liu, and L.b Yang. 2014. Automated pattern-directed
refactoring for complex conditional statements. Journal of Central South Univer-
sity 21, 5 (2014), 1935-1945.

William B. McNatt and James M. Bieman. 2001. Coupling of Design Patterns:
Common Practices and Their Benefits. In Proceedings of the 25th International
Computer Software and Applications Conference on Invigorating Software Develop-
ment. 574-579.

Nadia Nahar and Kazi Sakib. 2015. Automatic recommendation of software design
patterns using anti-patterns in the design phase: A case study on abstract factory.
In CEUR Workshop Proc. 9-16.

Nadia Nahar and Kazi Sakib. 2016. ACDPR: A Recommendation System for
the Creational Design Patterns Using Anti-patterns. In IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 4.
4-17.

David J. Sheskin. 2007. Handbook of Parametric and Nonparametric Statistical
Procedures (4 ed.). Chapman & Hall/CRC.

D. Speicher. 2013. Code Quality Cultivation. Communications in Computer and
Information Science 348 (2013), 334-349.

Marek Vokac. 2004. Defect frequency and design patterns: An empirical study of
industrial code. IEEE Transactions on Software Engineering 30, 12 (2004), 904-917.
B. C. Wagey, B. Hendradjaya, and M. S. Mardiyanto. 2015. A proposal of software
maintainability model using code smell measurement. In International Conference
on Data and Software Engineering. 25-30.

Bartosz Walter and Tarek Alkhaeir. 2016. The relationship between design pat-
terns and code smells: An exploratory study. Information and Software Technology
(2016), 127-142.

Peter Wendorff. 2001. Assessment of Design Patterns During Software Reengi-
neering: Lessons Learned from a Large Commercial Project. In Proceedings of the
Fifth European Conference on Software Maintenance and Reengineering. 77-84.
Vassilis E. Zafeiris, Sotiris H. Poulias, N.A. Diamantidis, and E.A. Giakoumakis.
2017. Automated refactoring of super-class method invocations to the Template
Method design pattern. Information and Software Technology (2017), 19-35.

SAC’18, April 9-13, 2018, Pau,France

	1 Introduction
	2 Co-Occurrence Between Design Patterns and Bad Smells Relationship
	2.1 Analysing Anti-Patterns Static Relationships with Design Patterns
	2.2 Co-Occurrence of Design Patterns and Bad Smells in Software Systems: An Explorato-ry Study
	2.3 Evaluating the Impact of Design Pattern and Anti-Pattern Dependencies on Chan-ges and Faults
	2.4 The Relationship Between Design Patterns and Code Smells: An Exploratory Study

	3 Refactoring Relationship
	3.1 Automated Refactoring to the Strategy Design Pattern
	3.2 Automated Pattern-Directed Refactoring for Complex Conditional Statements
	3.3 Automatic Recommendation of Software Design Patterns Using Anti-Patterns in the Design Phase: A Case Study on Abstract Factory
	3.4 ACDPR: A Recommendation System for the Creational Design Patterns Using Anti-Patterns
	3.5 Automated Refactoring of Super-Class Me-thod Invocations to the Template Method Design Pattern

	4 Impact on Software Quality Relationship
	4.1 Assessment of Design Patterns During Software Reengineering: Lessons Learned from a Large Commercial Project
	4.2 Coupling of Design Patterns: Common Practices and Their Benefits
	4.3 Defect Frequency and Design Patterns: An Empirical Study of Industrial Code
	4.4 Do Design Patterns Impact Software Quality Positively?
	4.5 A Multiple Case Study of Design Pattern Decay, Grime, and Rot in Evolving Software Systems
	4.6 Code Quality Cultivation
	4.7 A Proposal of Software Maintainability Mo-del Using Code Smell Measurement

	References

