
A Hypertext Based Environment to Write
Literate Logic Programs
Pierre Deransart (INRIA-Rocquencourt/France)
Roberto da Silva Bigonha
Patrick Parot (CSN/France)
Mariza Andrade da Silva Bigonha
José de Siqueira

Computer Science Department
Universidade Federal de Minas Gerais
Brazil

Abstract
Hyperpro is an experimental hypertext programming environment for Prolog based dialects
and its application to some logic program development according to a logic programming
methodology. The genericity of the tool makes it easily adaptable to other logic programming
languages and to other applications in the field of logic programs development, in particular
to handle logic programs with constraints.

1 The Software Documentation Problem

Software documentation is a perennial problem and a very important issue which still deser-
ves research efforts. Almost all software systems evolve along their lifetime and thus require
continuous maintenance, which is usually expensive and difficult to accomplish because most
systems are poorly documented. Indeed, software documentation is often noexistent, incom-
plete or out-of-date.

Information contents of software documentation are naturally redundant, since the main
purpose of any documented software is to provide at least two alternative views of the same
material: the program view for the machine and the text view in a literate style for human
consumption. The text view must also be organized in a way to provide different levels of
abstraction of the documented software in order to help the understanding of large systems.

It is also a fact that program documentation tends to become a large collection files,
which is prone to discourage programmers to keep the text part of the documentation up to
date to the corresponding software. A good documentation system should then provide way
to check automatically inconsistency of this kind, perhaps by creating strong ties between
the documentation and its related pieces of programs.

2 The HyperPro System

We have designed a well-suited document generic structure for logic programs according to
a recommended methodology in Logic Programming. With few alterations the prototype
could be applied to other programming languages as we will see in the conclusion. The
associated generic presentation has been designed according to criteria relative to the nature,
the importance, the expected position of the elements in a program document, etc. Use of
the prototype allows us to assess results that we present further, as well as evaluating the



impact and the relevance of our technique relative to “directed-methodology programming”
in the process of logic program developments.

HyperPro is based upon the Grif-Thot [3, 4] tool, a powerful structured editor that in-
cludes hypertext features. It offers a way to handle two basic aspects: text editing and CLP
programming. For text editing it uses the Thot system.

A HyperPro program is in fact a Thot document written in a report style. It also contains
specific paragraphs which correspond to relation definitions. Their format reflects strictly
the methodology required for CLP program development. The methodology is based on the
works described in [20, 2, 1]. It uses simple basic principles such as in CLP the program
unit is a packet of clauses characterizing a relation. Thanks to the declarative aspect of
relational programming a relation definition may be understood just looking at the clauses
and the informal definitions of the predicates used in the bodies of the clauses. The nature
of the comments is obviously important because it must bring a redundant but different
information. For such purpose different kinds of informations must be provided, which are
precisely defined in the methodology. On the other side, the text editing system must provide
facilities to navigate inside the program and its comments.

A whole program document is visualized in the integral document view. Other views
may be specified in the generic presentation. Different conversion schema may be defined to
export a program into different specific formalisms (e.g. LATEX). Document exportation may
be achieved upon views to collect information that can be used as input of various external
systems as a Prolog evaluator, a spell checker, a theorem prover system, etc. The Application
Program Interfaces (API) provided by Thot allows us to develop our specific applications
that potentially could act on the editing document. The Thot toolkit is a comprehensive set
of editing functions (written in C) that can be used for building the previously mentioned
applications ; such functions perform operations on structured documents through the UNIX
X-window environment.

A program (document) can be seen from different perspectives called views: each of them,
specified in the generic presentation, is a way to visualize exclusively specific elements of the
generic structure that are relevant for the programmer during a given stage of the development
process ; for instance the user might want to focus on the clauses part of the program, or on
the assertions or comments parts. Automatic synchronization of views allows the programmer
to navigate on its document by pointing or selecting some chunks in any views. This aspect
may be very relevant for large programs and facilitates “real-time” information retrieval.
The user can work (write) in a specific view instead of editing the integral document since
the editor itself will achieve real-time up-date of all the other views (as well as the integral
document view). All the views can be opened simultaneously. Such features enhance flexibility
and facilitate the program development process. Four kinds of views have been specified in
HyperPro:

• Program view : allows to visualize exclusively the clauses parts (predicate definition) of
the integral document.

• Comment view : allows to visualize exclusively the comments parts relative to the pre-
dicate definitions.

• Assertion view : allows to visualize exclusively the assertions parts relative to the pre-
dicate definitions.

• Typing view : allows to visualize exclusively the typing parts relative to the predicate
definitions.



The program document model we contains relation definitions (elements of the generic
structure) where the same predicate may be defined by several versions. The prototype offers
possibilities to put links according two ways: 1)to point the current version of a given predicate
definition in a relation definition block. 2)to relate a use of a predicate to its whole definition
(that contains all the information about the considered predicate such as comments, assertions
and predicate type.

The Hyperpro system allows the user select a chunk of program (packet of clauses) and
requires to test it. After clicking on a special menu item the considered chunk is saved on a
file, the system opens a window, calls a Prolog evaluator and loads the previous file. Then
the user can perform any tests he wants within the Prolog evaluator. A possibility to load
automatically all the current predicate definitions that often are necessary to test a part of
code is beeing studied.

3 Main Results and Conclusions

The Hyperpor prototype allows to create and to elaborate homogeneous program documents
according to the chosen programming methodology. This is a great advantage to control
efficiently the different stages of the software developments and notably during the main-
tenance stage. Differents presentations can be available and the user may carry out some
customizations to match its specific needs or tastes.

Hypertext features as hyperlinks allows the user to follow predicate definitions and to
retrieve the current version of a predicate definition. Very useful to perform some tests when
there exists several implementation versions of the same predicate definition.

The HyperPro approach allows texts, clauses and assertions to share a single document
helps keeping consistent the software documentation throughtout their lifetime. Inconsisten-
cies are not automatically checked, but we expect that the fact that the Prolog clauses and
their corresponding explanatory texts are tigh together encourages maintenance people to
keep software changes well documented.

Documentation of software must also be organized in a way to provide different levels of
abstraction of the documented software in order to help the understanding of large systems.
The synchronized viewing facilities provided by Thot, and used in the HyperPro system,
permit the definition of levels of abstraction, which are the key to build large, understandable
and maneageable documents. Furthermore, the view windows implemented in HyperPro also
accept updating operations of their contents with automatic reflection in all others.

Literatur

[1] Pierre Deransart and Gérard Ferrand, An Operational Formal Definition of Prolog: a
Specification Method and its Application , New Generation Computing 10 (1992), 121-
171, 1992.

[2] Deransart, Pierre and Ma luszyński, Jan, The MIT Press, A Grammatical View of Logic
Programming, novembre, 1993.

[3] Quint, V. and Vatton, I., Grif : an interactive System for structured Document Manipu-
lation, Proceedings of the International Conference on Text Processing and document
Manipulation, 1986, November, 200-213, Cambridge University Press.



[4] Quint, V., The Thot user manual, Internal report, INRIA-CNRS, 1995.

[5] Abdelali Ed-Dbali and Pierre Deransart, Software Formal Specification by Logic pro-
gramming, Logic Programming Summer School, Zurich, N. E. Fuchs and G. Comyn,
1992, Zurich, Suisse, Springer Verlag, LNAI, 636, 278–289, September.

[6] Deransart, Pierre and Ed-Dbali, Abdelali and Cervoni, Laurent, Springer Verlag, Prolog,
The Standard; Reference Manual, 1996.

[7] Henrard, J. and Le Charlier, B., FOLON: an Environment for Declarative Construction
of Logic Programs, PLILP’92, Leuven, Belgium, 217–231, 1992, August 26–28.

[8] Furuta, R. Quint, V. and André, J., Interactively Editing Structured Documents, Elec-
tronic Publishing, 1988, 1, 1, 19–44, April.

[9] Siqueira, J. de, SEQUOIA: a theorem prover for counter model construction, XVth con-
ference of the Chilean Computer Science Society, Arica, Chile, 1995, August.

[10] Knuth, Donald D., Literate Programming, The Computer Journal, Vol. 27, No. 2, 1984,
pp. 97-111.

[11] Knuth, Donald, Literate Programming, CSLI lecture notes, Stanford, CA, Center for the
study of language and information, 1992, 27, 349–358.

[12] Quint, V. and Vatton, I., Hypertext aspects of the Grif structured editor : design and
applications, Rapports de Recherche #1734, INRIA Rocquencourt, 1992, July.

[13] Quint, V., Les langages de Grif, Internal report (in french), INRIA-CNRS, 1992, May.

[14] Ramsey Norman, The noweb Hacker’s Guide, Departament of Computer Science, Prin-
ceton University, September 1992 (Revised August 1994).

[15] Ramsey Norman, Literate-Programming Tools Can be Simple and Extensible, Departa-
ment of Computer Science, Princeton University, November 1993.

[16] Ramsey Norman, Literate Programming Simplified, IEEE Software, V.11(5), 97-105, Sep-
tember 1994.

[17] Ramsey Norman, Literate Programming: Weaving a language-independent Web , Com-
munications of the ACM, 32(9): 1051-1055, September 1989.

[18] Richy, H., Grif et les index électroniques, INRIA Rocquencourt, 1992, October .

[19] Rizk, A. Streitz, N. and André, J., Hypertext : concepts, systems and applications, Pro-
ceedings of the European Conference on Hypertext, 1990, November, University Press.

[20] Renault, Sophie and Deransart, Pierre, Design of Redundant Formal Specifications by
Logic Programming: Merging Formal Text and Good Comments , International Journal
of Software Engineering and Knowledge Engineering, vol 4, No. 3, 1994, 369–390.

[21] Thimbleby, H., Experiences of ‘Literate Programming’ using Cweb(a variant of Knuth’s
Web), The Computer Journal, Vol. 29, No. 3, 201-211, 1986.


