Weave time macros

Vladimir Oliveira Di lorio
Univ. Federal de Vigosa
Vigosa - Brazil

vladimir@dpi.ufv.br

ABSTRACT

This ongoing work presents a methodology to extend the
pointcut language of AspectJ based on macro definitions.
The main features of the proposed approach are: syntax ex-
tension in a very flexible way; arguments for new pointcuts
are defined by other pointcuts; the semantics of new point-
cuts is given by a translation to pure AspectJ, defining pre-
cisely the code to be executed at weave time and at runtime.
One of the main goals of this methodology is to provide an
efficient implementation of the extension mechanism.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Extensible languages

General Terms

Languages

Keywords

Aspect-Oriented Programming, Extensible Languages

1. INTRODUCTION

The expressiveness of the language used to describe point-
cuts is one of the most important factors affecting the ex-
pressiveness of aspect-oriented languages. Some attempts
to define more expressive pointcut languages use functional
[7] or logical query languages [8]. Others rely on impera-
tive metaprograms that work on the abstract syntax tree
representing the base program [3, 4].

This ongoing work presents a new metaprogramming ap-
proach for extending the pointcut language of AspectJ, based
on macro definitions. We call it weave time macros, for its
similarity with standard macros in programming languages.
Our approach allows the syntactic extension of any compo-
nent of AspectJ, including the pointcut language, by extend-
ing the language grammar with new production rules. The
semantics of the user-defined constructs is established with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DSAL *11 March 2011, Porto de Galinhas.

Copyright 2011 ACM 978-1-4503-0648-5/11/03 ...$10.00.

Leonardo V. S. Reis
Univ. Federal de Ouro Preto
Ouro Preto - Brazil
leo@decea.ufop.br

Roberto S. Bigonha,

Marco Tulio O. Valente
Univ. Federal de Minas Gerais

_ Belo Horizonte - Brazil
{bigonha,mtov}@dcc.ufmg.br

generative metaprogramming, working on the abstract syn-
tax tree of the source program. Our approach privileges a
fine-grained control of program resources, although the com-
plexity may restrict its use to expert programmers. When
new pointcuts are defined, it is possible to specify precisely
the code that is processed at weave time and at runtime.

This paper is organized as follows. Section 2 shows a
simple example that serves as a motivation for the creation
of tools that extend the AspectJ pointcut language. Sec-
tion 3 presents concepts that were combined to define weave
time macros. Details of a preliminary implementation are
discussed in Section 4. The contribution of this paper is
compared with related work in Section 5. Conclusions and
future work are presented in Section 6.

2. MOTIVATION

As a motivation for the methodology presented in this
paper, we use an example borrowed from [4]. Although it is
very simple, it represents a problem that cannot be directly
solved using the standard AspectJ pointcut language: an
user-defined pointcut that generates weave time and runtime
code depending on the joinpoint matched.

Suppose a user wants to define a pointcut hasType with
two parameters, that works as a predicate satisfied when the
type of the first parameter is a subtype of the second pa-
rameter. Suppose also that hasType is able to explore static
type information, identifying situations when the predicate
is satisfied or not satisfied without requiring a runtime test.
It could be used as follows:

args(x) &% (x hasType T)

Using AspectJ and standard pointcut designator syntax,
it is possible to create a named pointcut that works in a
way similar to the one shown above, implemented with a
conditional (if) pointcut. But in this case, it is not possible
to explore static type information. An AspectJ if pointcut
always generates a runtime test for every joinpoint matched.

This example is more general than the one presented in
[4]. The original problem discusses the implementation of
a pointcut that is able to verify only the type of the first
parameter of a method. Besides infix syntax, the proposed
hasType pointcut should be able to analyze the type of any
expression, including results from binding variables using
pointcuts like args, this or target. Note that the semantics
of these pointcuts has to be extended, collecting not only
values but also static information about the fragments of
code matched by variables.

Faraios] () []

Weave time
macros

[ranes | {07

Figure 1: Combining advices and macros.

3. THE PROPOSED APPROACH

We propose that the semantics of user-defined pointcuts
may be given by a construct similar to an advice, so that
arguments may be collected by AspectJ pointcuts. Like
macros, it must treat arguments as program fragments, in
order to have full access to the static information of the
source program. Combining the concepts of advices and
macros, we have coined the term “weave time macros”. Fig-
ure 1 represents a comparison between functions, advices,
macros and weave time macros. The numbers are used to
guide the discussion below:

@® Functions and macros can be used to extend the func-
tionalities of a program. Macros may go further, allow-
ing syntax extension. In functions, arguments passed
as parameters represent values of a program, while in
macros, arguments are fragments of code. Macros may
define code to be processed in two stages: at macro ex-
pansion time and at runtime.

@ Functions and advices define parameterized code to be
executed at runtime. A function call is defined by the
use of the function name, and arguments are passed
as expressions. On the other hand, pointcuts define
the places where a call to an advice must be inserted,
and arguments are defined by special pointcuts that
bind values to local variables (in AspectJ, pointcuts
like this, target and args).

® Weave time macros inherit from macros the proper-
ties of receiving fragments of code as arguments, and
defining code to be executed in two stages: at weave
time and at runtime.

@ Weave time macros inherit from advices the property
of being executed in places defined by pointcuts. Ad-
ditionally, they can be parameterized and their argu-
ments can be defined in the same way arguments to
advices are defined.

Like standard AspectJ pointcuts, a weave time macro is
used together with other pointcuts, which can determine the
point in the source code that is affected and are responsible
to collect values for the arguments.

4. IMPLEMENTATION

We have developed an implementation using the XAJ lan-
guage, an extension of AspectJ which allows its own concrete
syntax to be modified [5]. In XAJ, syntax classes are units
that encapsulate the specification of language extensions,
offering features for the definition of syntax and semantics,

1| public syntaxclass HasType {

2

3 @grammar extends basic_pointcut_expr {

4 HasType -> "(" expr=expression

5 "hasType" typeName=name ")"

6 }

7

8 public AST onWeaving(Context ctx) {

9 Type t = ctx.typeOf (expr);

10 Type tl = ctx.typeOf (typeName);

11 if (t.subTypeOf(t1)) return ‘[if (true)l;
12 if (! t1.subTypeOf(t)) return ‘[if (false)];
13 return ‘[if (#expr instanceof #typeName)];
14 }

15]

Figure 2: A XAJ syntax class.

and also serving as a representation for AST nodes. The
semantics is given by a translation to pure AspectJ code,
using generative programming, inside a method named on-
Weaving, if the translation occurs at weave time.

Figure 2 shows a XAJ syntax class that extends AspectJ
with a hasType pointcut designator that works as described
in Section 2. In lines 3-6, symbols basic_pointcut_expr,
expression and name are nonterminals of an AspectJ gram-
mar. Identifiers expr and typeName are used as local vari-
ables that capture the abstract syntax trees derived from
nonterminals expression and name. The following produc-
tion is inserted in the grammar:

basic_pointcut_expr ->
"(" expression "hasType" name ")"

The method with name “onWeaving” represents a weave
time macro, giving the semantics of the new pointcut desig-
nator. At weave-time, this method is executed for every join
point of the base program. The value returned by onWeav-
ing is an abstract syntax tree that replaces the pointcut,
each time this method is executed. Expressions of the form
‘[...] represent an abstract syntax tree built using gener-
ative programming, written in quasi-quotation syntax. The
symbol # represents anti-quotation.

If it is possible to statically decide that the type of expr is
a subtype of typeName or cannot be a subtype of typeName,
the pointcut is replaced by a conditional if pointcut that
always evaluate to true or false (lines 11 and 12). We rely on
optimizations of the AspectJ compiler to delete conditional
pointcuts that always evaluate to true or false, generating
no residue test.

A first implementation of XAJ has been carried out using
the AspectBench Compiler (abc) [2]. In [6], a specific imple-
mentation of the hasType pointcut designator is described,
using the resources of XAJ for the syntax definition and
manually modifying the code of the AspectBench compiler
to implement the desired semantics. General weave time
macros are not implemented in XAJ yet.

S. RELATED WORK

Some works propose the use of a declarative approach to
implement extensible pointcut languages. They argue that
it makes the pointcut definitions clearer and more flexible.
In [8], a very expressive logic-based pointcut language is
used, but the base language (ALPHA) is an AO extension
of a toy OO core language. In [7], the functional language

XQuery is used as a pointcut language. Our approach is
very different from the ones that apply declarative pointcut
languages. Weave time macros are defined by generative
metaprogramming, using an imperative language (Java).

Josh [4] uses an approach similar to ours. In Josh, the
semantics of a user-defined pointcut is given by a static
method, whose code is executed at weave time. To insert
code to be executed at runtime, a special method must be
explicitly invoked. Weave time macros give more flexibility
to programmers, allowing user-defined pointcuts to use vari-
ables defined by other pointcuts, and allowing the definition
of new syntax.

Joinpoint selectors [3] are defined as an extension mecha-
nism for enriching pointcut languages with constructs that
play the role of “new primitive pointcuts”. They are simi-
lar to weave time macros because they can operate either
at weave time or at run time. Instead of using metapro-
gramming, selectors may have a weave time and a runtime
version, such that the latter will be called if there is not
enough information to decide the selection at weave time.

An important feature of weave time macros and its imple-
mentation in XAJ is that AspectJ is the extended language.
Because of this, we believe that it may have a larger num-
ber of potential users, when completely implemented. On
the other hand, Josh is a language inspired in AspectJ, and
the current implementation of join point selectors is an ex-
tension to the JBoss AOP framework.

SCoPE [1] is another approach that supports the defi-
nition of user-defined pointcuts. Similarly to weave time
macros, AspectJ is the target language. But instead of ex-
tending the AspectJ grammar, analysis-based pointcuts are
defined as conditional (if) pointcuts, and the compiler of
SCoPE generates woven code without runtime tests when-
ever possible.

6. CONCLUSION AND FUTURE WORK

This paper has presented an ongoing work whose goal is to
design and implement a methodology for extension of point-
cut languages based on macros. The current implementation
is carried out using AspectJ as target language. We believe
that choosing the most popular AO language can make the
proposed features available for a larger number of potential
users.

In order to evaluate the impact of our proposal, we can
analyze three main features: the possibility of extending
syntax in a flexible way; arguments to weave time macros
bound by other pointcuts; use of generative metaprogram-
ming to clearly separate code that is executed at weave time
and at runtime. The first feature listed above has already
been implemented in the XAJ language. Most works that
extend pointcut languages are restricted to the definition of
new pointcut designators, without flexible syntax extension.
The second feature has been partially implemented, modify-
ing the AspectBench compiler, as shown in [6]. We believe
that it represents a clearer way to specify arguments to user-
defined pointcuts, when compared to similar works. Finally,
the third feature remains unimplemented. We believe that it
is also a clearer way to define code that is executed at weave
time and at runtime, when compared to similar works. But
a drawback of generating arbitrary code at weave time is
that it may slow down the compilation process.

When compared to works with a declarative approach, our

methodology represents an approach with lower level of ab-
straction. Defining the semantics of new pointcuts in Java,
we expect to develop an efficient implementation. Although
restricted to advanced users, defining a new pointcut with
weave time macros is evidently much simpler than modifying
a real AspectJ compiler, and we hope it can be as efficient
as this alternative.

The first implementation of weave time macros, inside the
XAJ language, was developed as an extension of the Aspect-
Bench compiler. This compiler has not evolved in the last
years, so our plans include the development of a completely
new implementation with the ajc compiler. It will be im-
portant to meet our goal of providing extensibility of the
pointcut language to a larger number of users. Our future
plans include also investigating the usefulness of generative
metaprogramming to define code that is executed at weave
time and at runtime, evaluating the performance of compi-
lation and possibly proposing more efficient alternatives.

7. ACKNOWLEDGMENTS

The authors would like to thank Fapemig for funds sup-
porting this work (project APQ-00205-08).

8. REFERENCES

[1] T. Aotani and H. Masuhara. Scope: an aspectj compiler
for supporting user-defined analysis-based pointcuts. In
AOSD ’07: Proceedings of the 6th international
conference on Aspect-oriented software development,
pages 161-172, New York, NY, USA, 2007. ACM.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, J. Lhotdk, O. Lhotdk, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. abc: an
extensible aspectj compiler. In AOSD ’05: Proceedings
of the 4th international conference on Aspect-oriented
software development, pages 87-98, New York, NY,
USA, 2005. ACM.

[3] C. Breuel and F. Reverbel. User-defined join point
selectors — an extension mechanism for pointcut
languages. Journal of Object Technology, 7(9):5-24,
2008.

[4] S. Chiba and K. Nakagawa. Josh: an open aspectj-like
language. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software
development, pages 102-111, New York, NY, USA,
2004. ACM.

[5] V. O. Di lorio, L. V. d. S. Reis, R. d. S. Bigonha, and
M. A. d. S. Bigonha. A proposal for extensible AspectJ.
In DSAL ’09: Proceedings of the 4th Workshop on
Domain-Specific Aspect Languages, pages 21-24, New
York, NY, USA, 2009. ACM.

[6] V. O. Di Iorio, L. V. d. S. Reis, C. Trevenzoli, and
L. E. d. S. Amorim. Implementation of user-defined
pointcuts in the XAJ language. In Proceedings of the
IV Latin American Workshop on Aspect-Oriented
Software Development, volume 9, pages 43—48, 2010.

[7] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts
as functional queries. In APLAS, pages 366-381, 2004.

[8] K. Ostermann, M. Mezini, and C. Bockisch. Expressive
pointcuts for increased modularity. In S. LNCS 3586,
editor, 19th European Conference on Object-Oriented
Programming (ECOOP), 2005.

