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ABSTRACT
Refactoring aims to remove bad smells and increase software main-
tainability by improving the software structure without changing
its behavior. However, some studies show that refactoring tools
may introduce new bad smells into the source code, but to the best
of our knowledge, we have not been able to find a complete catalog
that states the bad smells introduced from refactoring. To bridge
this gap, this paper goal is to evaluate the impacts of refactoring
on the detection of bad smells in open-source Java systems. Hence,
we want to know if and when the automated refactoring removes
or introduces bad smells.
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• Software and its engineering→ Empirical software valida-
tion; Software defect analysis; Software evolution.
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1 INTRODUCTION
A software system requires great effort from developers to maintain
its source code [17]. For the system to continue meeting its require-
ments and to evolve or adapt to new technologies, it must follow
good development practices to facilitate the team’s work. Thus, it is
expected to decrease the number of bad smells, which are poor code
implementations that indicate the need to be refactored [3, 9, 18].
Refactoring is a strategy used to increase the maintainability of
the code by changing its internal structure without changing its
behavior, it is highly recommended to solve bad smells [8].

We may find in the literature numerous tools for detecting bad
smells [4, 5, 10, 14] and refactoring [13, 16]. However, studies show
that refactoring often does not solve the bad smells in the source
code [1, 20]. Such a problem may lead the developer not to trust
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in automated refactoring since there are high chances of not com-
pletely removing the bad smells present in the code.

Even though there are some indications that refactoring may
not remove bad smells, there is no complete catalog that shows
which ones may even introduce bad smells. A catalog containing
information about which bad smells may be introduced by refac-
toring may assist developers in performing refactoring, whether
manual or automated. Once they have this information, developers
may take care and perform the most efficient and robust refactoring
process to avoid introducing new bad smells.

Therefore, the goal of this paper is to conduct empirical research
to assess the impacts of automated refactoring on detecting bad
smells. To assess this impact, we selected seven open-source Java
systems available at Qualitas Corpus. We analyzed the impacts of
three different types of refactorings on ten different bad smells
proposed by Fowler et al. [8].

To perform refactoring, we use JDeodorant [6] that makes it
possible to perform refactoring in an automated way. Refactorings
of the type Replace Type Code with State/Strategy and Replace Con-
ditional with Polymorphism [8] are treated together by JDeodorant,
which for documentation criteria we refer to them as Replace Refac-
toring. Therefore, for the remaining of this paper, we treat the
refactorings operation analyzed as being of two type: Move Method
and Replace Refactorings.

We applied a total of 80 refactorings provide by JDeodorant. By
analyzing the results, we found that refactoring impacts different
types of bad smells. As expected, the refactorings sometimes solve
a bad smell. Surprisingly, we also found cases where refactorings
may introduce new bad smells. Our main contributions are:

• a comparative study that prioritizes detection performed by
five bad smell tools

• a catalog that presents which bad smells are introduced or
solved by refactoring

• results of an evaluation exhibiting the impact of refactoring
on bad smells

2 RESEARCH METHOD
This section presents the research method adopted in our study.

2.1 Goal and Research Questions
This study goal is to evaluate the impact of refactoring on bad
smells. Research questions (RQs) are defined as follows.

RQ1 What are the impacts of refactoring on bad smells?
RQ1.1 Does automated refactoring remove bad smells?
RQ1.2 Does automated refactoring introduce bad smells?

To answer RQ1, we used an automated refactoring tool that cre-
ated a new refactored version from each system’s original version.
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After creating the new refactored version, we used bad smell detec-
tion tools in the original and refactored versions. We then assess
the impact of refactoring on the bad smells, making it possible to
answer RQ1.1 and RQ1.2.

2.2 Research Phases
In this study, we define three phases. The description of each phase
is presented as follows.

Phase 1 - Selection of Systems. To conduct our research, we
initially selected a set of seven systems to compose the study sample.
We prioritize systems available through the Qualitas Corpus1 [19],
which contains a curated collection of open-source Java software
systems. We focus our research on these seven different systems:
Checkstyle-5.6, Commons-codec, Commons-io, Commons-logging,
JHotDraw-7.5.1, Quartz-1.8.3, and Squirrel_sql-3.1.2.

Phase 2 - Selection of Tools. This research relies on tools to
automate refactoring and bad smell detection. We selected five tools
for bad smell detection: Decor2 [11], Designite3 [15], JDeodorant4
[6], JSpIRIT5 [21], and Organic6 [12].

Phase 3 - Selection of Bad Smells and Refactorings.We fo-
cused on a sample composed of ten bad smells and two refactorings
available in the Fowler et al. [8] catalog. We choose this catalog
because it is the most completed one. Data Class, Feature Envy,
Large Class, Lazy Class, Long Method, Long Parameter List, Mes-
sage Chains, Refused Bequest, Shotgun Surgery, and Speculative
Generality are the bad smells evaluated and detected by the five
different tools. We selected two types of refactorings: Move Method
and Replace Refactoring. JDeodorant supports the automated refac-
toring.

2.3 Assessment of Refactoring Impact
We choose to create a refactored version of each system with
JDeodorant. Figure 1 shows the seven steps followed to assess
how refactoring impacts on bad smells, described as follows.

Figure 1: Steps

In Step 1, we selected the system to evaluate. In Step 2, we
compute the results identified by the five bad smell detection tools
in the original version of the system. In Step 3, we filter the results
returned by the detection tools to find only the ones that are the
focus of this study.

In Step 4, we select a refactoring strategy to be applied. For
this step, we carry out all refactoring suggestions provided by
JDeodorant, aiming to use the entirety tool support. In Step 5, we
1http://qualitascorpus.com/
2https://github.com/ptidejteam/SmellDetectionCaller
3https://github.com/tushartushar/DesigniteJava
4https://github.com/tsantalis/JDeodorant
5https://sites.google.com/site/santiagoavidal/projects/jspirit
6https://github.com/opus-research/organic

compute the results identified by the five bad smell detection tools
in the refactored version of the system. In Step 6, we filter the
results returned by the tools to find only the ten bad smells that are
the focus of this study.

In Step 7, we performed a comparative analysis of the results
obtained from steps 3 and 6. By performing this comparison, we
analyze the impacts of automated refactoring on bad smells. For
instance, we may see if the automated refactoring removed bad
smells or introduced new ones. Moreover, wemay list the bad smells
removed and introduced by a particular refactoring.

We performed Step 1 seven times; i.e., for the seven systems
used in this research. For each execution of Step 1, steps 2 and 3
performed five executions, representing the identification provided
by the five tools used to detect bad smells in the original system.
For each execution of Step 1, Step 4 performed two executions,
representing the two refactoring strategies.

For each execution of Step 4, steps 5 and 6 performed five exe-
cutions. Steps 5 and 6 represent the identification of the five tools
used to detect the bad smells in the refactored system. For Step 7,
we carry out the comparative analysis for each applied refactoring
taking into account the detection of bad smells performed by each
tool in the original and refactored versions of the system.

3 RESULTS
We analyzed individually the impact of two different types of refac-
toring on ten types of bad smells evaluated in seven systems from
Qualitas Corpus. Table 1 presents these bad smells and the five
different tools used to detect them. The first column of Table 1
shows the names of the bad smells analyzed and the tools used to
detect them. The next seven columns show the detection of bad
smells by tools for each system analyzed.

We may observe in Table 1 several zero (0) values, representing
three different cases presented by the five tools (discussed below).
There is no case of those analyzed in which two or more tools
detected the same number of bad smells, except in the non-detection
of bad smell.

Three cases of zero values. In the first case, represented by
Decor, the detection is performed and presented the number of
bad smells as zero for the analyzed system. In the second case,
represented by JDeodorant, the tool did not present a result for a
bad smell. We considered this situation might indicate either no
bad smell in the system or an internal error in the tool that failed
to analyze the system. Both situations were documented the same
since the JDeodorant log is not easily accessible to the end-user;
we decided not to investigate the reason for this occurrence further.
Finally, in the third case, represented by Designite, JSpIRIT, and
Organic, a complete list of all bad smells detected is returned. We
consider that the absence of a specific bad smell represents the
non-existence of it.

Same bad smell detection. We did not compute the intersec-
tion of the detection results for two reasons: (i) there was no case
where two or more tools detected the same number of bad smells,
except in the non-detection; (ii) fluctuation in the number of bad
smells of the same type detected by different tools. For this reason,
we analyzed all data individually, not prioritizing any tool.

http://qualitascorpus.com/
https://github.com/ptidejteam/SmellDetectionCaller
https://github.com/tushartushar/DesigniteJava
https://github.com/tsantalis/JDeodorant
https://sites.google.com/site/santiagoavidal/projects/jspirit
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Table 1: Original Detection

Bad Smell S1 S2 S3 S4 S5 S6 S7
DC[T4 | T5] 0 | 25 3 | 0 0 | 2 1 | 2 22 | 52 5 | 10 0 | 8
FE[T3 | T4] 18 | 275 15 | 102 3 | 0 0 | 38 13 | 528 7 | 195 7 | 47
LC[T1] 0 0 0 0 0 0 0
ZC[T1 | T5] 3 | 260 4 | 36 0 | 63 1 | 18 30 | 176 4 | 67 1 | 17
LM[T1 | T2 | T3] 123 | 4 | 243 27 | 13 | 117 0 | 6 | 74 19 | 1 | 53 126 | 37 | 0 45 | 11 | 0 12 | 1 | 99
LP[T1 | T2] 12 | 32 6 | 9 0 | 29 0 | 0 70 | 155 17 | 56 1 | 10
MC[T1] 0 1 0 0 40 0 1
RB[T1 | T4 | T5] 52 | 51 | 18 0 | 11 | 4 0 | 0 | 4 6 | 3 | 5 146 | 100 | 16 21 | 18 | 1 0 | 0 | 0
SS[T4] 39 1 0 9 167 49 2
SG[T1 | T5] 2 | 39 0 | 5 0 | 7 1 | 2 9 | 24 3 | 6 0 | 0
S1: Checkstyle-5.6, S2: Commons-codec, S3: Commons-io, S4: Commons-logging, S5: JHotDraw-7.5.1, S6: Quartz-1.8.3, S7: Squirrel_sql-3.1.2,
T1: Decor, T2: Designite, T3: JDeodorant, T4: JSpIRIT, and T5: Organic

Non-detection of bad smell. In some situations, the same tool
does not detect a specific bad smell in more than one system. How-
ever, we kept these bad smells in our analysis because the tool
detects smells in other systems. In the specific case of Large Class
and Message Chains, where only Decor detects these bad smells,
we decided to document it to identify if these bad smells were
introduced after refactoring.

We provide a website7 containing: (i) all systems analyzed, (ii)
all data detected by the refactoring tools, (iii) all versions of the
refactored systems, (iv) notes of particular cases, and (v) all analyses
we carried out.

3.1 Impacts of Refactorings
After the detection of bad smells, our focus was on the following
refactoring: MoveMethod solving Feature Envy, Replace Type Code
with State/Strategy, and Replace Conditional with Polymorphism
solving Type Checking. The last two were considered together and
named Replace Refactoring.

Table 2 shows the number of refactorings carried out for each
system, where the first column represents the systems used in
our research. The next two columns represent the two types of
refactoring performed. The last column shows the total number of
refactorings performed for each system. Each line represents the
data from an analyzed system, and the last line represents the total
number of refactorings performed for each type of bad smell.

Some situations in Table 2 represent the no application of refac-
toring for a given type; i.e., the zero cases (0, 0*). The first zero (0)
represents the situation where JDeodorant provided possibilities
for refactoring, but it could not be performed. For instance, the
cases found when it tries to perform the refactoring, Eclipse IDE
returned an error, making it impossible to finish it. The other case
was when Eclipse IDE showed compilation errors in the refactored
system. We did not perform the refactoring when the compilation
error was not trivial to solve.

The second zero (0*) represents situations in which JDeodorant
did not suggest any refactoring. Probably, the cause of this situation
might be no existing refactoring for that type. Alternatively, there

7https://cleitonsilvat.github.io/sbes2020/

Table 2: Refactorings Applied

System MM RR Total

Checkstyle-5.6 18 5 33
Commons-codec 15 0 15
Commons-io 3 2 05
Commons-logging 0* 1 01
JHotDraw-7.5.1 13 0* 13
Quartz-1.8.3 6 11 17
Squirrel_sql-3.1.2 6 0* 06

Total 61 19 80

MM: Move Method; RR: Replace Refactoring

may have been an internal error in the tool that made refactoring
impossible. As the log system generated by the tool is not easily
accessible to the end-user, we decided not to further investigate the
reasons for this.

In a brief data summary, we identified a total of 80 applied refac-
torings, where the Replace Refactoring presented the lowest number
of refactorings. Commons-logging was the system with the lowest
number of refactorings (01), while Checkstyle-5.6 was the highest
(33). The results obtained after a comparative analysis between the
original and refactored versions of the system may be classified
into three different types: decrease, increase, and neutral number
of bad smells.

Decrease. This result type represents the decrease in the number
of bad smells found in the system’s refactored version compared to
its original version.

Increase. This result type represents the increase in the number
of bad smells found in the system’s refactored version compared to
its original version.

Neutral. This result type represents the non-existence or no-
change in the number of bad smells found in the system’s refactored
version compared to its original version.

https://cleitonsilvat.github.io/sbes2020/
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3.2 Comparative Analysis
MoveMethod Refactoring.According to our data, we have Move
Method in 133 situations. The number of bad smells decreased in
13.53%; increased in 4.51%, and remained the same in 81.95%. This
refactoring did not impact on Large Class, Long Parameter List, and
Speculative Generality in any of the evaluated systems. In these
cases, the number of bad smells remained the same. Message Chains
only increased in one system, while Lazy Class only decreased in one
system. In other systems, both bad smells remained the same. Data
Class presented divergence of identification in the same system
by different tools. That is, JSpIRIT computed an increase in the
number of bad smells for JHotDraw-7.5.1, while Organic computed
a decrease.

Replace Refactoring. This refactoring has been applied in 133
situations, where the number of bad smells decreased in 0.75%, in-
creased in 13.53%, and remained the same in 85.71%. Large Class,
Long Parameter List, and Message Chains were not impacted by
Replace Refactoring. In all cases, the number of bad smells detected
remained the same. Shotgun Surgery and Data Class only increased
in one system; they remained the same in the others. Refused Be-
quest for Quartz-1.8.3 presented an increase of 190.5% and 4,000%.
Their absolute values represent an increase from 21 to 61 and from
1 to 41, respectively.

3.3 Results Summarization
The applied refactorings highly impacted the number of analyzed
bad smells. In the case of Move Method, the number of different
bad smells removed was higher than the number of different bad
smells introduced. Table 3 shows the removed and introduced bad
smells after refactoring the seven systems. Therefore, we use Table
3 to answer RQ1.1 and RQ1.2.

The first column of Table 3 shows the refactoring name. The
second and third columns present the removed and introduced bad
smells, respectively. We show the percentage of systems where bad
smells were removed or introduced. With these results, we answer
the RQs as follows.

RQ1. The impacts of automated refactoring may be positive
and negative. As we evaluate different refactoring and bad smell
detection tools, we may analyze them from different perspectives.

RQ1.1. The answer is positive. A single refactoring may remove
more than one bad smell.

RQ1.2. The answer is positive. A single refactoring may intro-
duce more than one bad smell.

4 THREATS TO VALIDITY
We discuss the threats to validity listed by Wohlin et al. [22]: con-
struct, internal, conclusion, and external.

Construct and Conclusion Validity. The comparative analy-
sis represents the authors viewpoint. To minimize this threat, we
used five different bad smell detection tools to present the point
of view from different dimensions. We performed the comparative

analysis individually, taking into account only the original version,
and applying a single refactoring strategy. The results found were
all documented, without favoring any information or tool.

Internal Validity. The detailed specification of the process
guaranteed the study replication. Possible limitations may cause
changes made to the tools or setups. We performed all refactor-
ings suggested by JDeodorant. The Eclipse IDE itself performed all
adjustments made to solve trivial errors caused by some refactor-
ings. For the bad smell detection tools, we used only their standard
configuration without any modification in their process or results.

External Validity. This threat is related to the representative-
ness of the analyzed systems to generalize results to any other
system. To reduce this threat, we chose a known database, the
Qualitas Corpus. The number and systems evaluated were selected
randomly, and the seven systems were sufficient to bring us pre-
liminary insights into how refactoring can impact on certain bad
smells.

5 RELATEDWORK
Bavota et al. [1] mined the evolution history of three Java open-
source projects to investigate whether refactoring activities occur
on code components, suggesting there might be a need for refactor-
ing operations. Their results show that quality metrics usually do
not show a clear relationship with refactoring; 42% of refactoring
operations are performed on code entities affected by code smells,
and only 7% of the performed operations remove code smells.

Similarly, Cedrim and Garcia et al. [2] analyze how 16,566 refac-
torings distributed in ten different types affect the density of 13
types of code smells and the version histories of 23 projects. Results
reveal that 79.4% of refactorings touched smelly elements, 57% did
not reduce their occurrences, 9.7% of refactorings removed smells,
and 33.3% induced new ones.

Fontana and Spinelli [7] analyze the impact of refactoring applied
to remove code smells. They select four bad smells detected by three
tools and apply the refactoring automatically using two tools. They
performed this process in one open-source, object-oriented system
of about 400 classes. They report a summary of the impact according
to six metrics proposed to evaluate the code and design quality of
a system.

Similarly to these studies, we evaluate the impact of refactoring
on bad smells. However, we used seven open-source Java systems,
in which we applied two different types of refactorings in an au-
tomated way. We also used five tools to detect ten types of bad
smells. As a result, we provide a catalog of bad smells removed and
introduced by refactoring.

6 CONCLUSION
This paper presented an empirical research analyzing the impact
of refactoring on bad smells. To conduct this research, we selected
seven open-source Java systems available in the Qualitas Corpus.
We applied two refactorings and measured their impact on ten
bad smells detected by five different tools. We observed that both
refactorings may decrease, increase, or have neutral impact on
the number of bad smells. Surprisingly, the number of decrease
cases was the lowest compared to the others. Replace Refactoring
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Table 3: Anwsering the Request Questions

RQ1.1. Does the automated refactoring RQ1.2. Does the automated refactoring
remove bad smells? Answer: Affirmative introduce bad smells? Answer: Affirmative

Refactoring Bad Smell % of system Bad Smell % of system

Move Method

Data Class 28.57% Data Class 28.57%
Feature Envy 85.71% Long Method 14.29%
Lazy Class 14.29% Message Chains 14.29%
Long Method 28.57% Refused Bequest 14.29%
Refused Bequest 14.29% Shotgun Surgery 14.29%
Shotgun Surgery 14.29%

Replace Refactoring

Data Class 14.29% Feature Envy 28.57%
Lazy Class 57.14%
Long Method 42.86%
Refused Bequest 57.14%
Shotgun Surgery 14.29%
Speculative Generality 28.57%

presented the lowest decrease (0.75%) while Move Method showed
the highest decrease (13.53%).

To better help developers, we investigated which bad smells tend
to be introduced and removed by refactoring. For instance, Feature
Envy was removed in 85.71% of the systems by Move Method. We
found that Replace Refactoring may introduce more bad smells than
remove, while the situation is opposite with Move Method. Our
findings may assist developers in different ways. For instance, de-
velopers who want to apply refactoring, automatically or manually,
are better informed now of which bad smells may be introduced or
removed by refactoring

We foresee several options for future work. First, in the construct
of the data, we consider extending this research tomore systems and
refactoring tools, different bad smells, and refactoring. Second, one
may replicate this research with manual refactoring to evaluate the
differences found between the automated and manual refactoring.
Third, in the analysis process, one may evaluate the impacts on the
intersection of detected bad smell to compose a different set of bad
smells. Finally, we are working on a tool that considers this catalog
for better refactoring.
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