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ABSTRACT
GitHub is currently the most popular open-source software hosting
platform, containing about 20 million public repositories. Many
studies have relied on data mined from GitHub repositories, es-
pecially commits. However, not knowing the characteristics of
commits may introduce biases and threats in those studies. This
work presents an empirical study to characterize commits in terms
of three aspects: categories of activities performed in the commits;
co-occurrences of activities in commits; and size of commits by
category. We analyzed 1M commits from the 24 most popular and
most active Java-based projects hosted in GitHub. The main find-
ings of this work show that: reengineering is the most frequent
activity; 30% of commits involve more than one type of activity;
the most common co-occurrence of activities in commits is reengi-
neering with forwarding and corrective reengineering, however in
a low rate, only 8%. The results of this study should be considered
by empirical works to avoid threats and biases when considering
commits’ data.

CCS CONCEPTS
• Software and its engineering→ Software version control.

KEYWORDS
empirical study, commit, open-source, mining software repositories,
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1 INTRODUCTION
Several works have mined data from GitHub to investigate many
subjects, such as code authorship, failure prediction, software evolu-
tion, and change impact analysis. In many of those studies, commits
appear as an essential data source to be analyzed since it is the basic
unit of information about activities performed on the projects.
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Studies on co-change and change impact analysis, for instance,
are firmly based on commits’ data. Several studies consider files reg-
istered in the same commit as a unit of co-change, i.e., they assume
that if a set of files changed in the same commit, they are related
[8, 12, 14, 16]. However, such an assumption may introduce biases
in the studies because it does not consider the so-called tangled
changes problem registered in the same commit transaction [4].
Code authorship studies also rely on commit analysis. Works on
this subject usually consider the number of commits the developer
register per files [2, 5–7]. However, considering only the files in-
volved in a commit or the number of times a developer committed
a file may introduce bias in the analysis performed in such works
when the approach does not consider the commits’ patterns in the
repositories. In those contexts, knowing the number of files usually
committed together or the frequency in which developers commit
may bring insights to be considered when proposing an approach
to analyze code authorship.

Previous studies have investigated the characteristics of com-
mits in open-source software repositories. Many of them analyzed
Centralized Version Control Systems (CVCS) data, such as CVS
and SVN [1, 9, 11, 15]. However, after those studies, Distributed
Version Control Systems (DVCS), such Git, have emerged, and few
studies were carried out to understand the commits characteristics
in this environment. One of the most popular hosting platforms
for Git projects is GitHub, founded in 2007. Given this scenario,
research related to the structure of commits is essential to increase
the accuracy of studies that use GitHub as a data source. In this
work, we aim to contribute with the characterization of commits
in GitHub repositories in three aspects: (i) categories of activities
performed in the commits; (ii) co-occurrences of activities in com-
mits; and (iii) size of commits by category. GitHub hosts software
projects developed in several programming languages. In this work,
we focused on Java, which is the third most popular language on
Github and, a great deal of empirical studies usually consider it. We
analyzed data of 1M commits from 24 Java-based projects hosted
in GitHub.

2 STUDY DESIGN
This section presents the method applied to construct the dataset
analyzed in this work.
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2.1 Dataset
We selected 24 open-source systems with the highest number of
commits to be the subject of this study. We restricted the number
of systems to 24 due to the high amount of time it takes to collect
the data we analyzed in this study. As shown in Table 1, the dataset
comprises mature and well-known systems aged between 3 and 11
years and rated between 52K and 2,6K stars. All the systems have a
high number of commits, from 22.9K up to 92K. Besides, the dataset
is diverse in terms of application domains.

System Age #Commits #Stars #Issues
ballerina-lang/ballerina-platform 3 96,121 2,644 10,086
neo4j/neo4j 8 69,702 8,315 2,849
jdk/openjdk 2 62,947 6,553 0
elasticsearch/elastic 10 57,414 52,228 25,326
camel/apache 11 50,138 3,489 0
graal/oracle 4 53,665 13,950 2,097
languagetool/languagetool-org 7 46,224 4,114 2,893
vespa/vespa-engine 4 46,403 3,363 358
lucene-solr/apache 4 34,703 3,863 0
rstudio/rstudio 9 34,292 3,423 4,707
alluxio/Alluxio 7 31,587 4,805 884
hazelcast/hazelcast 8 30,936 4,033 6,402
jenkins/jenkinsci 9 31,136 16,463 0
sonarqube/SonarSource 9 30,480 5,272 0
beam/apache 4 30,519 4,362 0
spring-boot/spring-projects 8 30,671 51,678 19,515
bazel/bazelbuild 6 28,662 15,673 8,205
shardingsphere/apache 4 28,457 12,387 3,800
ignite/apache 5 27,401 3,518 0
selenium/SeleniumHQ 7 26,432 19,074 6,843
cassandra/apache 11 25,994 6,278 0
flink/apache 6 25,543 14,626 0
hadoop/apache 6 24,584 11,041 0
tomcat/apache 9 22,909 4,984 0
Table 1: Dataset systems sorted by number of commits.

2.2 Data Extraction
The first step of the data extraction was to create a copy of all the
24 systems’ repositories using the git clone command (Jan 2021).
We developed a Python script using GitPython to collect all the
commits’ information for each repository: author, date, description
message, and the modified files. We also defined a new commit
attribute to our dataset: issue number. The GitHub platform allows
attributing an issue number to a commit. An issue is a mechanism to
link a commit to a specific project context such as bug description,
development tasks, merge and pull request tasks, among others. To
collect the commit issues, the script inspected its messages looking
for the pattern #digits.

2.3 Commits Categories
To analyze the main activities registered in the system’s commits,
we classified each commit into six categories: merge, corrective
engineering, forward engineering, reengineering, management,
and others, including commits that do not match any of the five
categories. Excepted by the merge category we have included, we
used the same set of categories proposed by Hattori and Lanza [9].
We considered “merge" a particular category because, in GitHub, a
merge is a specific activity that differs from the other management

activities. Unlike Hattori and Lanza’s approach, we do not use a
hierarchy to set only one category for a commit, In our approach,
a commit may be classified in more than one category. We did
that to cover the cases in which a developer proceeds a commit
corresponding to more than one activity type, e.g., correction and
reengineering. This type of commit is called tangled commit [3].

Category Keywords

Merge merge, pull request

Corrective bug, fix, correct, miss, proper, broken, corrupted, failure,
fault, deprecate, throw/catch exception, crash, typo

Forward
implement, add, request, new, test, increase, expansion,
include, initial, create, introduce, launch, define, determine,
support, extend, set

Reengineering

parallelize, optimization, adjust, update, delete, remove,
expunge, cut off, refactor, replace, modification, improve,
is/are now, change, rename, eliminate, duplicate, obsolete,
enhance, restructure, alter, rearrange, withdraw, conversion,
revision, simplify, move, relocate, downgrade, exclude, reuse,
revert, extract, reset, redefine, edit, read, revamp, decouple

Management

clear, license, release, structure, integration,copyright,
documentation, manual, javadoc, migrate, review, polish,
upgrade, style, standardization, TODO, migration, organization,
normalize, configure, ensure, resolve conflict, bump, dump,
comment, format code, do not use

Table 2: Primary keywords used to identify the activity cat-
egories of commits.

To categorize a commit, we extracted keywords from the commit
messages. We choose to analyze the messages because it presents
the complete description of the commits’ activities. To identify the
commits’ activity categories, we developed a Python script using
the flashtext API. Given the vast number of commits (≈ 1𝑀), we
used this API because its performance is better than the search
using regex. The API counts an instance of a word only if there is
an exact match in the text. Therefore, we build a dictionary with
keywords that correspond to the commits’ categories and include
the keywords variations, e.g., add, addition, adding, added, adds.
To improve the categorization rate, we manually inspected ≈ 500
commit messages to identify keywords. Table 2 shows the final
primary keywords set.

3 RESULTS
This section presents the results of the study by answering three
research questions.

RQ1. How often the activity types are performed in
commits?

To answer this research question, we categorized the commits as
described in Section 2.3. Figure 1 shows the percentage of commits
corresponding to each category: Merge, Corrective Engineering,
Forward Engineering, Reengineering, Management, and others, in
the 24 software systems analyzed in this study, giving the percent-
age values by (number of commits of a category) / (total number of
commits registered in the project).
Reengineering is the most frequent activity, registered in 32.97%
of the ≈ 1𝑀 commits analyzed in this work. This category has
the highest percentage of commits in 13 out of the 24 systems.
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Figure 1: Percentage of commits by category.

Besides, 83% (20/24) of the systems have at least 1/4 of the commits
of Reengineering activities. Cassandra is the system with the lowest
percentage of Reengineering activities (15%), and elasticsearch has
the highest one (51%).
Forward Engineering is the second most frequent activity. The
percentage of commits labeled as Forward Engineering ranges from
15.6% (ignite and jdk) to 47.7% (bazel). Forward Engineering com-
prises 28.2% of the commits. It is the most frequent category in
three systems: vespa, alluxio, and shardingsphere.
Corrective Engineering is the third main activity. This category
corresponds to 25% of the commits. Shardingsphere is the system
with the lowest rate of commits of Corrective Engineering - only 9%.
Tomcat presents the highest rate of commits tagged as Corrective
Engineering and has this category as its main activity (39.6%).
Management corresponds to 18.7% of the commits. The results
show that 75% (18/24) of the systems have less than 1/4 of their
commits registering Management activities. The lowest number of
Management activities is present in the language tool (6.6%), and
spring-boot presented the highest one (43.6%).
Merge corresponds to 16,49% of the commits. This category presents
a considerable disparity among the systems. The number of com-
mits in the Merge category ranges from 0.6% (selenium) to 43.4%
(cassandra). Only five systems present a percentage higher than 25%:
hazelcast (27.3%), spring-boot (30%), vespa (33.47%), ballerina-lang
(34.2%), and cassandra.
We used Other to tag messages whose content could not be cate-
gorized with any other five categories. This category corresponds
to 16% of the commits. The percentages in Others category range

from 4.7% (ballerina-lang) to 32.9%(rstudio). Besides rstudio, only
two systems have more than 25% of commits tagged as Others -
graal (25.7%) and hadoop (28%).

RQ2. How often co-occurrences between the activity
types appear in commits?

A commit may involve more than one activity type. As described
in Section 2.3, our approach allows classifying a commit with more
than one category. We found that 30% of all commits analyzed in
this work involve more than one activity type. We calculated the
percentages of all possible co-occurrence between two categories.
The results show a low rate in all cases, ranging from 1.6% to 8%.

The Merge category presented the lowest rate of co-occurrences,
1.6% to 2.8%. The highest rates of co-occurrence between the activ-
ity types are Reengineering with Corrective Engineering (8%), with
Forward Engineering (8%), and with Management (6%).

RQ3. What is the size of commits according to their
aims?

To answer this research question, we calculated the number
of files modified by each category of commit: Merge, Corrective
Engineering, Forward Engineering, and Management.

Figure 2 shows the results of alluxio. In the data distribution, the
medians values are low, ranging from 1 to 3 files. The other systems
presented a similar result, except jdk. Due to the limit of space, we
do not show all graphics with the results of this research question.
Figure 3 shows the results of jdk. The distributions of Reengineering,
Forward Engineering, Corrective Engineering, and Management
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Figure 2: Alluxio distribution of files modified in commits
grouped by category.
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Figure 3: JDK distribution of files modified in commits
grouped by category.

have the same pattern, and the median value is 2. Merge category
presents a different result: it has the largest interquartile range:1 99
files. An important characteristic observed in jdk is that there are
many commits that did not change any file and were categorized
exclusively as Merge.

4 DISCUSSION
Understanding the characteristics of the dataset is critical for con-
ducting a good experiment. This section discusses the main lessons
learned from our study and their implications to studies that con-
sider commits’ data.

The commits nature should be considered by the studies.
This study found that most commits register Reengineering activi-
ties, followed by Forward Engineering and Corrective Engineering.
A possible explanation for this characteristic is that as open-source
software projects are developed collectively, it may demand refac-
toring the system more often. Besides, as the systems are publicly
1Difference between the 1st and third quartiles. In jdk, there are, respectively, 1 and
100 files.

available, their users can report defects and failures they found
in the systems continuously. This result indicates that studies on
refactoring and faults may be favored by exploring commits’ data.
However, it is important to note the need to select the commits
properly to be considered in those studies since they correspond to
only 32.97% (Reengineering) and 25% (Corrective Engineering) of
the commits in the systems. We should not ignore the percentage
of Merge, Management, and Others activities: 18.7%, 16.49%, and
16%, respectively. If these activity types can impact the analysis in
a study, they need to be identified when collecting the data. The
systems analyzed in this study are popular and very active; this
may be a reason for the high number of Forward Engineering.

The Quantification of the Tangled Changes Problem. We
found that 30% of commits involve more than one activity type.
This result indicates the need to take tangled changes into account
when designing research because although tangle changes may
not impact the development, they may impact the analysis of the
repository data [10]. This care is critical in studies on change impact
analysis. Many studies on this subject consider a commit as a basic
unit of correlated changes.

Reengineering is the highest co-occurrence with other ac-
tivity types, but this does not happen too often. The incre-
mental software development methodologies, such as the Agile
methodologies, favor Reengineering, Corrective Engineering, and
Forward Engineering to occur in parallel. It is possible that correct-
ing a bug or introducing a new feature in the system may cause a
reengineering and, then, both types of activities may be commit-
ted together. However, the results of this study show that these
co-occurrences do not happen very often. The highest frequency of
co-occurrences is between Reengineering and Corrective Engineer-
ing, and between Reengineering and Forward Engineering, 8% in
both cases. Therefore, neglecting this fact may lead to significant
threats to the studies.

5 RELATEDWORK
Previous works investigated the characteristics of commits in CVCS
[1, 9, 11, 15]. Alali et al.[1] analyzed nine OSS from Subversion to
characterize commits regarding the number of files, number of lines,
number of hunks committed together, and the top 25 words used
in the systems’ log messages. They analyzed seven systems and
found that 75% of the commits are very small and that the largest
commits usually encompass all the system’s files or add/modify
a large file. Hattori and Lanza[9] studied the size of the commits
considering the number of files and the content of their log mes-
sages. They considered nine OSS and found that the number of
files in commits follows a Pareto distribution. They classified the
commits into four groups according to the number of files: tiny (1
to 5), small (6 to 25), medium (26 to 125), and large (up 126). As we
did in our work, they analyzed the commits’ messages. However,
they classified the commits into only two categories: development
(forward engineering) and maintenance (reengineering, corrective
engineering, and management). They concluded that: tiny commits
are related to corrective maintenance, small and medium commits
are heterogeneous, large commits are more related to management
activities in five projects, while forward engineering is the most
frequent activity in four, management activities tend to generate
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larger commits, while corrective activities are related to small and
tiny activities. Hindle et al.[11] concentrated on large commits.
They analyzed data from nine OSS, and they concluded that most
large commits are perfective, and most of the small commits are
corrective. The findings of Marzban et al.[15] are similar to Hindle
et al.[11]. Marzban et al. also investigated the relationship between
size and type of commit. Their study considered data up to 2008
from 10 OSS, and they found that in minor categories, most activi-
ties are related to bugs (fixing bugs or files), but in large commits
adding new files or data is more common.

There are some essential differences between these works and
ours. The GitHub repositories they analyzed were selected based
on their popularity, i.e., the repositories indicated as the favorite by
most developers. As we are interested in analyzing commit data, we
based our sampling on the number of commits the projects have. In
our analysis, we considered data of the first-parent line. We support
our decision by the findings of Kovalenko et al.’s study [13]. The
results of their study show that considering complete file histories,
i.e., including branches, may modestly increase the performance
of reviewer recommendation, change recommendation, and defect
prediction techniques. On the other hand, collecting the entire file
history demands extra effort, e.g., the time to collect the data may be
exorbitant. Therefore, the increase in performance may not justify
such an effort. Some previous works have raised the problem of the
tangled changes [4, 10]. Eyolfson et al. [4] found that 15% of the
bug fixes correspond to tangled changes. Our work quantified these
problems straightforwardly in terms of terms of co-occurrences
between activity types committed in single operations. We found
that 30% of the commits involve more than one activity type. We
also found that Reengineering is the activity that most occurs in
association with the other ones.

6 THREATS TO VALIDITY
The main threats to the validity of this work is the commits catego-
rization.

To indicate that the script found a keyword, the API needs to
find a perfect match in the analyzed text. Therefore, it was nec-
essary to build a dictionary containing the keywords and their
possible variations. We constructed the dictionary manually, we
cannot claim completeness. To mitigate this problem, we built the
dictionary based on the keywords described by Hattori and Lanza
[9] and added new words that we found in the manual inspection
of a sample of the commits’ messages.

We analyzed data from 24 Java-based systems hosted on GitHub.
We selected the most rated systems containing the highest number
of commits, resulting in a dataset containing more than 496K com-
mits. We also analyzed mature systems from well-known owners,
such as Apache. However, it is not possible to state that the results
shown in this work can be generalized to any proprietary software.

7 CONCLUSION
Commits data are one of the most used source of analysis in soft-
ware engineering research. However, not knowing or not consider-
ing the characteristics of commits may introduce biases in research.

In this work, we carried out an empirical study to characterize com-
mit data. We considered the 24 most popular and active Java-based
projects hosted in GitHub. We analyzed ≈ 1𝑀 commits.

The main findings of this work revealed that: (i) Reengineering
is the most frequent activity, followed by Forward Engineering,
and Corrective Engineering; (ii) although low, the frequency of
Merge and Management activities are relevant; (iii) 30% of commits
involves more than one type of activity; (iv) the most common co-
occurrences are between Reengineering and Forward Engineeringn
and between Reengineering and Corrective Engineering; (v) many
commits involve hundreds of files and those commits not only refer
to Merge or Management. The results of this studies lead to some
lessons that should be considered by empirical studies based on
commit analysis. In particular, the activity types involved in the
commits and the number of files in a commit should be considered
when designing a study.

Further research should analyze the data of software systems
developed in other programming languages, besides investigating
patterns of contributors’ commit practice and the characteristic of
the relationship of issues and commits.
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