
Introduction Proposed Methodology SAIDE Conclusion Main References

A Methodology for Removing LALR(k) Conflicts

Leonardo Teixeira Passos
Mariza A. S. Bigonha
Roberto S. Bigonha

{leonardo, mariza, bigonha}@dcc.ufmg.br

Federal University of Minas Gerais – UFMG
Programming Languages Laboratory

SBLP 2008

Introduction Proposed Methodology SAIDE Conclusion Main References

Content

Introduction

Proposed Methodology

SAIDE
Automatic Conflict Removal
Methodology Realization
Architecture

Conclusion

Main References

Introduction Proposed Methodology SAIDE Conclusion Main References

LALR Grammars

LALR(k) grammars are the standard way to automatically produce
parsers by using tools such as CUP [3], Bison [1], YACC [5], etc.

Despite the usefullness of the LALR parsing method, writing a
LALR(k) grammar is not a trivial task, specially when k = 1.

Introduction Proposed Methodology SAIDE Conclusion Main References

LALR Grammars

The difficulty in writing LALR(k) grammars is due to the frequent
occurrence of conflicts.

Grammar Prods. Terms. Non terms. Conflicts Conflicts/Prods

(%)

Algol-60 131 58 67 61 47

Scheme 175 42 83 78 45

Oberon-2 213 75 112 32 15

Notus 236 77 110 575 41

Table: Conflicts in some test grammars.

Introduction Proposed Methodology SAIDE Conclusion Main References

Problem

Since the introduction of LALR parsing in 1969, conflicts continue
to be removed in an old fashion and primitive manner.

Common approach: analyse the log file dumped by the LALR
parser generator.

Introduction Proposed Methodology SAIDE Conclusion Main References

Problem

Example: Notus programming language log file has 6244 words
and 2257 lines.

How one removes the 575 conflicts in the grammar?

• analyse the log file content:
• difficulty in browsing: a single file containg a huge amount of

data, without linkage of them – hyperlinks are not possible in
pure text files;

• difficulty in interpreting its content: non experts in LALR
parsing cannot relate the cause of a conflict just facing the
LALR automaton.

• migrate to LL parsing: the theory of these parsers is simple
and intuitive. But, does it really solve the problem?

Introduction Proposed Methodology SAIDE Conclusion Main References

Solution

How conflicts can be removed in such harsh environment?

By using a sistematic way = methodology

1. understand

2. classify

3. remove the conflict

4. test solution

Introduction Proposed Methodology SAIDE Conclusion Main References

Content

Introduction

Proposed Methodology

SAIDE
Automatic Conflict Removal
Methodology Realization
Architecture

Conclusion

Main References

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

Goal: provide faster browsing and better intuition of the cause of
conflict by

• modularizing the visualization of the data recorded in the log
file;

• interrelating the divided data using hyperlinks;

• presenting conflicts using low-level (LALR automaton) and
high level structures (derivation trees).

Introduction Proposed Methodology SAIDE Conclusion Main References

Classification

Goal: find one of the possible categories to which the conflict
reside.

Introduction Proposed Methodology SAIDE Conclusion Main References

Conflict Removal & Testing

Conflict removal

Goals:

• automatically remove
conflicts from situations (iii);

• assist the user with
examples that match the
ambiguity from situation (i).

Testing

Goal:

• provide an environment in
which the user can attest
the removal of the conflict.

Introduction Proposed Methodology SAIDE Conclusion Main References

Content

Introduction

Proposed Methodology

SAIDE
Automatic Conflict Removal
Methodology Realization
Architecture

Conclusion

Main References

Introduction Proposed Methodology SAIDE Conclusion Main References

SAIDE

SAIDE: acronym of Syntax Analyser Integrated Development
Environment.

SAIDE is a parser generator.

Main features:

• automatically eliminates some conflicts resulted from the lack
of right context;

• supports the proposed methodology for manual removal;

• permits the interpretation of grammars written in a variety of
specification languages.

Introduction Proposed Methodology SAIDE Conclusion Main References

SAIDE

Introduction Proposed Methodology SAIDE Conclusion Main References

Automatic Conflict Removal

Introduction Proposed Methodology SAIDE Conclusion Main References

Automatic Conflict Removal

FOLLOW0(p, A) = {λ}
FOLLOWk(p, A) = READk(p, A)

∪⋃{FOLLOWk(p′, B) | (p, A) includes (p′, B)}
∪⋃{CONCAT ({w}, FOLLOWk−|w |(q, B)) |

B → α • Aβ ∈ p,
w ∈ FIRSTk(β),
|w | < k,
w �= x$,
q ∈ PRED(p, α),
B �= S}

Major problem: FOLLOWk ′(p, A) cannot be reused when
calculatig FOLLOWk ′′(p, A), with k ′′ > k ′

Introduction Proposed Methodology SAIDE Conclusion Main References

Automatic Conflict Removal
Solution: calculate the minimal set of lookaheds w incrementally
building and extending Lookahead Finite Automatons using a
modified algorithm from the one used in [2]:

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

S ′ $

δ1 B1 v1

δ2 B2 v2 (a)

...

δn Bn vn

α B β1

β2

... (b)

βm−1

t βm

α1 A1 γ1

α2 A2 γ2 (c)

...

αs−1 As−1 γs−1

αs

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

reads relation [4]

READ1(p, A) = DR(p, A) ∪ ⋃{READ1(q, B) | (p, A) reads (q, B)}

DR(p, A) = {t ∈ Σ | GOTO0(q, t) �= Ω ∧ GOTO0(p, A) = q}

GOTO0 is the transition function of the LALR automaton.

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

includes relation [4]

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

Algorithm part (c) [4]:

for every (q′, As−1) transition representing a node v in the

includes grah, given that As−1 → αs• is in q and q′ is a

predecessor of q under αs, do:

traverse the includes graph in a BFS manner

from v until a node representing a nonterminal

transition (p, B) is found, such that t is in

READ1(p, B). The state p contains one or more

items of the form Bn → αBβ1, where t is in

FIRST1(β).

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

Algorithm part (b) [4]:

calculate the set E, given by:

E = {Bn → αB • β1}
∪ {A → δX • η | A → δ • Xη ∈ E ∧ X

∗⇒λ}
∪ {C → •α | A → δ • Cη ∈ E ∧ C → α ∈ P}

Map each addition to E back to the items that generated

it.

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

Algorithm part (c) [4]:

find the shortest path xi from the start item of the LALR
automaton to the state that contains Bn → αBβ1

calculte E’, given by

E ′ = {(S ′ → •S$, 1)}
∪ {(C → •α, j) | (A → δ • Cη, j) ∈ E ′ ∧ C → α ∈ P)}
∪ {(A → δX • η, j + 1) | (A → δ • Xη, j) ∈ E ′ ∧ X = ξj ∧ j ≤ |ξ|}

in a BFS way, linking additions to E’ back to the pairs
that generated them

stop as soon as (Bn → α • Bβ1, |ξ|) appears.

Introduction Proposed Methodology SAIDE Conclusion Main References

Understanding

• Debug tree for reduce/reduce conflicts:

apply sequence (c), (b), (a) to each reduction item.

Problem: conflicts specific to LALR parser construction.

• Debug tree for shift/reduce conflicts:

apply sequence (c), (b), (a) to the reduction item.

make ξ = δ1δ2δnαα1...αs and apply the E’ set calculation

algorithm to every shift item.

Introduction Proposed Methodology SAIDE Conclusion Main References

Classification

Currently performed manually.

Hints to help user:

• shows whether the conflict is in LALR or LR;

• presents the set of strings of length up to kmax that were
tried, but still were not able to remove the conflict;

• examples of some ambiguity examples according to some
known patterns.

Introduction Proposed Methodology SAIDE Conclusion Main References

Classification

Ambiguity known patterns
(assuming S ′ ∗⇒ ξ′Pξ′′, δi

∗⇒λ and Pi
∗⇒ P):

• P
∗⇒ δ1P1δ2αδ3P2δ4 and P

∗⇒ δ6βδ7δ8: captures ambiguous

constructions such as E → E + E | t;

• P
∗⇒ δ1αδ2P1δ3 and P

∗⇒ δ5αP2δ6βδ7P3δ8: dangling-else’s

instances;

• P
∗⇒ δ1αδ2P1δ3 and P

∗⇒ δ5P2δ6βδ7: captures ambiguous

constructions such as the rules exp → let dcl in exp where
exp and exp → exp where exp;

• P
∗⇒ δ1αδ2P1δ3βδ4 and P

∗⇒ δ6αδ7P2δ8βδ9: captures alias

between nonterminals.

Introduction Proposed Methodology SAIDE Conclusion Main References

Testing

Resubmit the specification to SAIDE to check if the conflict has
been eliminated, by reanalysis of the list of conflicts.

Upon failure, restart from one of the points before testinge, or
remove the next conflict, if it exists.

Introduction Proposed Methodology SAIDE Conclusion Main References

Plugin Facility (up to date)

Introduction Proposed Methodology SAIDE Conclusion Main References

Content

Introduction

Proposed Methodology

SAIDE
Automatic Conflict Removal
Methodology Realization
Architecture

Conclusion

Main References

Introduction Proposed Methodology SAIDE Conclusion Main References

Conclusion

Conflict removal is difficult and takes a great amount of time
during LALR parser construction.

The usual way to remove conflict is not adequate.

Proposed solution: a methodology for manual conflict removal.

Proposed tool: SAIDE.

Introduction Proposed Methodology SAIDE Conclusion Main References

Contributions & Future Work

Main contributions are:

• the proposed methodology systemizes the steps in conflict
removal;

• an informal proof, described in the article, that an algorithm
based on the FOLLOWk equation would terminate;

• SAIDE provides a uniform environment without any concern
of the specification language used.

Future work:

• add some level of automation to the classification phase;

• perform validation tests on SAIDE.

Introduction Proposed Methodology SAIDE Conclusion Main References

Content

Introduction

Proposed Methodology

SAIDE
Automatic Conflict Removal
Methodology Realization
Architecture

Conclusion

Main References

Introduction Proposed Methodology SAIDE Conclusion Main References

Bison.
Bison - gnu parser generator.
http://www.gnu.org/software/bison/.
Last access: 24/04/2007.

P. Charles.
A Pratical Method for Constructing Efficient LALR(k) Parsers
with Automatic Error Recovery.
PhD thesis, New York University, 1991.

CUP.
Cup: Lalr parser generator in java.
http://www2.cs.tum.edu/projects/cup/.
Last access: 13/01/2007.

F. DeRemer and T. Pennello.
Efficient computation of lalr(1) look-ahead sets.
ACM Trans. Program. Lang. Syst., 4(4):615–649, 1982.

Introduction Proposed Methodology SAIDE Conclusion Main References

S.C Johnson.
Yacc: Yet another compiler compiler.
In UNIX Programmer’s Manual, volume 2, pages 353–387.
Holt, Rinehart, and Winston, 1979.

