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The goal of this work is to improve automatic
test generation for type unsafe languages, such
as C, C++ and assembly.



Previous Work

DART: Directed Automated Random Testing

Patrice Godefroid Nils Klarlund Koushik Sen
Bell Laboratories. Lucent Technologies Computer Science Department
{god klarlund} @bell-labs.com University of Illinois at Urbana-Champaign

ksen@cs.uiuc.edu

e Infers the program’s interface
e Randomly generates values for the function’s arguments
e Analyzes the execution to find new input values



Previous Work

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler *
Stanford University

e Symbolic Execution
e Deals with the external environment



Previous Work

Micro Execution

Patrice Godefroid
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA

pg@microsoft.com

e Dynamic input generation

e Virtual Machine

e Generates random values for uninitialized memory locations that are
inputs



Problem

e Unlike some strongly typed languages, allocated memory in C has no meta
information

Java: for (int 1=0; 1 < array.length; i++)
Python: for 1 in xrange (len(array))
C#: foreach (int 1 in array)

C

void foo (int *array, 1int size) {
for (int 1=0; 1 < size; 1++)
array[1i];



Problem

e Unlike some strongly typed languages, allocated memory in C has no meta
information

int[10] 13

\ /

void foo (int *array, 1nt size) {
for (int 1=0; 1 < size; 1i++)
array[i];



Problem

e Unlike some strongly typed languages, allocated memory in C has no meta

information

int[10] 13

\ /

void foo (int *array, 1nt size) {
for (int 1=0; 1 < size; 1i++)
array[i];

Invalid memory accesses fori 210
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Solution

e \We use static analyses to bind function parameters that represent meta
information of memory regions and improve the generation of test cases

{1

void foo (int *array, 1nt size) {
for (int 1=0; 1 < size; 1i++)
array[i];

11



Background



Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction
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Basic Block

e Maximum set of consecutive instructions

o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

i++;

return ...;
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10: i = load i.addr

<. cmp = icmp sge 1,
while (i < n) - > iz cmp, 11, 12
o = alil;
i++;

return ...;

n
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10: i = load i.addr

<. cmp = icmp sge 1,
while (1 < n) { brz cmp, 11, 12
o = al[i];— 11: tmp = add a.addr,

—» 3 = load tmp
i++;
}

return ...;

n

i
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10: i = load i.addr

< cmp = 1cmp sge 1,
while (1 < n) { brz cmp, 11, 12
o = alil]l; 11: tmp = add a.addr,
a = load tmp
1++; —
} —p 1inc = add i, 1

store inc, 1i.addr
return ...;

n

i
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10: i = load i.addr

... cmp = icmp sge i, n
while (1 < n) { brz cmp, 11, 12
O 1] ; tmp = add a.addr, 1
« e a = load tmp
i++;
) inc = add i, 1
store inc, 1i.addr
return ...;

br 10
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10: i = load i.addr

< - cmp = 1cmp sge 1, n
while (1 < n) { brz cmp, 11, 12
o = alil]l; 11: tmp = add a.addr, 1
a = load tmp
i++;
} inc = add i, 1

store inc, 1i.addr

return ...;
\br 10
ret ...
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10:
while (1 < n) {
o = alil]l; 11:
i++;
}
return ...;

12:

load i.addr

cmp = 1cmp sge 1, n
brz cmp, 11, 12

tmp = add a.addr, 1i
a = load tmp

1 =

add 1, 1
i.addr

inc =
store inc,
br 10

ret
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10:
while (1 < n) {
o = alil]l; 11:
i++;
}
return ...;

12:

load i.addr

cmp = 1cmp sge 1, n
brz cmp, 11, 12

tmp = add a.addr, 1i
a = load tmp

1 =

add 1, 1
i.addr

inc =
store inc,
br 10

ret
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Basic Block

e Maximum set of consecutive instructions
o The execution of a basic block always starts with its first instruction
o The execution of a basic block always ends in its last instruction

10:
while (1 < n) {
o = alil]l; 11:
i++;
}
return ...;

12:

load 1.addr

cmp = 1cmp sge 1, n
brz cmp, 11, 12

tmp = add a.addr, 1
a = load tmp

1 =

add 1, 1
i.addr

inc =
store inc,
br 10

ret
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Basic Block

e Maximum set of consecutive instructions

o The execution of a basic block always starts with its first instruction

o The execution of a basic block always ends in its last instruction

i++;

return

.
L 4

10:

1 = load 1i.addr
cmp = icmp sge 1,
brz cmp, 11, 12

n

11:

tmp = add a.addr,
a = load tmp

inc = add i, 1
store inc, 1i.addr
br 10

i

12:

ret

23



Control Flow Graph

e Directed graph where nodes are basic block
e There is an edge between two blocks if the execution can flow from one block
to the other

24



Control Flow Graph

e Directed graph where nodes are basic block

e There is an edge between two blocks if the execution can flow from one block
to the other

BBO:
n<=17
int fibonacci (int n) { T | F
if (n <= 1) &
return n; BB2:
BB1: n_l=1
return n {1_2:0
int n 1 =1, n2 =0, fib; =2
for (int 1i=2; 1 <= n; 1i++) { Y
fib =n 1l + n 2; by
— J— 1<=1
n2=mn1; T | F
n 1 = fib; / \
} BB4:
return fib; glhz:znﬁlfn'z Efn?j'n fib
} n_1 = fib

\

BBS:
i++




Data-flow Analysis

e Approximates the dynamic behavior of a program regarding a property of
interest among several program points

26



Data-flow Analysis

e Approximates the dynamic behavior of a program regarding a property of

interest among several program points
e Makes use of the program’s CFG

BB

n<=17

ke | B

\

BBI:

M-)

BB2:
nl=1
n2=0
i=2

!

/[

BB3:
i<=n

How many registers

do we need here? —_

fib=n_14+n2

BBf&:
return fib

nZ2=n.1l

[ n_1=fib
BBS:

i++
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Data-flow Analysis

interest among several program points

e Makes use of the program’s CFG
e Expressed as transfer functions

[pll, = (Ip1l,,,— {v}) U vars(E)

out

ipl,,.= Y 1p1,

p’ € succ(p)

How many registers
do we need here?

- T

Approximates the dynamic behavior of a program regarding a property of

BEO:
n<=17

ke | B

/ e

BBI: nl=1

M-) {:1_2='I'_'i

i=2

BB3:

i<=n

/T F
BB4:

fib=n_14+n2 BBf:
n2=n_1l return fib

[ n_1=fib

§

BBS:
i++
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SSA: Static Single Assignment

Each variable is only assigned once

®d-functions

Useful to make data-flow analyses sparse

—

29



Our Solution



Forward Array Size Analysis

e Forward data-flow analysis
e The information starts being propagated from memory allocation
instructions

31



Forward Array Size Analysis

e Forward data-flow analysis
e The information starts being propagated from memory allocation
instructions

v = malloc(c) + [v] ={c}

int *v = (int*) malloc(10);
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Forward Array Size Analysis

e Forward data-flow analysis
e The information starts being propagated from memory allocation
instructions

v = malloc(c) + [v] ={c}
v = malloc(a) + [v] = {a}, [a]U = {v}

int *v = (int*) malloc(n);
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Forward Array Size Analysis

e Forward data-flow analysis
e The information starts being propagated from memory allocation
instructions

v = malloc(c) + [v] ={c}
v = malloc(a) + [v] = {a}, [a]U = {v}
vy € [va]

[v1] = [[v2] s [va]U = {v1}

v1=1U2+c F

int *v2 = ...
int *vl = v2 + 1;




Forward Array Size Analysis

e Forward data-flow analysis
e The information starts being propagated from memory allocation
instructions

v| int *v = (int*) malloc (n2); }
int nl = n2 + x;

2= | | | ¥ S }

v € [va], vj € [oa]

v1 =v2 Ovg

[v1] = [v2] U [ws], [va]U = {v1}, [vs]U = {v1}
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Forward Array Size Analysis

e Forward data-flow analysis

e The information starts being propagated from memory allocation

instructions

v = malloc(c) + [v]

= {c}

v = malloc(a) + [v] = {a}, [a]U = {v}

vp € [v2]
"W =V2+cCF 2
1 2 v1] = [wa], [vi]U = {v1}
v1 =v2 Ovg vy € [va], vy € [us]
L= 0% T L= Toal U el [0 = {va), 10 = (o1}

'Ui - [[Ul]],.

.30 € [vn]

v=9vn- %) F e Ol [0

1<i<n

={v},..., [on]u = {v}
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Forward Array Size Analysis

void f£ () {
int size = ...;
int *array = (int*) malloc(sizeof (int) *size);

foo (array, size);
}

void foo (int *array, int size) {
for (int 1=0; 1 < size; 1i++)
arrayl[i];

37



Forward Array Size Analysis

*array = ( *) malloc(

foo(array, Size); \

foo ( *array, size) |
( 1=0; 1 < size; 1++)
arrayl[1i];

) *size) ;
%$size =
gmul = mul 4, %$size
%array = call (@malloc (%$mul)

call @foo(%array, %size);

38



Forward Array Size Analysis

%$size = ... [[array]] — {mu]}
$mul = mul 4, %size //////////////'
%array = call @malloc (%$mul)

call @foo(%array, %size);

39



Forward Array Size Analysis

o

%$slize = ...
smul = mul 4, %size
%array = call @malloc (%$mul)

call @foo(%array, %size);
Does size have any

relation to mul?

[array]] = {mul}

40



Forward Array Size Analysis

o

%$slize = ...
gmul = mul 4, %size
%array = call @malloc (%$mul)

call @foo(%array, %size);
Does size has any

relation with mul?

[[array]] = {mul}

41



Forward Array Size Analysis

e Qur analysis is interprocedural
o We analyze the function in a topological order of the call-graph

e It lets us find user-defined memory allocation functions

void *xmalloc(size t n) {
void *p = malloc(n);
if (p == 0)
xalloc die();
return p;
} ‘\\\\\

[pll = {n}

42



Results

e The forward analysis only found sizes for two benchmarks in SPEC
o  6.9% for GCC
o 0.5% for HMMER
o 1.3% total

e Forthe single-source and multi-source benchmarks present in LLVM's test-

suite, the forward analysis found about 3% of array sizes
o The maximum was 66.6% for FreeBench'’s analyzer

43



Results

e \We have randomly selected 12 SPEC functions for manual inspection
e Found 4 main code patterns for which our forward analysis is ineffective
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Results

e \We have randomly selected 12 SPEC functions for manual inspection
e Found 4 main code patterns for which our forward analysis is ineffective
1. The size is calculated with no relation to the array allocation

int *a = (int*) malloc(sizeof (int) *n);

45



Results

e \We have randomly selected 12 SPEC functions for manual inspection
e Found 4 main code patterns for which our forward analysis is ineffective
1. The size is calculated with no relation to the array allocation
2. The array (and maybe its size) is encapsulated inside a struct

struct my vector {
int *array;
size t size;

}i
void f (struct my vector v) {

foo(v.array, v.size);

46



Results

e \We have randomly selected 12 SPEC functions for manual inspection
e Found 4 main code patterns for which our forward analysis is ineffective
1. The size is calculated with no relation to the array allocation
2. The array (and maybe its size) is encapsulated inside a struct
3. The array is statically allocated

int a[l28];

for (int i=0; i < n, i++)
foo(&al[l0], 1);

47



Results

e \We have randomly selected 12 SPEC functions for manual inspection
e Found 4 main code patterns for which our forward analysis is ineffective
1. The size is calculated with no relation to the array allocation
2. The array (and maybe its size) is encapsulated inside a struct
3. The array is statically allocated
4. The array is received as a function argument

void f (int *a, int size) {

foo(a, size);

48



Backward Array Size Analysis

e The backward analysis doesn’t need allocation information

e The information starts being propagated, backwards, from array accesses

e This analysis was proposed by Alves et al. and uses the symbolic range
analysis proposed by Nazare et al.
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Backward Array Size Analysis

e The backward analysis doesn’t need allocation information

e The information starts being propagated, backwards, from array accesses

e This analysis was proposed by Alves et al. and uses the symbolic range
analysis proposed by Nazare et al.

void foo (int *array, int size) {
for (int 1=0; 1 < size; 1i++)
arrayl[i];
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Backward Array Size Analysis

e The backward analysis doesn’t need allocation information

e The information starts being propagated, backwards, from array accesses

e This analysis was proposed by Alves et al. and uses the symbolic range
analysis proposed by Nazare et al.

void foo(int *array, int size) {
for (int 1=0; 1 < size; 1i++)
arrayl[i];

N

Gather array access expressions
(only “” in this case)
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Backward Array Size Analysis

e The backward analysis doesn’t need allocation information

e The information starts being propagated, backwards, from array accesses

e This analysis was proposed by Alves et al. and uses the symbolic range
analysis proposed by Nazare et al.

void foo(int *array, int size) {
for (int 1=0; 1 < size; 1i++)

arrayl[i];
} \

Symbolic range analysis on
each variable of the array
access expressions.

i: [0, max(0, size-1)]

52



Backward Array Size Analysis

e The backward analysis doesn’t need allocation information

e The information starts being propagated, backwards, from array accesses

e This analysis was proposed by Alves et al. and uses the symbolic range
analysis proposed by Nazare et al.

void foo(int *array, int size) {
for (int 1=0; 1 < size;?i++)
arrayl[i];

We then check whether the upper
bound (max(0, size-1)) has a
relation with any parameter

53



Results

Backward Analysis Rate for SPEC

The backward analysis found 33.9% of the array sizes for SPEC
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Results

Array Accessesover Sized Arrays

100%
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33% of all array accesses in SPEC are performed over sized arrays



Input Generator



Data Structure Graph

{

Xy
Yr
} Pair;
closestPoint (Pair *pairs, size) {
min = INFINITY; \
Pair closest; \
( i=0; 1 < size; i++) { \
Pair p = pairs[i];
dist = sqri(pow(p.x, 2) . StFUCtJ?ahf
pow(p.y, 2));
(dist < min) {
min = dist; X y
closest = p;

}
}

printf ("Closest = (%d, %d)\n", closest.x,
closest.vy);

57



Input Generation

function generate value (field):
if field is pointer && not field is array:
if flip coin():
allocate memory and store the result of a recursive call
else:
return NULL
else 1f field is array:
create a function to create arrays of type field.node.type
1if forward analysis found size:
get the slice to calculate the size
else 1f backward analysis found size:
get the size from the backward analysis
else:
size = random int ()
return call to the created function passing size as argument
else if field.node.type is struct:
allocate memory
for each struct field f’:
generate value (f’)
else:
return random value (field.node.type)



Input Generation

function generate value (field):
if field is pointer && not field is array:
if flip coin():
allocate memory and store the result of a recursive call
else:
return NULL
else if field is array:
create a function to create arrays of type field.node.type
1if forward analysis found size:
get the slice to calculate the size
else if backward analysis found size:
get the size from the backward analysis
else:
size = random int ()
return call to the created function passing size as argument
else if field.node.type is struct:
allocate memory
for each struct field f’:
generate value (f’)
else:
return random value (field.node.type)
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Input Generation

function generate value (field) :

else if field is array:
create a function to create arrays of type field.node.type
if forward analysis found size:
get the slice to calculate the si:ze
else if backward analysis found size:
get the size from the backward analysis
else:
size = random_int()
return call to the created function passing size as argument

60



Input Generation

function generate value (field):
if field is pointer && not field is array:
if flip coin():
allocate memory and store the result of a recursive call
else:
return NULL
else if field is array:
create a function to create arrays of type field.node.type
1if forward analysis found size:
get the slice to calculate the size
else if backward analysis found size:
get the size from the backward analysis
else:
size = random int ()
return call to the created function passing size as argument
else if field.node.type is struct:
allocate memory
for each struct field f':
generate value(f’)
else:
return random value (field.node.type)
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Input Generation

function generate value (field):
if field is pointer && not field is array:
if flip coin():
allocate memory and store the result of a recursive call
else:
return NULL
else 1f field is array:
create a function to create arrays of type field.node.type
1if forward analysis found size:
get the slice to calculate the size
else 1f backward analysis found size:
get the size from the backward analysis
else:
size = random int ()
return call to the created function passing size as argument
else if field.node.type is struct:
allocate memory
for each struct field f’:
generate value (f’)
else:
return random value(field.node.type)



Case Study



Context

e Previous approaches on automatic inference of program complexity have
shortcomings:
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Context

e Previous approaches on automatic inference of program complexity have

shortcomings:
o Imprecise

Aprof’s output
80000 =
60000 - *
ﬁ "
© 40000 - ~
L ]
20000 — +
—7 .
L
o | 1 | | | | |
. 0 200 400 600 800 1000 1200
P
Linear: Input size

Quadratic?
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Context

e Previous approaches on automatic inference of program complexity have

shortcomings:
o Imprecise

o Hard to read Aprof’'s output

80000 >

60000 *
+ +*
S 40000 - .

L
20000 A -
L
&
. | 1 T | | | |

0 200 400 600 B0Quiil 00
/
RMS
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Context

e Previous approaches on automatic inference of program complexity have

shortcomings:

o Imprecise
o Hard to read Aprof’'s output
o Too coarse

80000
60000 .
#
S 40000 .

20000 A *

One chart for 2
the whole function t ‘ ' r - : .
0 200 400 600 800 1000 1200
Input size
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Asymptus

68



Asymptus

identify loop inputs and relations between loops

69



Asymptus

extract data-points

70



Asymptus

find a cost function
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Example

O d_x o w N

int** multiply(int **matA, int **matB, int side) {

int 1, 3, k,

int **result

for (i = 0;
result[i]

sum,

(Int**)

i < side;

malloc (side*sizeof (int*)) ;

i4+)

(int*) malloc(side*sizeof (int));
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Example

l: int** multiply(int **matA, int **matB, int side) {
2 int 1, 3, k, sum;

3: int **result = (int**) malloc (side*sizeof (int*));
4: for (1 = 0; 1 < side; i++)

5: result[i] = (int*) malloc(side*sizeof (int));
6:

7: for (1=0; 1 < side; 1i++) {

8: for (j=0; j < side; J++) {

9: sum = 0;
10: for (k=0; k < side; k++) {

11: sum += matA[1][k] * matB[k][7];

12: }

13: result[i][]J] = sum;

14: }

15: }

17 return result;

[
(00)
—



Example

e S e S S S SRR S S
o J U W N o

O 0 J o O dx W N -

in

t** multiply(int **matA, int **matB, int side) {
int 1, 3, k, sum;
int **result = (int**) malloc (side*sizeof (int*));
for (i = 0; 1 < side; 1i++)

result[i] = (int¥*)

mal 1de*sizeof (int) ) ;

for (i=0; i < side; €+tt) {

for (j=0; 7 < side; j++) {
sum = 0; 41;””,,,,,,,,,,,,,,,,,
for (k=0; k < side;*“k++) {

sum += matA[1][k] * matB[k][7];
}

result[i][]J] = sum;

Inputs

}

return result;
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Example

e S e S S S SRR S S
o J U W N o

O 0 J o O dx W N -

in

t** multiply(int **matA, int **matB, int side) {

int 1, 3, k, sum;

int **result = (int**) malloc (side*sizeof (int*));
for (i = 0; 1 < side; 1i++)
result[i] = (int*) malloc(side*sizeof (int));

for (i=0; i < side; i++) {
for (j=0; 7 < side; J++) {

sum = 0O;
for (k=0; k < side; k++) {
sum += matA[i][k] * matB[k][j]; Multiply
}
result[i][]J] = sum;

}

return result;

Line 7 x Line 8 x Line 10
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Example

1:
2:
3:
4.
5:

int** multiply(int **matA, int **matB, int side) {
int 1, 3, k, sum;
int **result = (int**) malloc (side*sizeof (int*));
for (i = 0; 1 < side; 1i++)

result[i] = (int*) malloc(side*sizeof (int));

for (i=0; i < side; i++) {

<€:%: for (3=0; j < side; j++) {
9: sum = 0;

10: for (k=0; k < side; k++) {

11: sum += matA[i][k] * matB[k][j]; Multiply
12: }

13: result[i][]J] = sum;

14: }

15: }

17: return result;

18: } Line 4 + (Line 7 x Line 8 x Line 10)



Example

e e e e e
® g U s W N o
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int** multiply(int **matA, int **matB, int side) {
int i, j, k, sum;
int **result = (int**) malloc (side*sizeof (int*));
for (i = 0; 1 < side; 1i++)

result[i] (int*) malloc (side*sizeof (int));
for (i=0; i < side; i++) {
for (3=0; j < side; j++) {
sum = 0;
for (k=0; k < side; k++) {
sum += matA[i][k] * matB[k][J];
}

result[i] [j] = sum;

}

return result;

Profiler
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int** multiply(int **matA, int **matB, int side) {
int i, j, k, sum;
int **result = (int**) malloc (side*sizeof (int*));
for (i = 0; 1 < side; 1i++)

result[i] (int*) malloc (side*sizeof (int));
for (i=0; i < side; i++) {
for (3=0; j < side; j++) {
sum = 0;
for (k=0; k < side; k++) {
sum += matA[i][k] * matB[k][J];
}

result[i] [j] = sum;

}

return result;

Profiler

Interpolator
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: int** multiply(int **matA, int **matB, int side) {

int i, j, k, sum;

int **result = (int**) malloc (side*sizeof (int*));

for (i = 0; 1 < side; 1i++)
result[i] = (int*) malloc(side*sizeof (int));

for (i=0; i < side; i++) {
for (3=0; j < side; j++) {
sum = 0;
for (k=0; k < side; k++) {
sum += matA[i] [k] * matB[k][]J];
}

result[i] [j] = sum;

}

return result;

|:> Profiler |:> Interpolator

Line 4 + (Line 7 x Line 8 x Line 10)
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Example

1: int** multiply(int **matA, int **matB, int side) {

2 int i, j, k, sum;

3: int **result = (int**) malloc (side*sizeof (int*)); © PrGfI|EI' Q |I'I'|IEI'DD|E'|ZDI'
4: for (i = 0; 1 < side; 1i++)

5: result[i] = (int*) malloc(side*sizeof (int));

6:

7: for (i=0; i < side; i++) {

8: for (3=0; J < side; j++) {

9: sum = 0;

10: for (k=0; k < side; k++) {

11 sun += matA(i] [k] * matB(k][3]; Line 4 + (Line 7 x Line 8 x Line 10)
12: }

13: result[i] [j] = sum;

14: }

15: }

17:  return result; Function ‘multiply(int**, int**, int)":

18: }

Loop at line 4: 1.00 * side + 1.00
Loop at line 7: 1.00 * side + 1.00
Loop at line 8: 1.00 * side + 1.00
Loop at line 10: 1.00 * side + 1.00

Complexity: O(side”3)
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:int** multiply(int **matA, int **matB, int side)

int i, j, k, sum;

for (i = 0; 1 < side; 1i++)
result[i] = (int*) malloc(side*sizeof (int));

for (i=0; i < side; i++) {
for (3=0; j < side; j++) {
sum = 0;
for (k=0; k < side; k++) {
sum += matA[i][k] * matB[k][J];
}
result[i] [j] = sum;
}
}
return result;

: )

-Precise
-Uses program’s symbols
-Loop level

{

int **result = (int**) malloc (side*sizeof (int*)); © [ Profller ] Q [|HtEFpD|atDl’]

4

Line 4 + (Line 7 x Line 8 x Line 10)

Function ‘multiply(int**, int**, int)":
Loop at line 4: 1.00 * side + 1.00
Loop at line 7: 1.00 * side + 1.00
Loop at line 8: 1.00 * side + 1.00
Loop at line 10: 1.00 * side + 1.00

Complexity: O(side”3)
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Results

e Analyzed 99.7% of all loops in Polybench and 69.18% in Rodinia

100

80 A

40 -+

20 7

Percentage of correctly analyzed loops per benchmark of Rodinia.
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Limitations of Asymptus

e Only works for polynomial programs
e Loops controlled by a data structure value
e The function needs to be executed a certain number of times
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Limitations of Asymptus

e Only works for polynomial programs
e Loops controlled by a data structure value
e The function needs to be executed a certain number of times

We can use our input generator to help Asymptus!
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Our Experiment

e \We have written 10 functions having different kinds of inpus
o Arrays
o Matrices
o Recursive data structures

e Modified 6 Polybench functions

o Oiriginally, the inputs of the functions were defined by macros (definition at compile time)
e Our input generator could help Asymptus analyze all the functions
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Final Remarks



Limitations and Future Work

e The input generator doesn’t get the complete expression representing the
upper bound of the array accesses

void foo(int *a, int size) {
for (int i=0; 1 < n, 1i++)
al[size+i];

)

Size of “a” has to be at least size*2
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Limitations and Future Work

e The input generator doesn’t get the complete expression representing the
upper bound of the array accesses
e The forward analysis doesn’t deal with statically allocated arrays

int a[l28];

for (int i=0; i < n, 1i++)
foo(&al[l0], 1);
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Limitations and Future Work

e The input generator doesn’t get the complete expression representing the
upper bound of the array accesses

e The forward analysis doesn’t deal with statically allocated arrays

e The forward analysis doesn’t track arrays over function calls

void f (int *a, int size) {

foo(a, size):;
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Limitations and Future Work

e The input generator doesn’t get the complete expression representing the
upper bound of the array accesses

e The forward analysis doesn’t deal with statically allocated arrays

e The forward analysis doesn’t track arrays over function calls

e Create an analysis to infer the size of recursive data structures

struct list {
struct node *head;
size t size;

} i

void f (struct 1list 1) {
struct node *n = 1l.head;

for (int i=0; i < l.size; i++) {

n = n->next;



Contributions

e The design of a forward data-flow analysis to bind meta information of
allocated memory

e The design of an algorithm to generate inputs for functions that makes use
of array size analyses

e The identification of pointers used as arrays by looking for pointer
arithmetics

e The development Asymptus (a tool for program complexity inference)

e The development of a testing infrastructure for Maxtrack
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Contributions

Um Algoritmo para Emparelhamento de

Chamadas de Funcgao

Francisco Demontié, Filipe de Lima Arcanjo e Mariza A. S. Bigonha

Universidade Federal de Minas Gerais
{dementie,filipe,mariza}@dcc.ufmg.br

Resumo A malor parte dos compiladores atuais realiza uma série de
otimizagbes no programa fonte sem garantir a preservagio da semantica
desse programa. Verificar a corretude de otimizagoes é uma tarefa dificil,
pois erros de otimizagiao podem aparecer em pontos muito diferentes
daqueles onde eles tiveram origem. A fim de facilitar essa tarefa de de-
puragao, este artigo apresenta uma técnica para o emparelhamento de
programas antes e depois de otimizagoes. A grande inovagao deste traba-
lho é usar fungoes externas como pontos de correspondencia entre progra-
mas. Essa técnica é itil por varias razoes. Em particular, ela pode encon-
trar problemas facilmente e pode servir como éncora para andlises mais
poderosas. Além disso, o emparelhamento proposto € ripido e confidvel,
pois compiladores nao podem otimizar chamadas a fungoes que nao pos-
stuem corpo, logo, tais fungoes precisam ser mantidas pelo otimizador.

Asymptus - A Tool for Automatic
Inference of Loop Complexity

https://youtu.be/pzfriIDfoCEc

Automatic Imference of Loop Complexity
through Polvnomial Interpolation

Mari

Francisen Do , Fomande Forora

LFRME - Aver
|Ssmont:

fo Carlos, 6EZT, 1. 10.010, Bolo Horfaoma
fooazar, fernands  Bariza |ddo . SiRg. bT
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Viewon GitHub ()

Asymptus

Automatic inference of function complexity through polynomial

interpolation

Asymptus Complexity Analyzer

Asymptus s a tool for automatic inference of function complexity. It uses a hibrid approach,
mixing static analysis and dynamic profiling, in order to provide more accurate results.

This tool was implemented by @demontiejr and @juniocezar.

Installing
Asymptus requires LLVM 3.4 to performe static analysis. To install LLVM 3.4 you can follow these

tutorials: downloading a specific version of LLVM and installing LLVM. Note that its necessary to
alsoinstall clang, the LLVM front-end.

https://demontiejr.github.io/asymptus

praha

Asymptus - A Tool for Automatic Inference of Loop
Complexity
Junio Cexar, Francisco Demontié, Marica Bizonha and Fernando Pereira

' UFMG - Avenida Anedmio Carlos, 6627, 31.270-010, Beto Horizante

[Juniooe za tia, mariza, £

Abstract. Complextly amalysis ix an imparien aoivily for soffesre engineers
Swch an analysix can be specially wreful in the idemiification of performance
bugs. Although the research communily has made significen progress in this
Jield, exiving technigues il show limitaffons. Purely safic methods may be
imprecise die to their ingbility 1o caplure the dynamic behavior of programs. On
the cuher hand, dynamic approacches wsually need user intervention and’or are
nod effechive lo relate complexiy bounds with the symbolr in the program code.
In ilix paper, we presevt a dool which wses o hybrid lechrigue io solve these
sharicomings. Siatically, owr loof defermines: (1) the mpuixs of a loop, e, the
varighles thal contral s deralions; and (i} an alpebrzic egualion relaing the
Izaps within a fimction. We then ingrument the program Io catpul pairs relating
il valies and number of aperalions exeoded. By ninming the program over
differenl impuls, we perengle sufficient pointxs for a polymomial inderpelaier in
arder fo precisely deermine @ complevity finciion for loops. In the emd the
complexty fiindion for sack loop is combined wring on alpebra of owr own craf.

Primeira demo infraestrutura de
testes

https://youtu.be/GRnpbES8f_U4
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Generation of Test Cases
for Languages with Pointer
Arithmetics

Demontié Junior
Advisor: Mariza Bigonha
Co-advisor: Fernando Pereira



