
Generation of Test Cases
for Languages with Pointer

Arithmetics
Demontiê Junior

Advisor: Mariza Bigonha
Co-advisor: Fernando Pereira

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.122.3316&rep=rep1&type=pdf

http://istqbexamcertification.com/why-is-
testing-necessary/

http://www.te52.com/testtalk/2014/08/07/5-reasons-
we-need-software-testing/

http://www.softwaretesting.com.
au/Why_is_Software_Testing_important.
php

2

http://www.informit.com/articles/article.aspx?

p=1332758&seqNum=3

http://www.softwaretestingclass.com/why-
how-and-when-to-automate-software-testing/

http://www.base36.com/2013/03/automated-vs-manual-

testing-the-pros-and-cons-of-each/

3

4

The goal of this work is to improve automatic
test generation for type unsafe languages, such

as C, C++ and assembly.

Previous Work

● Infers the program’s interface
● Randomly generates values for the function’s arguments
● Analyzes the execution to find new input values

5

● Symbolic Execution
● Deals with the external environment

Previous Work

6

● Dynamic input generation
● Virtual Machine
● Generates random values for uninitialized memory locations that are

inputs

Previous Work

7

Problem

● Unlike some strongly typed languages, allocated memory in C has no meta
information

C

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

8

Java: for (int i=0; i < array.length; i++)
Python: for i in xrange(len(array))
C#: foreach (int i in array)

Problem

● Unlike some strongly typed languages, allocated memory in C has no meta
information

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

int[10] 13

9

Problem

● Unlike some strongly typed languages, allocated memory in C has no meta
information

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

Invalid memory accesses for i ≥ 10

10

int[10] 13

Solution

● We use static analyses to bind function parameters that represent meta
information of memory regions and improve the generation of test cases

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

11

Background

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

13

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

14

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

15

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

16

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...
 inc = add i, 1
 store inc, i.addr

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

17

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...
 inc = add i, 1
 store inc, i.addr
 br l0

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

18

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...
 inc = add i, 1
 store inc, i.addr
 br l0
l2: ret ...

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

19

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...
 inc = add i, 1
 store inc, i.addr
 br l0
l2: ret ...

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

20

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...
 inc = add i, 1
 store inc, i.addr
 br l0
l2: ret ...

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

21

Basic Block

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...
 inc = add i, 1
 store inc, i.addr
 br l0
l2: ret ...

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

22

● Maximum set of consecutive instructions
○ The execution of a basic block always starts with its first instruction
○ The execution of a basic block always ends in its last instruction

l0: i = load i.addr
 cmp = icmp sge i, n
 brz cmp, l1, l2
l1: tmp = add a.addr, i
 a = load tmp
 ...
 inc = add i, 1
 store inc, i.addr
 br l0
l2: ret ...

Basic Block

...
while (i < n) {
 o = a[i];
 ...
 i++;
}
return ...;

23

Control Flow Graph

● Directed graph where nodes are basic block
● There is an edge between two blocks if the execution can flow from one block

to the other

24

Control Flow Graph

● Directed graph where nodes are basic block
● There is an edge between two blocks if the execution can flow from one block

to the other

int fibonacci(int n) {
 if (n <= 1)
 return n;

 int n_1 = 1, n_2 = 0, fib;
 for (int i=2; i <= n; i++) {
 fib = n_1 + n_2;
 n_2 = n_1;
 n_1 = fib;
 }
 return fib;
}

25

Data-flow Analysis

● Approximates the dynamic behavior of a program regarding a property of
interest among several program points

26

Data-flow Analysis

● Approximates the dynamic behavior of a program regarding a property of
interest among several program points

● Makes use of the program’s CFG

27

How many registers
do we need here?

Data-flow Analysis

● Approximates the dynamic behavior of a program regarding a property of
interest among several program points

● Makes use of the program’s CFG
● Expressed as transfer functions

⟦ ⟧ (⟦ ⟧ −) ∪ ()

⟦ ⟧ ⋃ ⟦ ⟧
∈ ()

28

How many registers
do we need here?

SSA: Static Single Assignment

● Each variable is only assigned once
● Φ-functions
● Useful to make data-flow analyses sparse

...

...
a = 1
...

...
a = 2
...

...
x = a + 1

...

...

...
a0 = 1
...

...
a1 = 2
...

a = Φ(a0, a1)
...

x = a + 1
...

29

Our Solution

Forward Array Size Analysis

● Forward data-flow analysis
● The information starts being propagated from memory allocation

instructions

31

Forward Array Size Analysis

● Forward data-flow analysis
● The information starts being propagated from memory allocation

instructions

32

int *v = (int*) malloc(10);

Forward Array Size Analysis

● Forward data-flow analysis
● The information starts being propagated from memory allocation

instructions

33

int *v = (int*) malloc(n);

Forward Array Size Analysis

● Forward data-flow analysis
● The information starts being propagated from memory allocation

instructions

34

int *v2 = ...
int *v1 = v2 + 1;

Forward Array Size Analysis

● Forward data-flow analysis
● The information starts being propagated from memory allocation

instructions

35

int *v = (int*) malloc(n2);
int n1 = n2 + x;

Forward Array Size Analysis

● Forward data-flow analysis
● The information starts being propagated from memory allocation

instructions

36

Forward Array Size Analysis

void f() {
 int size = ...;
 ...
 int *array = (int*) malloc(sizeof(int)*size);
 ...
 foo(array, size);
 ...
}

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

37

Forward Array Size Analysis

void f() {
 int size = ...;
 ...
 int *array = (int*) malloc(sizeof(int)*size);
 ...
 foo(array, size);
 ...
}

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

38

%size = ...
...
%mul = mul 4, %size
%array = call @malloc(%mul)
...
call @foo(%array, %size);
...

Forward Array Size Analysis

%size = ...
...
%mul = mul 4, %size
%array = call @malloc(%mul)
...
call @foo(%array, %size);
...

39

⟦ ⟧

Forward Array Size Analysis

%size = ...
...
%mul = mul 4, %size
%array = call @malloc(%mul)
...
call @foo(%array, %size);
...

40

⟦ ⟧

Does size have any
relation to mul?

Forward Array Size Analysis

%size = ...
...
%mul = mul 4, %size
%array = call @malloc(%mul)
...
call @foo(%array, %size);
...

41

⟦ ⟧

Does size has any
relation with mul?

Forward Array Size Analysis

● Our analysis is interprocedural
○ We analyze the function in a topological order of the call-graph

● It lets us find user-defined memory allocation functions

void *xmalloc(size_t n) {
 void *p = malloc(n);
 if (p == 0)
 xalloc_die();
 return p;
}

⟦ ⟧

42

Results

● The forward analysis only found sizes for two benchmarks in SPEC
○ 6.9% for GCC
○ 0.5% for HMMER
○ 1.3% total

● For the single-source and multi-source benchmarks present in LLVM’s test-
suite, the forward analysis found about 3% of array sizes

○ The maximum was 66.6% for FreeBench’s analyzer

43

Results

● We have randomly selected 12 SPEC functions for manual inspection
● Found 4 main code patterns for which our forward analysis is ineffective

44

Results

● We have randomly selected 12 SPEC functions for manual inspection
● Found 4 main code patterns for which our forward analysis is ineffective

1. The size is calculated with no relation to the array allocation

45

...
int *a = (int*) malloc(sizeof(int)*n);
...
foo(a, 10);
...

Results

● We have randomly selected 12 SPEC functions for manual inspection
● Found 4 main code patterns for which our forward analysis is ineffective

1. The size is calculated with no relation to the array allocation
2. The array (and maybe its size) is encapsulated inside a struct

46

struct my_vector {
 int *array;
 size_t size;
};

void f(struct my_vector v) {
 ...
 foo(v.array, v.size);
 ...
}

Results

● We have randomly selected 12 SPEC functions for manual inspection
● Found 4 main code patterns for which our forward analysis is ineffective

1. The size is calculated with no relation to the array allocation
2. The array (and maybe its size) is encapsulated inside a struct
3. The array is statically allocated

47

...
int a[128];
...
for (int i=0; i < n, i++)
 foo(&a[10], i);
...

Results

● We have randomly selected 12 SPEC functions for manual inspection
● Found 4 main code patterns for which our forward analysis is ineffective

1. The size is calculated with no relation to the array allocation
2. The array (and maybe its size) is encapsulated inside a struct
3. The array is statically allocated
4. The array is received as a function argument

48

void f(int *a, int size) {
 ...
 foo(a, size);
 ...
}

Backward Array Size Analysis

● The backward analysis doesn’t need allocation information
● The information starts being propagated, backwards, from array accesses
● This analysis was proposed by Alves et al. and uses the symbolic range

analysis proposed by Nazaré et al.

49

Backward Array Size Analysis

● The backward analysis doesn’t need allocation information
● The information starts being propagated, backwards, from array accesses
● This analysis was proposed by Alves et al. and uses the symbolic range

analysis proposed by Nazaré et al.

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

50

Backward Array Size Analysis

● The backward analysis doesn’t need allocation information
● The information starts being propagated, backwards, from array accesses
● This analysis was proposed by Alves et al. and uses the symbolic range

analysis proposed by Nazaré et al.

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

Gather array access expressions
(only “i” in this case)

51

Backward Array Size Analysis

● The backward analysis doesn’t need allocation information
● The information starts being propagated, backwards, from array accesses
● This analysis was proposed by Alves et al. and uses the symbolic range

analysis proposed by Nazaré et al.

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

Symbolic range analysis on
each variable of the array
access expressions.
 i: [0, max(0, size-1)]

52

Backward Array Size Analysis

● The backward analysis doesn’t need allocation information
● The information starts being propagated, backwards, from array accesses
● This analysis was proposed by Alves et al. and uses the symbolic range

analysis proposed by Nazaré et al.

void foo(int *array, int size) {
 for (int i=0; i < size; i++)
 array[i];
 ...
}

We then check whether the upper
bound (max(0, size-1)) has a
relation with any parameter

53

Results

The backward analysis found 33.9% of the array sizes for SPEC

54

Results

33% of all array accesses in SPEC are performed over sized arrays

55

Input Generator

Data Structure Graph

struct {
 int x;
 int y;
} Pair;

void closestPoint(Pair *pairs, int size) {
 int min = INFINITY;
 Pair closest;
 for (int i=0; i < size; i++) {
 Pair p = pairs[i];
 int dist = sqrt(pow(p.x, 2)
 + pow(p.y, 2));
 if (dist < min) {
 min = dist;
 closest = p;
 }
 }
 printf("Closest = (%d, %d)\n" , closest.x,
 closest.y);
}

57

function generate_value(field):
 if field is pointer && not field is array:
 if flip_coin():
 allocate memory and store the result of a recursive call
 else:
 return NULL
 else if field is array:
 create a function to create arrays of type field.node.type
 if forward analysis found size:
 get the slice to calculate the size
 else if backward analysis found size:
 get the size from the backward analysis
 else:
 size = random_int()
 return call to the created function passing size as argument
 else if field.node.type is struct:
 allocate memory
 for each struct field f’:
 generate_value(f’)
 else:
 return random_value(field.node.type)

Input Generation

58

function generate_value(field):
 if field is pointer && not field is array:
 if flip_coin():
 allocate memory and store the result of a recursive call
 else:
 return NULL
 else if field is array:
 create a function to create arrays of type field.node.type
 if forward analysis found size:
 get the slice to calculate the size
 else if backward analysis found size:
 get the size from the backward analysis
 else:
 size = random_int()
 return call to the created function passing size as argument
 else if field.node.type is struct:
 allocate memory
 for each struct field f’:
 generate_value(f’)
 else:
 return random_value(field.node.type)

Input Generation

59

Input Generation

function generate_value(field):
 if field is pointer && not field is array:
 if flip_coin():
 allocate memory and store the result of a recursive call
 else:
 return NULL
 else if field is array:
 create a function to create arrays of type field.node.type
 if forward analysis found size:
 get the slice to calculate the size
 else if backward analysis found size:
 get the size from the backward analysis
 else:
 size = random_int()
 return call to the created function passing size as argument
 else if field.node.type is struct:
 allocate memory
 for each struct field f’:
 generate_value(f’)
 else:
 return random_value(field.node.type)

60

Input Generation

function generate_value(field):
 if field is pointer && not field is array:
 if flip_coin():
 allocate memory and store the result of a recursive call
 else:
 return NULL
 else if field is array:
 create a function to create arrays of type field.node.type
 if forward analysis found size:
 get the slice to calculate the size
 else if backward analysis found size:
 get the size from the backward analysis
 else:
 size = random_int()
 return call to the created function passing size as argument
 else if field.node.type is struct:
 allocate memory
 for each struct field f’:
 generate_value(f’)
 else:
 return random_value(field.node.type)

61

Input Generation

function generate_value(field):
 if field is pointer && not field is array:
 if flip_coin():
 allocate memory and store the result of a recursive call
 else:
 return NULL
 else if field is array:
 create a function to create arrays of type field.node.type
 if forward analysis found size:
 get the slice to calculate the size
 else if backward analysis found size:
 get the size from the backward analysis
 else:
 size = random_int()
 return call to the created function passing size as argument
 else if field.node.type is struct:
 allocate memory
 for each struct field f’:
 generate_value(f’)
 else:
 return random_value(field.node.type)

62

Case Study

Context

● Previous approaches on automatic inference of program complexity have
shortcomings:

64

Context

● Previous approaches on automatic inference of program complexity have
shortcomings:

○ Imprecise

65

Aprof’s output

Context

● Previous approaches on automatic inference of program complexity have
shortcomings:

○ Imprecise
○ Hard to read

66

Aprof’s output

Context

● Previous approaches on automatic inference of program complexity have
shortcomings:

○ Imprecise
○ Hard to read
○ Too coarse

67

Aprof’s output

Asymptus

68

Asymptus

identify loop inputs and relations between loops

69

Asymptus

extract data-points

70

Asymptus

find a cost function

71

Example

72

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Example
 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

73

Example

Inputs

74

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Example

Multiply

 Line 7 x Line 8 x Line 10
75

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Example

Multiply

Line 4 + (Line 7 x Line 8 x Line 10)

Sum

76

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Example

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

77

Example

78

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Example

Line 4 + (Line 7 x Line 8 x Line 10)

79

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Example

Line 4 + (Line 7 x Line 8 x Line 10)

Function ‘multiply(int**, int**, int)':
 Loop at line 4: 1.00 * side + 1.00
 Loop at line 7: 1.00 * side + 1.00
 Loop at line 8: 1.00 * side + 1.00
 Loop at line 10: 1.00 * side + 1.00

 Complexity: O(side^3)

80

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Example

Line 4 + (Line 7 x Line 8 x Line 10)

Function ‘multiply(int**, int**, int)':
 Loop at line 4: 1.00 * side + 1.00
 Loop at line 7: 1.00 * side + 1.00
 Loop at line 8: 1.00 * side + 1.00
 Loop at line 10: 1.00 * side + 1.00

 Complexity: O(side^3)

-Precise

-Uses program’s symbols

-Loop level

81

 1: int** multiply(int **matA, int **matB, int side){
 2: int i, j, k, sum;
 3: int **result = (int**) malloc(side*sizeof(int*));
 4: for (i = 0; i < side; i++)
 5: result[i] = (int*) malloc(side*sizeof(int));
 6:
 7: for (i=0; i < side; i++) {
 8: for (j=0; j < side; j++) {
 9: sum = 0;
10: for (k=0; k < side; k++) {
11: sum += matA[i][k] * matB[k][j];
12: }
13: result[i][j] = sum;
14: }
15: }
17: return result;
18: }

Results

● Analyzed 99.7% of all loops in Polybench and 69.18% in Rodinia

Percentage of correctly analyzed loops per benchmark of Rodinia.

82

Limitations of Asymptus

● Only works for polynomial programs
● Loops controlled by a data structure value
● The function needs to be executed a certain number of times

83

Limitations of Asymptus

● Only works for polynomial programs
● Loops controlled by a data structure value
● The function needs to be executed a certain number of times

We can use our input generator to help Asymptus!

84

Our Experiment

● We have written 10 functions having different kinds of inpus
○ Arrays
○ Matrices
○ Recursive data structures

● Modified 6 Polybench functions
○ Originally, the inputs of the functions were defined by macros (definition at compile time)

● Our input generator could help Asymptus analyze all the functions

85

Final Remarks

Limitations and Future Work

● The input generator doesn’t get the complete expression representing the
upper bound of the array accesses

87

void foo(int *a, int size) {
 for (int i=0; i < n, i++)
 a[size+i];
 ...
}

Size of “a” has to be at least size*2

Limitations and Future Work

● The input generator doesn’t get the complete expression representing the
upper bound of the array accesses

● The forward analysis doesn’t deal with statically allocated arrays

88

...
int a[128];
...
for (int i=0; i < n, i++)
 foo(&a[10], i);
...

Limitations and Future Work

● The input generator doesn’t get the complete expression representing the
upper bound of the array accesses

● The forward analysis doesn’t deal with statically allocated arrays
● The forward analysis doesn’t track arrays over function calls

89

void f(int *a, int size) {
 ...
 foo(a, size);
 ...
}

Limitations and Future Work

● The input generator doesn’t get the complete expression representing the
upper bound of the array accesses

● The forward analysis doesn’t deal with statically allocated arrays
● The forward analysis doesn’t track arrays over function calls
● Create an analysis to infer the size of recursive data structures

90

struct list {
 struct node *head;
 size_t size;
};

void f(struct list l) {
 struct node *n = l.head;
 for (int i=0; i < l.size; i++) {
 ...
 n = n->next;
 }
}

Contributions

● The design of a forward data-flow analysis to bind meta information of
allocated memory

● The design of an algorithm to generate inputs for functions that makes use
of array size analyses

● The identification of pointers used as arrays by looking for pointer
arithmetics

● The development Asymptus (a tool for program complexity inference)
● The development of a testing infrastructure for Maxtrack

91

Contributions

https://demontiejr.github.io/asymptus

92

3rd best
paper

https://youtu.be/pzfrIDfoCEc https://youtu.be/GRnpbE8f_U4

Generation of Test Cases
for Languages with Pointer

Arithmetics
Demontiê Junior

Advisor: Mariza Bigonha
Co-advisor: Fernando Pereira

