

Modeling and Predicting Evolution of Software Quality Internal Attributes

Bruno Luan de Sousa

Advisor: Mariza Andrade da Silva Bigonha (UFMG)

Co-Advisors: Kecia Aline Marques Ferreira (CEFET-MG), and Glaura da Conceição Franco (UFMG)

August 28th, 2020

Agenda

- Introduction
- Goal
- Systematic Literature Review
- Empirical Analysis
- Evolution Properties
- Next Steps
- Conclusion

Motivation

- Emergence of Lehman's laws
- Other studies started to investigate software evolution
- There is still no clear conclusion on how software evolves
- Need to understand how the internal dimensions of the software evolve
- Lack of a pattern explaining how software systems' internal structure degrades

Goal

1. Provide a detailed view of the evolution of some internal dimensions in software systems

2. Build prediction models for software evolution

Systematic Literature Review

Why?

- Summarize a topic, technology or area
- Extract new lines of study
- <u>Aim:</u> Compile the body of knowledge on software evolution
- **Purpose:** Provide a background and support this thesis proposal

Systematic Literature Review Protocol

- Research questions
- Search string
- Electronic databases
- Inclusion and exclusion criteria

- Search process
- Filtering process
- Data Extraction

- Analysis of the extracted data
- Discussion of the research questions
- Summarization of the results

RQ1 (SLR): How has the literature approached studies on software evolution?

RQ2 (SLR): What are the main features of the datasets used in studies on software evolution?

Search Process

# Database		Returned Studies	
1	ACM Digital Library	101	
2	Compendex (Engineering Village)	246	
3	IEEE Xplore	150	
4	Scopus	5,117	
5	Web of Science	95	
TO	TAL	5,709	

Selection Process

RQ1 (SLR): How has the literature approached studies on software evolution?

Application (34)

Evolution of the quality attributes (26)

Model (32)

Applicability of Lehman's Laws (11)

Software Structure Evolution (27)

RQ2 (SLR): What are the main features of the datasets used in studies on software evolution?

- Datasets are not composed of large number of systems
 - In 75% of the cases, they presented no more than 14 systems
- Studies tend mostly to propose their **<u>own</u>** dataset
 - Few studies use third-party datasets
- In general, the evolution data of the systems concentrates between 2001 and 2010

Applicability of Lehman's Laws

Application on Software Evolution

- A total of 33 applications was identified
 - 16 available and 17 unavailable

.

Evolution of Quality Attributes

- We identified 14 quality attributes
- **Size** and **complexity** are the most investigated attributes
- We found 72 metrics used to measure the attributes
- Relevant Mappings
 - $\circ \quad \text{Lines of Code (LOC)} \rightarrow \text{Size (SI)}$
 - $\circ \quad \text{Number of Files} \ (\text{NOFL}) \rightarrow \text{Size} \ (\text{SI})$
 - \circ McCabe's complexity (VG) \rightarrow Complexity (CP)

Software Structure Evolution

Dimensions

Internal Structure

Bad Smell

Architectural design

Co-evolution between types of coupling

Faults

Function side effects

Internal quality

Project inter-dependencies

Technical debt

Vulnerabilities

- Compilation of the main studies results
- Most systems connectivity concentrates on a few components over their evolution.
- Bad Smells grow over the software evolution
 - Feature Envy, Switch Statements, Long Method, and God Class
- Architectural design
 - Systems have increased in size
 - Divergence in the growth pattern

Model

- Types of Models
 - **Prediction**: defects
 - Characterization: represent the evolution of the internal structure of the systems
 - Description: explain how the software systems' intrinsic properties behave
 - Simulation: study and compare the evolution of software systems' internal quality attributes

Final Remarks

- Compilation of the knowledge on software evolution
- Lack of software evolution dataset containing recent information
- Need for detailing the software evolution from the perspective of the internal dimensions
- Lack of models that help developers to project the evolution of the internal dimensions of the software

Empirical Analysis

Study Design

RQ1: Which model better describes the evolution of the dimensions in software systems?

RQ2: How does the relation between dimension metrics behave throughout the evolution of software systems?

RQ3: What set of classes within the software system affects the dimensions of growth/decrease and how these classes evolve?

COMETS Dataset

#	System Name	Description	Time Frame	# Versions
1	Eclipse JDT Core	Compiler and other tools for Java	2001-07-01 – 2008-06-14	183
2	Eclipse PDE UI	Set of tools to create, develop, test, debug and deploy Eclipse plug-ins, fragments, features, update sites and RCP products	2001-06-01 – 2008-09-06	191
3	Equinox Framework	OSGi application implementor	2005-01-01 - 2008-06-14	91
4	Hibernate Core	Database persistence framework	2007-06-13 – 2011-03-02	98
5	JabRef	Bibliography reference manager	2003-10-14 – 2011-11-11	212
6	Lucene	Search software and document indexing API	2005-01-01 – 2008-10-04	99
7	Pentaho Console	Software for business intelligence	2008-04-01 – 2010-12-07	72
8	PMD	Source code analyzer	2002-06-22 – 2011-12-11	248
9	Spring Framework	Java application development framework	2003-12-17 – 2009-11-25	156
10	TV-Browser	Electronic TV guide	2003-04-23 – 2011-08-27	221

Behavior Analysis

Time series normalization

Application of linear regression

Improvement the model fit

Model evaluation

Time series normalization

Application of linear regression

Improvement the model fit

Model evaluation

Application of linear regression

Improvement the model fit

Model evaluation

• Evaluated models

- Linear
- Quadratic (polynomial at Degree 2)
- Cubic (polynomial at Degree 3)
- Logarithmic at Degree 1
- Logarithmic at Degree 2
- Logarithmic at Degree 3

Time series normalization

Application of linear regression

Improvement the model fit

Model evaluation

Metric

Adjusted R²

Evaluation Protocol

Relevance

Model with adjusted $R^2 \ge 90\%$

Coverage

Type with most number of relevant adjusted R²

Simplicity

lin. > quad. > cub. > log. 1 > log. 2 > log. 3

Trend Analysis

- Cox-Stuart
- Wald-Wolfowitz
- Mann-Kendall
 - Original: non-autocorrelated time series
 - <u>Modified:</u> autocorrelated time series

- Upward Trend
- Downward Trend
- Undefined Trend

Coupling

RQ2: How does the relation between dimension metrics behave throughout the evolution of software systems?

System	lin.	quad.	cub.	log. 1	log. 2	log. 3
Eclipse JDT Core	99.84%	99.84%	99.84%	99.82%	99.82%	99.77%
Eclipse PDE UI	99.72%	99.72%	99.73%	99.55%	99.57%	99.57%
Equinox Framework	98.58%	98.57%	98.57%	98.44%	98.44%	98.44%
Hibernate Core	98.55%	98.58%	-	98.71%	98.73%	-
JabRef	99.88%	99.88%	99.88%	99.86%	99.86%	99.86%
Lucene	97.65%	97.63%	97.61%	97.28%	-	97.24%
Pentaho Console	92.64%	93.66%	95.11%	85.70%	89.40%	94.94%
PMD	99.25%	99.24%	-	99.27%	99.30%	-
Spring Framework	99.87%	99.88%	99.83%	99.86%	99.86%	99.87%
TV-Browser	99.94%	99.94%	-	99.89%	99.66%	99.87%

Adjusted R² values computed from the fan-in models

System	lin.	quad.	cub.	log. 1	log. 2	log. 3
Eclipse JDT Core	99.85%	99.85%	99.83%	99.83%	-	99.85%
Eclipse PDE UI	99.84%	99.84%	99.74%	99.75%	99.76%	99.85%
Equinox Framework	99.39%	99.42%	99.31%	99.38%	99.37%	99.41%
Hibernate Core	98.63%	98.68%	98.78%	98.79%	-	-
JabRef	99.84%	99.84%	99.68%	99.70%	99.78%	99.85%
Lucene	98.67%	98.69%	99.05%	99.09%	99.09%	98.68%
Pentaho Console	98.27%	98.25%	97.52%	97.50%	97.58%	98.28%
PMD	99.55%	99.55%	99.03%	99.04%	99.06%	99.57%
Spring Framework	99.92%	99.92%	99.89%	99.89%	99.89%	99.92%
TV-Browser	99.89%	99.90%	99.61%	99.75%	99.86%	99.90%

Adjusted R² values computed from the fan-out models

RQ2: How does the relation between dimension metrics behave throughout the evolution of software systems?

RQ2: How does the relation between dimension metrics behave throughout the evolution of software systems?

Intersection from the system perspective

System	i	ii	iii	iv
Eclipse JDT Core	18%	1%	3%	1%
Eclipse PDE UI	7%	1%	1%	1%
Equinox Framework	7%	0%	1%	2%
Hibernate Core	4%	0%	1%	0%
JabRef	8%	0%	1%	1%
Lucene	4%	0%	1%	1%
Pentaho Console	1%	0%	2%	0%
PMD	4%	1%	1%	1%
Spring Framework	7%	1%	2%	1%
TV-Browser	14%	1%	1%	1%

Intersection from the trend class perspective

System	i	ii	iii	iv
Eclipse JDT Core	35%	2%	6%	2%
Eclipse PDE UI	21%	2%	4%	2%
Equinox Framework	20%	1%	3%	5%
Hibernate Core	15%	1%	2%	2%
JabRef	19%	1%	3%	3%
Lucene	15%	1%	3%	4%
Pentaho Console	4%	0%	7%	0%
PMD	15%	2%	2%	2%
Spring Framework	15%	2%	4%	3%
TV-Browser	29%	2%	3%	3%

49

Inheritance Hierarchy

DIT

NOC

1.5 Measure Measure

0.5

System	lin.	quad.	cub.	log. 1	$\log 2$	log. 3
Eclipse JDT Core	98.00%	97.41%	98.28%	98.07%	97.48%	98.35%
Eclipse PDE UI	97.81%	97.87%	97.83%	97.45%	97.53%	97.52%
Equinox Framework	86.89%	85.01%	86.49%	86.95%	85.10%	86.54%
Hibernate Core	96.54%	96.67%	96.58%	96.58%	96.71%	96.59%
JabRef	98.69%	98.69%	98.79%	98.68%	98.67%	98.64%
Lucene	92.23%	92.21%	89.52%	92.13%	92.11%	89.42%
Pentaho Console	75.49%	83.43%	90.92%	77.50%	85.05%	91.62%
PMD	97.61%	97.64%	96.52%	97.79%	97.82%	96.84%
Spring Framework	97.21%	97.04%	97.08%	97.09%	96.98%	-
TV-Browser	98.24%	98.09%	97.94%	98.11%	97.97%	97.81%

Adjusted R² values computed from the DIT models

	System	lin.	quad.	cub.	log. 1	log. 2	log. 3
	Eclipse JDT Core	88.99%	91.61%	91.99%	89.08%	91.72%	92.11%
	Eclipse PDE UI	97.13%	96.69%	97.16%	96.92%	96.46%	96.95%
	Equinox Framework	86.05%	67.85%	85.70%	86.68%	68.08%	86.28%
	Hibernate Core	94.67%	94.93%	-	94.80%	95.12%	
	JabRef	94.81%	94.79%	95.05%	94.71%	94.70%	94.99%
	Lucene	96.07%	92.03%	-	95.86%	91.43%	
	Pentaho Console	76.80%	76.83%	78.40%	79.45%	81.35%	82.52%
	PMD	93.83%	93.83%	93.43%	93.86%	93.84%	93.83%
Adjusted R ² values computed	Spring Framework	90.57%	90.67%	91.48%	90.76%	90.91%	91.63%
from the NOC models	TV-Browser	96.57%	96.74%	96.74%	95.08%	94.79%	95.26%

Intersection from the system perspective

System	i	ii	iii	iv
Eclipse JDT Core	1%	0%	0%	3%
Eclipse PDE UI	0%	0%	0%	0%
Equinox Framework	0%	0%	0%	0%
Hibernate Core	0%	0%	0%	0%
JabRef	0%	0%	0%	0%
Lucene	0%	0%	0%	0%
Pentaho Console	0%	0%	0%	0%
PMD	0%	0%	0%	0%
Spring Framework	1%	0%	0%	0%
TV-Browser	0%	0%	0%	0%

Intersection from the trend class perspective

System	i	ii	iii	iv
Eclipse JDT Core	3%	1%	1%	15%
Eclipse PDE UI	4%	0%	0%	5%
Equinox Framework	0%	0%	0%	0%
Hibernate Core	0%	0%	0%	3%
JabRef	0%	0%	0%	0%
Lucene	4%	0%	0%	0%
Pentaho Console	0%	0%	0%	0%
PMD	1%	0%	0%	0%
Spring Framework	6%	0%	1%	0%
TV-Browser	0%	0%	1%	0%

Ca	ise i	Case ii		Ca	se iii	Case iv	
DĮT	NQC		NOC	DĮT	NOC	DIT V	NQC

Size of Classes

RQ2: How does the relation between dimension metrics behave throughout the evolution of software systems?

System	lin.	quad.	cub.	$\log. 1$	$\log 2$	log. 3
Eclipse JDT Core	99.82%	99.82%	99.83%	99.77%	99.79%	99.79%
Eclipse PDE UI	99.73%	99.73%	99.73%	99.61%	99.56%	99.51%
Equinox Framework	98.25%	98.24%	98.22%	97.68%	97.86%	97.84%
Hibernate Core	98.75%	98.79%	-	98.86%	98.88%	-
JabRef	99.81%	99.81%	99.82%	99.70%	99.71%	99.77%
Lucene	99.30%	98.99%	99.29%	99.44%	99.03%	99.45%
Pentaho Console	98.11%	98.09%	98.25%	97.52%	97.49%	97.90%
PMD	99.51%	99.51%	99.53%	98.98%	98.92%	98.62%
Spring Framework	99.93%	99.94%	99.92%	99.91%	99.91%	99.91%
TV-Browser	99.90%	99.90%	99.90%	99.42%	99.58%	99.85%

Adjusted R² values computed from the NOA models

			1.0				
	System	lin.	quad.	cub.	log. 1	$\log 2$	log. 3
	Eclipse JDT Core	99.80%	99.81%	99.81%	99.76%	99.77%	99.77%
	Eclipse PDE UI	99.85%	99.85%	99.85%	99.78%	99.80%	-
	Equinox Framework	99.29%	99.31%	99.31%	99.30%	99.33%	99.33%
	Hibernate Core	98.61%	98.67%	-	98.71%	98.73%	-
	JabRef	99.84%	99.84%	99.86%	99.67%	99.67%	99.70%
	Lucene	99.09%	98.79%	99.08%	99.28%	98.90%	99.29%
	Pentaho Console	98.41%	98.42%	98.52%	97.99%	97.98%	98.09%
	PMD	99.23%	99.20%	99.16%	98.96%	98.96%	98.96%
mputed	Spring Framework	99.93%	99.94%	99.91%	99.88%	99.88%	99.89%
5	TV-Browser	99.92%	99.93%	99.93%	99.50%	99.69%	99.80%
			-				

Adjusted R² values computed from the NOM models

RQ2: How does the relation between dimension metrics behave throughout the evolution of software systems?

Global NOA/NOM proportion

AVG of class-by-class NOA/NOM proportion

65

RQ2: How does the relation between dimension metrics behave throughout the evolution of software systems?

Intersection from the system perspective

System	i	ii	iii	iv
Eclipse JDT Core	22%	2%	1%	3%
Eclipse PDE UI	7%	3%	1%	2%
Equinox Framework	11%	1%	1%	0%
Hibernate Core	7%	1%	0%	0%
JabRef	10%	1%	0%	1%
Lucene	7%	1%	0%	1%
Pentaho Console	5%	1%	0%	1%
PMD	7%	1%	1%	0%
Spring Framework	18%	4%	1%	1%
TV-Browser	16%	3%	1%	1%

Intersection from the trend class perspective

System	i	ii	iii	iv
Eclipse JDT Core	43%	5%	2%	5%
Eclipse PDE UI	28%	11%	2%	7%
Equinox Framework	38%	4%	3%	2%
Hibernate Core	35%	6%	2%	1%
JabRef	39%	4%	2%	6%
Lucene	31%	3%	1%	3%
Pentaho Console	24%	6%	1%	4%
PMD	33%	5%	3%	1%
Spring Framework	42%	9%	1%	3%
TV-Browser	40%	9%	2%	3%

Са	se i	Ca	se ii	Case iii		Case iv	
NQA	NOM	NOA ▼	NOM	NQA	NOM	NOA	NQM

Coupling

- 1. Coupling grows linearly over time
- 2. Unnecessary coupling is continuously higher than necessary coupling
- 3. A small group of classes have high coupling
- 4. Complexity is introduced since the first versions of a system
- 5. Legacy classes mainly contribute to coupling evolution
- 6. There is no association between fan-in and fan-out

Inheritance Hierarchy

- Inheritance hierarchy tends to increase in depth and decrease in breadth over time
- 2. Inheritance hierarchy depth grows according to a linear model
- 3. Inheritance hierarchy breadth decreases according to a quadratic model
- 4. A small part of the system influences the growth and the decrease of the inheritance hierarchy
- 5. There is no association between the depth and the breadth of a class

Size of Classes

1. The size of classes grows according to the linear model

2. The proportion of the number of attributes in relation to the number of methods in a class grows over time

3. A small group of classes affects the growth of system size

4. The evolution of the number of attributes and the number of methods are correlated

Novel Dataset

Prediction Method

Conclusion

Part 1

- → Compilation of the body of knowledge on software evolution
- → Identification of five lines of study
- → Characterization of the software evolution datasets
- → Detailing of the lines

Part 2

- → Definition of a novel analysis method based on time series
- → Analysis of the evolution of three software dimensions
- → Extraction of a set composed of 15 properties

- → Construction of a novel software evolution dataset
- → Definition of a prediction software evolution method

Publications

- Software Engineering Evolution: The History Told by ICSE SBES 2019 (Short paper)
- Analysis of Coupling Evolution on Open Source Systems SBCARS 2019

- A Comprehensive Systematic Literature Review of Software Evolution - Submitted to an international journal (Under Review)
- Evolution of Size and Inheritance in Object-Oriented Software A Time Series Based Approach - International journal

Modeling and Predicting Evolution of Software Quality Internal Attributes

Bruno Luan de Sousa

Advisor: Mariza Andrade da Silva Bigonha (UFMG)

Co-Advisors: Kecia Aline Marques Ferreira (CEFET-MG), and Glaura da Conceição Franco (UFMG)

August 28th, 2020

