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Functional Programming
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• Functional Programming is building software via:

• Function composition: create new functions by composing 
others

• Pure functions: every time it is called, it produces the same 
result 

• No shared state: no global values

• Limited side effects: limited iteration with external world

• Immutability: once a variable is created, its value cannot be 
changed

Functional Programming
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• Logical errors: they do not cause the program to crash or simply 
not work at all, they cause it to return a wrong output

Logical Errors
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Problem Definition
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• Challenges in understanding and taking advantage of the 

functional paradigm

• Much time spent at debugging

Problem Definition
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• Purely functional language

• Pure functions: Haskell, calling add with the same a and b will 
always return the same value

• Impure functions: C++, moveX modifies pos state

Why Haskell
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• Used in functional programming introductory classes

• Several companies use Haskell in internal products or research 

Why Haskell
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Compilers

Hardware

Compilers

Finance

Advertising, Spam Filtering



Goals
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• Project and implement a tool, containing a Haskell interpreter for 

a subset of Haskell 2010 grammar

• Implement two fault localization techniques

• Build a Haskell test suite covering the chosen Haskell grammar’s 

subset

Goals
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Haskell Grammar Subset
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• In: functions, case, if then else, guards, pattern matching, abstract 
data types, let and where, lambda function

• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset
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HaskellFL Grammar Subset
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Fault Localization
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Example 1 - Mid
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• Tarantula: entities that are primarily executed by failed test cases

are more likely to be faulty than those primarily executed by

passed test cases

• Ochiai: coefficient known from the biology domain, it is more

sensitive to potential fault locations in failed runs than to activity in

passed runs

Methods
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𝑂𝑐ℎ𝑖𝑎𝑖(𝑠) =
𝑓𝑎𝑖𝑙𝑒𝑑(𝑠)

𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑(𝑓𝑎𝑖𝑙𝑒𝑑(𝑠) + 𝑝𝑎𝑠𝑠𝑒𝑑(𝑠))
𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎(𝑠) =

𝑓𝑎𝑖𝑙𝑒𝑑(𝑠)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

𝑓𝑎𝑖𝑙𝑒𝑑(𝑠)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

+
𝑝𝑎𝑠𝑠𝑒𝑑(𝑠)
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑



Example 1 - Mid
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𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎(6) =

𝑓𝑎𝑖𝑙𝑒𝑑(6)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

𝑓𝑎𝑖𝑙𝑒𝑑(6)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

+
𝑝𝑎𝑠𝑠𝑒𝑑(6)
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑

=
1

1 +
1
5

=
5

6
≈ 0.83

𝑂𝑐ℎ𝑖𝑎𝑖(6) =
𝑓𝑎𝑖𝑙𝑒𝑑(6)

𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑(𝑓𝑎𝑖𝑙𝑒𝑑(6) + 𝑝𝑎𝑠𝑠𝑒𝑑(6))
=

1

2
≈ 0.71

𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑 = 1 𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑 = 5

𝑓𝑎𝑖𝑙𝑒𝑑(6) = 1 𝑝𝑎𝑠𝑠𝑒𝑑(6) = 1



HaskellFL
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HaskellFL Architecture
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HaskellFL Output
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Ranked List



Demo
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Demo



Test Suite
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• 24 problems

• Submissions from students in the Functional Programming class

at UFMG

• Two versions of mid function

• Submissions for Exercism’s Haskell track available on GitHub

Test Suite
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Test Suite
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Results
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• Indicates the percentage of program elements that a developer 

would have to inspect until finding the bug

Results - EXAM Score
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𝑂𝑐ℎ𝑎𝑖𝐵𝑒𝑠𝑡 =
1

10
= 10%

𝑂𝑐ℎ𝑎𝑖𝑊𝑜𝑟𝑠𝑡 =
2

10
= 20%



• Indicates the percentage of program elements that a developer 

would have to inspect until finding the bug

Results - EXAM Score
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Results
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Conclusion
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• We created an interpreter for a Haskell grammar subset

• HaskellFL tool and our test suite are available as an open source project at 

https://github.com/VanessaCristiny/HaskellFL

• HaskellFL located the errors using Tarantula and Ochiai methods 

examining very few lines for the majority of our test suite

• Our results showed that Ochiai presented better results than Tarantula
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Contributions



• Extend the grammar to include do notation and list 

comprehensions

• Implement mutation-based fault localization algorithms

• Actually repair the code

Future Work
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Q&A
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