
Vanessa Vasconcelos

Mariza Bigonha

HaskellFL: A Tool for 
Detecting Logical Errors 

in Haskell

1



Motivation

2



Functional Programming

3



• Functional Programming is building software via:

• Function composition: create new functions by composing 
others

• Pure functions: every time it is called, it produces the same 
result 

• No shared state: no global values

• Limited side effects: limited iteration with external world

• Immutability: once a variable is created, its value cannot be 
changed

Functional Programming

4



• Logical errors: they do not cause the program to crash or simply 
not work at all, they cause it to return a wrong output

Logical Errors

5



Problem Definition

6



• Challenges in understanding and taking advantage of the 

functional paradigm

• Much time spent at debugging

Problem Definition

7



• Purely functional language

• Pure functions: Haskell, calling add with the same a and b will 
always return the same value

• Impure functions: C++, moveX modifies pos state

Why Haskell

8



• Used in functional programming introductory classes

• Several companies use Haskell in internal products or research 

Why Haskell

9

Compilers

Hardware

Compilers

Finance

Advertising, Spam Filtering



Goals

10



• Project and implement a tool, containing a Haskell interpreter for 

a subset of Haskell 2010 grammar

• Implement two fault localization techniques

• Build a Haskell test suite covering the chosen Haskell grammar’s 

subset

Goals

11



Haskell Grammar Subset

12



• In: functions, case, if then else, guards, pattern matching, abstract 
data types, let and where, lambda function

• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset

13



HaskellFL Grammar Subset

14



Fault Localization

15



Example 1 - Mid

16



• Tarantula: entities that are primarily executed by failed test cases

are more likely to be faulty than those primarily executed by

passed test cases

• Ochiai: coefficient known from the biology domain, it is more

sensitive to potential fault locations in failed runs than to activity in

passed runs

Methods

17

𝑂𝑐ℎ𝑖𝑎𝑖(𝑠) =
𝑓𝑎𝑖𝑙𝑒𝑑(𝑠)

𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑(𝑓𝑎𝑖𝑙𝑒𝑑(𝑠) + 𝑝𝑎𝑠𝑠𝑒𝑑(𝑠))
𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎(𝑠) =

𝑓𝑎𝑖𝑙𝑒𝑑(𝑠)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

𝑓𝑎𝑖𝑙𝑒𝑑(𝑠)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

+
𝑝𝑎𝑠𝑠𝑒𝑑(𝑠)
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑



Example 1 - Mid

18

𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎(6) =

𝑓𝑎𝑖𝑙𝑒𝑑(6)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

𝑓𝑎𝑖𝑙𝑒𝑑(6)
𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑

+
𝑝𝑎𝑠𝑠𝑒𝑑(6)
𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑

=
1

1 +
1
5

=
5

6
≈ 0.83

𝑂𝑐ℎ𝑖𝑎𝑖(6) =
𝑓𝑎𝑖𝑙𝑒𝑑(6)

𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑(𝑓𝑎𝑖𝑙𝑒𝑑(6) + 𝑝𝑎𝑠𝑠𝑒𝑑(6))
=

1

2
≈ 0.71

𝑡𝑜𝑡𝑎𝑙𝑓𝑎𝑖𝑙𝑒𝑑 = 1 𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑠𝑠𝑒𝑑 = 5

𝑓𝑎𝑖𝑙𝑒𝑑(6) = 1 𝑝𝑎𝑠𝑠𝑒𝑑(6) = 1



HaskellFL

19



HaskellFL Architecture

20



HaskellFL Output

21

Ranked List



Demo

22



23

Demo



Test Suite

24



• 24 problems

• Submissions from students in the Functional Programming class

at UFMG

• Two versions of mid function

• Submissions for Exercism’s Haskell track available on GitHub

Test Suite

25



Test Suite

26



Results

27



• Indicates the percentage of program elements that a developer 

would have to inspect until finding the bug

Results - EXAM Score

28

𝑂𝑐ℎ𝑎𝑖𝐵𝑒𝑠𝑡 =
1

10
= 10%

𝑂𝑐ℎ𝑎𝑖𝑊𝑜𝑟𝑠𝑡 =
2

10
= 20%



• Indicates the percentage of program elements that a developer 

would have to inspect until finding the bug

Results - EXAM Score

29



Results

30



Conclusion

31



• We created an interpreter for a Haskell grammar subset

• HaskellFL tool and our test suite are available as an open source project at 

https://github.com/VanessaCristiny/HaskellFL

• HaskellFL located the errors using Tarantula and Ochiai methods 

examining very few lines for the majority of our test suite

• Our results showed that Ochiai presented better results than Tarantula

32

Contributions



• Extend the grammar to include do notation and list 

comprehensions

• Implement mutation-based fault localization algorithms

• Actually repair the code

Future Work

33



Q&A

34


