HaskellFL: A Tool for
Detecting Logical Errors
IN Haskell

Vanessa VVasconcelos
Mariza Bigonha

Motivation

Functional Programming

ZScala

ojure SWIfL
SO
¥ Kotlin | #¢ i
#s) Racket

» elm
DS Haskell W

ERLANG

Functional Programming

* Functional Programming is building software via:

Function composition: create new functions by composing
others

Pure functions: every time it is called, it produces the same
result

No shared state: no global values
Limited side effects: limited iteration with external world

Immutability: once a variable Is created, its value cannot be
changed

Logical Errors

* Logical errors: they do not cause the program to crash or simply
not work at all, they cause It to return a wrong output

float average(float a, float b)
{

return a + b / 2;

}

Problem Definition

Problem Definition

* Challenges in understanding and taking advantage of the

functional paradigm

* Much time spent at debugging

Why Haskell
add a b =a + b

* Purely functional language

* Pure functions: Haskell, calling add with the same a and b will
always return the same value

* |mpure functions: C++, moveX modifies pos state

class {
private:
int X;

e pos = Pos(9,0):
public:
Pos(int x, int y) { 2 moveX(1) ;

this->x = Xx;

this->y = y; . mOVGX(1) ;

/ .moveX(1);

void moveX(int inc) A

this->x = this->x + inc;

}

Why Haskell

»N-Haskell

* Used in functional programming introductory classes

* Several companies use Haskell in internal products or research

=" Microsoft)
GitHub

Compilers

Compilers

Advertising, Spam Filtering

JPMorgan T =5s1L-"

- ardware “
9 LP o s |

Goals

Goals

* Project and imp

a subset of Has

* Implement two fault localization techniques

ement a tool, containing a Haskell interpreter for

Kell 2010 grammar

* Build a Haskell test suite covering the chosen Haskell grammar’s

subset

11

Haskell Grammar Subset

HaskellFL Grammar Subset

* |n: functions, case, If then else, guards, pattern matching, abstract
data types, let and where, lambda function

* Out: do notation, list comprehension, type declaration

lista = [x*2 | x <- [1..10]]

greetAndSeeYou :: I0 ()
greetAndSeeYou = do name <- nameReturn
("See you, " ++ name ++ "!")

type PhoneBook = [(String,String)]

HaskellFL Grammar Subset

data TriangleType = Equilateral describelList :: [a] -> String

| Isosceles describelist xs = "The list is " ++ case xs of [] -> "empty."

| Scalene [x] -> "a singleton list."
| Illegal xs -> "a longer list."
deriving (Eq, Show)

Bool) -> [a] -> [a]

f xs) . X (\y -=>y /= X) xs)

quickSort :: (Ord a) => [a] -> [a]
quickSort [] = []
quickSort (x:xs) = quickSort smaller ++ [x] ++ quickSort larger
where smaller (\y -> y <= X) Xxs
larger (\y ->y > Xx) xs

:: (a->b ->a) ->a ->[b] -> [a]
f g (x:xs) = if xs

then [q]

else q : (f (f g x) xs)

Fault Localization

Example 1 - Mid

.module Main where

mid x y z = if y < z
then if x < vy
then y

else if x < z

then vy

else z
else if x > vy
then y

else if x > z

then X

else z

CoOoONOCO b WN=-

Methods

* Tarantula: entities that are primarily executed by failed test cases
are more likely to be faulty than those primarily executed by

passed test cases

* Ochial: coefficient known from the biology domain, it iIs more

sensitive to potential fault locations in failed runs than to activity In

passed runs

failed(s) _
totalfailed Ochiai(s) = failed(s)
failed(s) passed(s) Jtotalfailed(failed(s) + passed(s))

totalfailed ' totalpassed
17 “

Tarantula(s) =

Example 1 - Mid

Test cases/Lines | 1 2 3 1 H 8 9 10 | 11 12

335 [® ®
123 o o ®
321 o o o
DD D o o @ @
534 o @ ®
213 [o o

Tarantula 0.00 | 0.50 | 0.63 | 0.00 | 0.71 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Ochiai 0.00 | 0.41 | 0.5 | 0.00 | 0.58 R0.71 0.00 | 0.00 | 0.00 | 0.00 | 0.00

1.module Main where
2. mid xy z=1if y < z totalfailed = 1 totalpassed = 5
3. then if x < vy
4. then y failed(6) = 1 passed(6) =1
5. else if x < z
6. then vy failed(6)
Ochiai(6) = = — =~ (.71

/. else z chiai(6) Jtotalfailed(failed(6) + passed(6)) V2
8. else if x > vy
9. then y failed(6)

else if x > z Tarantula(6) = totalfailed

failed(6) passed(6) :1
totalfailed ' totalpassed

then X
else z

18

HaskellFL

HaskellFL Architecture

e HaskellFL N\
>
e
Coverage Engine Fault
@ nnnnnnnnnnn 9 @
a {C:J} a Ranked List
Passing Test C

HaskellFL Output

module Main () where

dropWhileClone [] = []
dropWhileClone p (x:xs)
| p X dropWhileClone p xs
| otherwise ;

isSpace s = if
then True
else False

1.
2.
S5 .
4.
5.
6.
/.
8.
9

L

l

_® -

"## HaskellFL ##" "## HaskellFL ##"
"Tarantula: " "Ochiai: "

Line 9, Score 1. Line 8, Score 0.745
Line = 5, Score = 1. Line = 5, Score = 0.745
Line 8, Score _ Line 3, Score 0.707
Line = 10, Score _ Line = 10, Score = 0.632
Line = 6, Score _ Line = 9, Score = 0.632
Line _ Line 6, Score = 0.632

Ranked List
21

Demo

900 vanessa@Vanessas-MacBook-Pro:~/Downloads/HaskellFL

vanessa@Vanessas-MacBook-Pro b U main e 72 &1 A | & 2023 18:58:58

Test Suilte

Test Suite

* 24 problems

* Submissions from students in the Functional Programming class
at UFMG

* Two versions of mid function

* Submissions for Exercism’s Haskell track available on GitHub

Haskell is a functional programming language which is pure and statically-typed. It's known for lazy .
. Jain the Haskell Track
evaluation, where evaluation is deferred until necessary, and its purity, where monads are used for working

with side-effects.

17 Mentors 13,101 Students 96 Exercises
. . [4 .)
Our mentors are friendly, experienced Join thousands of students who have 1 Hundreds of hours have gone into
=0 Haskell developers who will help teach A enjoyed learning and improving their m- m making these exercises fun, useful, and

you new techniques and tricks. skills by taking this track. challenging to help you enjoy learning.

Test Suite

Ranking

Program 7 Tests Tarantula | Ochiai
mid (Version 1) 6 3) 2
mid (Version 2) 6 1 1
dropWhileClone 10 3 1
dropWhile 9 1 1
break (Version 1) 5 1 1
break (Version 2) 8 1 1
toTuples 10 1 1
remdupsReducer 7 1 1
joinr 12 1 1
separateTuplesByType 7 1 1
flip D 1 1
unzip 3 1 1
maxSumLength 11 1 1
binary-search-tree 8 2 2
erade-school 7 1 1
luhn 6 2 2
raindrops 8 1 1
resistor-color-duo 7 1 1
robot-simulator 9 1 1
roman-numerals 8 1 1
simple-linked-list 6 1 1
space-age 7 1 1
sum-of-multiples 7 3 1
triangle 8 6 5

26

Results

Results - EXAM Score

* Indicates the percentage of program elements that a developer

would have to inspect until finding the bug

1. module Main () where
2.
3. dropWhileClone p [] = []
4., dropWhileClone p (x:xs)
5. | p X = dropWhileClone p xs
6. | otherwise = x:xs .]-
7. OchaiBest = — = 10%
8. isSpace s = if s == "" 1()
9. then True
10. else False
11.
"## HaskellFL ##"
"Ochiai: " 7
Line = 8, Score = 0.745 OchaiWorst = — = 20%
Line = 5, Score = 0.745 10

Line 3, Score = 0.707
Line 10, Score = 0.632

Line = 9, Score = 0.632
Line = 6, Score = 0.632 “
28
B e

Results - EXAM Score

* |Indicates the percentage of program elements that a developer

would have to inspect until finding the bug
EXAM Score | Tarantula Best | Tarantula Worst | Ochiai Best | Ochiai Worst
(0-4.9)% 58.33% 33.33% 66.67% 33.33%
(5-9.9)% 25.00% 20.83% 16.67% 20.83%
(10-14.9)% 8.33% 12.50% 12.50% 16.67%
(15-19.9)% 4.17% 8.33% 4.17% 16.67%
(20-24.9)% 0.00% 8.33% 0.00% 4.17%
(25-29.9)% 0.00% 4.17% 0.00% 0.00%
(30-34.9)% 0.00% 0.00% 0.00% 0.00%
(35-39.9)% 0.00% 0.00% 0.00% 4.17%
(40-44.9)% 4.17% 8.33% 0.00% 0.00%
(45-49.9)% 0.00% 0.00% 0.00% 0.00%
(50-54.9)% 0.00% 0.00% 0.00% 4.17%
(55-59.9)% 0.00% 4.17% 0.00% 0.00%

29

100cy0 L L kb
T
-
O
i
v 80% -
>
S
SO
©° 60% -
Q
()]
18]
e
9
o 40% A
o
Q
=
= —— Tarantula Best
= 20%
= Tarantula Worst
O — == Ochiai Best
------ Ochiai Worst
0% T T T T T I
0% 10% 20% 30% 40% 50%

% of the code that needs to be examined

30

Conclusion

Contributions

* \We created an interpreter for a Haskell grammar subset

* HaskellFL tool and our test suite are available as an open source project at

https://github.com/VanessacCristiny/HaskellFL

* HaskellFL located the errors using Tarantula and Ochiai methods

examining very few lines for the majority of our test suite

* Our results showed that Ochiai presented better results than Tarantula

32 | I

Future Work

* Extend the grammar to include do notation and list

comprehensions
* Implement mutation-based fault localization algorithms

* Actually repair the code

33

