\Programming Language Laboratory U F m G Ian-snﬂ
/ —
i i ing laborat

Analyzing the Effects of
Refactorings on Bad Smells

e Cleiton Silva Tavares —
Advisor: Mariza Bigonha
Co-Advisor: Eduardo Figueiredo

March 31th, 2021

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

Summary

e Introduction

e Systematic Literature Review
e Empirical Study

e Comparative Analysis

e Conclusion

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)

http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/
S I e s

Motivation

e A software system is in the process of constant change and evolution

o Complex over time

Cliente

- Cliente_ID : Int

-Nome : String

- Telefone : String

- Endereco : String

- DataNascimento : Datetime

+ AdicionaCliente();
+ AtualizaCliente();

Veiculo

-Veiculo_ID : Int
- Marca : String

- Cor: String

- Modelo : String

- AnoFabricacao : Int

- NumeroChassi : String
- Placa: String

+ AdicionaVeiculo()
+ AtualizaVeiculo();

+ ApagaVeiculo();

0.1
—_—
%
Orcamento

-Orcamento_ID : Int

- NomeMecanico : String
- DataEntrada : DateTime
- DataSaida : DateTime

- Aprovado : int 41
- Finalizado : int

+ AdicionaOrcamento()
+ Aprovado()
+Recusado()

+ Finalizar()

Cliente

__| -Telefone : String

- Cliente_ID : Int
-Nome : String

-Endereco : String
- DataNascimento : Datetime

+ AdicionaCliente();
+ AtualizaCliente();

ItemOrcamento

0.* —

- Orcamento_ID : Int
-Tipo:Int
- Quantidade : Float

+ Adicionaltem()
+ Alteraltem()
+ Apagaltem()

PecasMaoDeObra

- PecasMaoDeObra_ID : Int
- Descricao : String
- Preco : Float

+ AdicionaPecasMaoDeObra()
+ AlteraPecasMaoDeObra()
+ ApagaPecasMaoDeObra()

Motivation

e A software system is in the process of constant change and evolution

o Great effort to understand and make modifications in the source code
e Bad Smell

o Problems in the code structure

Motivation

e A software system is in the process of constant change and evolution
o—Bad-Seaet

—Preblemstathecodestrdetare
e Refactoring

o Increase the maintainability of the code by changing its internal structure without

changing its behavior

Problem Statement

e Refactoringis a tricky activity

o lIdentify the code fragment to refactor
o Operation that will solve it

o Where allocate the refactored code

e Some studies show that refactoring may introduce new bad smells into

'3

the source code

Proposed Work

e Research study to evaluate refactoring operations’ impact on bad smells

o Systematic Literature Review (SLR)

o Empirical Study

Study Steps

Step 1 Step 2
B
Systematic Literature Review (SLR) Empirical Study
Aditional Step
L=
Comparative Analysis
Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

Study Steps

Step 1 Step 2
B
Systematic Literature Review (SLR) Empirical Study
Aditional Step
L=
Comparative Analysis
Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

SLR Goal

e Find a direct relationship between the bad smell and the refactoring

proposed in the Fowler’s catalog

10

SLR Research Questions

e RQ1 - Which relationships between refactoring and bad smells are the

literature explicitly discussing?

e RQ2 - Which tools found the papers perform refactoring from bad smell

detection?

11

SLR Research Questions

e RQ1 - Which relationships between refactoring and bad smells are the

literature explicitly discussing?

o RQ1.1 - Which are the most mentioned relationships between bad smells and refactoring
found in the literature?

o RQ1.2 - Do relationships we found are different from those that Fowler presents?

12

Answering RO1

e RQ1 - Which relationships between refactoring and bad smells are the

literature explicitly discussing?

o 20 Papers found
o 22 Fowler's Bad Smells

m 16 different bad smells -73%
o 72 Fowler's Refactorings

m 31 different refactorings -43%

13

Answering RQ1.1

e RQ1.1-Which are the most mentioned relationships between bad smells

and refactoring found in the literature?

o Relationship being discussed by the largest number of different studies
m Move Method and Feature Envy presented by 14 different papers
o Refactoring operation that relates the largest amount of bad smells
m Move Method being relate to 11 types of smells
o Bad smell related with the highest number of refactorings

m Long Method related to 13 refactorings

14

Answering RQ1.2

RQ1.2 - Do relationships we found are different from those that Fowler

presents?

Bad Smell

Refactoring

Fowler

Literature

Data Class

Encapsulate Collection
Encapsulate Field
Extract Method

Hide Method

Move Method

Remove Setting Method

Data Clumps

Extract Class
Introduce Parameter Object
Preserve Whole Object

Divergent Change

Extract Class
Extract Method
Extract Superclass
Move Field

Move Method
Pull Up Method

15

Answering RQ1.2

RQ1.2 - Do relationships we found are different from those that Fowler

presents?

Bad Smell

Refactoring

Fowler

Literature

Data Class

Encapsulate Collection
Encapsulate Field
Extract Method

Hide Method

Move Method

Remove Setting Method

Data Clumps

Extract Class
Introduce Parameter Object
Preserve Whole Object

Divergent Change

Extract Class

Extract Method
Extract Superclass
Move Field

Move Method
Pull Up Method

16

Answering RQ1.2

RQ1.2 - Do relationships we found are different from those that Fowler

presents?

Bad Smell

Refactoring

Fowler

Literature

Data Class

Encapsulate Collection
Encapsulate Field
Extract Method

Hide Method

Move Method

Remove Setting Method

Data Clumps

Extract Class
Introduce Parameter Object
Preserve Whole Object

Divergent Change

Extract Class
Extract Method
Extract Superclass
Move Field

Move Method
Pull Up Method

17

Answering RQ1.2

RQ1.2 - Do relationships we found are different from those that Fowler

presents?

Bad Smell

Refactoring

Fowler

Literature

Data Class

Encapsulate Collection
Encapsulate Field
Extract Method

Hide Method

Move Method

Remove Setting Method

Data Clumps

Extract Class
Introduce Parameter Object
Preserve Whole Object

Extract Class

Divergent Change

Extract Method
Extract Superclass
Move Field

Move Method

Pull Up Method

Answering RQ1.2

e RQ1.2- Do relationships we found are different from those that Fowler

Bad Smell Refactoring Fowler|Literature
Encapsulate Collection
Encapsulate Field

Extract Method

Hide Method

Move Method

Remove Setting Method
Extract Class

Data Clumps Introduce Parameter Object
Preserve Whole Object
Extract Class

Extract Method

Extract Superclass

Move Field

Move Method

Pull Up Method

presents?

Data Class

Divergent Change

24 relationships not addressed in Fowler’'s catalog 19
s

Answering RQ2

e RQ2 - Which tools found the papers perform refactoring from bad smell

detection?
Tool [Ref.] GUI FRA ONL PLG FRE OPS USG SL
Extract Method Detector [46] Yes - No Yes Yes Yes No Java
JDeodorant [8; 17; 65] Yes - No Yes Yes Yes Yes Java
JMove [64] Yes - - Yes Yes Yes Yes -
Liu’s Approach [44] - - - - - - - -
Methodbook [9] - - - - - - - Java
MMRUCS3 [63] - Yes - - - - - Java
Tsantalis’s Methodology [79] - - - - - - - Java
GUI: graphical user interface; FRA: framework; ONL: online; PLG: plugin; FRE: free for use; OPS: open-source;
USG: user guide available; SL: supported language; “-": information not available.

20

SLR Final Remarks

e 20 different papers that show the direct relationship

o 31 refactoring types and 16 bad smells proposed by Fowler

e The most discussed relationship in the literature

o Move Method and Feature Envy

e 16 papers mentioned the tools used

o 07 perform refactoring from bad smell detection

21

SLR Final Remarks / Implication

e Most strategies defined in the Fowler's book were addressed in the

literature
e There are different refactoring strategies than those discussed by Fowler

to address bad smells

o Empirical studies to validate the new relationships found

22

Study Steps

Step 1 Step 2
=
Systematic Literature Review (SLR) Empirical Study
Aditional Step
>
Comparative Analysis
Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

Empirical Study Goal

e Conduct empirical research to assess the impacts of automated
refactoring on detecting bad smells

24

Empirical Study Research Question

e RQ -What are the impacts of automated refactoring on the detection of
bad smells?

o RQ1 - Does the automated refactoring process remove bad smells?

o RQ2 - Does the automated refactoring process introduce bad smells?

Empirical Study Design

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
I '@ ¥ —f :>l ':> T alte=IN
) O“ I o.!.o I I _; O“ o.:.o 4
Selected Detecting Filtering Apply Detecting Filtering Comparative

System Bad Smell Bad Smell Refactoring Bad Smell Bad Smell Analysis

! ! | |

Before Refactoring After Refactoring

26

Empirical Study Design

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

._o. (5. . \ . o.
.0 A
Q= 17 =%)= “%’
& “ l ..:.. I \';/ l .0. I
Selected Detecting Filtering Apply Detecting Filtering Comparative

System Bad Smell Bad Smell Refactoring Bad Smell Bad Smell Analysis

l l l J
fCheckstyle 5.6 \

Commons-codec Before Refactoring After Refactoring

Commons-io
Commons-lang
Commons-logging
JHotDraw 7.5.1
Quartz 1.8.3
Squirrel_sql 3.1.2

27

Empirical Study Design

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
(& &i;. G A‘l-';)\' ; . o.
Q=1 =t Q- -
© - o.o.o A @ o o []
Selected Detecting Filtering Apply Detecting Filtering Comparative

System Bad Smell Bad Smell Refactoring Bad Smell Bad Smell Analysis

! ! | |

)
i After Refactoring

pecor Before Refactoring
Designite
JDeodorant
JSpIRIT
Organic

—

28

Empirical Study Design

Step 1 Step 2 Step 3 Step 4 Step 5
Selected Detecting Filtering Apply Detecting Filtering Comparative

System Bad Smell Bad Smell Refactoring Bad Smell Bad Smell Analysis

! ! | |

Before Refactoring After Refactoring
Data Class Long Parameter List
Feature Envy Message Chains
Large Class Refused Bequest
Lazy Class Shotgun Surgery

29

Long Method Speculative Generality

Empirical Study Design

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
(&) " &i;. 5 A‘l-';)\' ; . o.
© - o.o.o A @ o o []
Selected Detecting Filtering Apply Detecting Filtering Comparative

System Bad Smell Bad Smell Refactoring Bad Smell Bad Smell Analysis

! I N |

Extract Class

Before Refactoring :4":"2‘:4’;"&‘::" After Refactoring

Replace Refactoring

_ J

30

Empirical Study Design

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
(& &i;. G A‘l-';)\' ; . o.
) - o.o.o A @ o o []
Selected Detecting Filtering Apply Detecting Filtering Comparative

System Bad Smell Bad Smell Refactoring Bad Smell Bad Smell Analysis

! e | |

Decor

) Designite)
Before Refactoring JDeodorant After Refactoring
JSpIRIT
Organic

31

Empirical Study Design

Step 1 Step 2 Step 3 Step 4 Step 5

Selected Detecting Filtering Apply Detecting Filtering Comparative
System Bad Smell Bad Smell Refactoring Bad Smell Bad Smell Analysis

! ! | |

Before Refactoring After Refactoring
Data Class Long Parameter List
Feature Envy Message Chains
Large Class Refused Bequest
Lazy Class Shotgun Surgery

32

Long Method Speculative Generality

Comparative Analysis Perspectives

Step 7

4 ’

Re=4

N AL 4 ppemm—
\4

Original Detection

Standardized Detection

Comparative
Analysis
|

\Vote Level 1

\Vote Level 2

33

Answering RQ1.1

e RQ1.1-Does the automated refactoring process remove bad smells?

Refactoring Bad Smell % of system
Feature Envy 12.5 %
Extract Class Lazy Class 12.5 %
Long Parameter List 12.5 %
Long Method 50.0 %
Extract Method
Refused Bequest 12.5 %
Feature Envy 62.5 %
Move Method
Long Method 12.5 %

Replace Refactoring - -

34
s

Answering RQ1.2

e RQ1.2-Does the automated refactoring process introduce bad smells?

Refactoring Bad Smell % of system
Feature Envy 37.5%
Lazy Class 12.5 %
Extract Class Long Method 25.0 %
Long Parameter List 37.5%
Feature Envy 25.0 %
Extract Method Lazy Class 12.5 %
Long Parameter List 25.0 %
Move Method - -
Replace Refactoring | Refused Bequest 25.0 % .

Answering RQ

e RQ -What are the impacts of automated refactoring on the detection of

bad smells?

Refactoring Decrease Increase Neutral
Extract Class 3.75 % 11.25 % 23.75 %
Extract Method 6.25 % 6.25 % 8.75 %
Move Method 7.50 % 0.00 % 25.00 %
Replace Refactoring 0.00 % 2.50 % 22.50 %

* 80 situations

Aggregated Analysis

—» Vote Level 1
Comparative
Analysis
| > Vote Level 2
System Original Version | Extract Class | Extract Method | Move Method @ Replace Refactoring
Checkstyle-5.6 57 57 25 54 77
Quartz-1.8.3 26 27 - 25 66 37

Aggregated Analysis

Extract Class- 0

Extract Method- =56.14

Replace Type- 35.09
Move Method - -5.26
@
&
oy
@)

Scale

38

Empirical Study Final Remarks

e Empirical research analyzing the impact of four refactorings on ten bad
smells

e We present our results in four different perspectives

e Surprisingly, the number of decrease cases was the lowest compared to

the others
o Exceptin Move Method refactoring applied

39

Study Steps

Step 1 Step 2

Systematic Literature Review (SLR) Empirical Study

Aditional Step

>
Comparative Analysis
Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

H B i1l
- w ~N —
B B B B

- w ~N —
B B B B
7} 7] 7} 7]

Extract Class

Replace Refactoring

Temporary

. Switch Statem

m Bad Smell Introduced

B Bad Smell Removed

mmm SLR and Empirical Study concordance

B SLR Relationship (Smell, Refactoring)

43

Conclousion

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

Conclusion

e Systematic Literature Review (SLR)

o 20 papers found
o Relationships between 31 refactorings and 16 bad smells

e Empirical Study

o Analyzed the effects of four refactorings on ten bad smells

e Comparative Analysis with the SLR and the Empirical Study

46

Contributions

e C(Catalog presenting the relationship between bad smells and refactoring
discussed in the literature and a contrast with Fowler's catalog

e (atalog showing which bad smells tend to be introduced and removed by
the automatic refactoring strategy

47

| B
AN
Dissertation Research ,

Tavares et al. Quantifying the Effects of Refactorings on Bad Smells. WTDSOFT 2020.

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

ClIbSE 2020

XXIlIl Congresso Ibero-Americano em Engenharia de Software

Systematic Literature Review (SLR)

Silva et al. Revisiting the bad smell and refactoring relationship: A systematic
literature review. ESELAW 2020.

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

/(’ — \\\\\
7/
(/; 8 20
\\ SOE
N

NS

Empirical Study

Tavares et al. Analyzing the impact of refactoring on bad smells. SBES 2020.

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/ >0

Implications

e Developers are better informed of which bad smells may be introduced or
removed by the refactoring operation

e Perform the most efficient and robust refactoring tools so as not to
introduce new bad smells in the source code

51

Future Work

e Investigate the new Fowler’s catalog
o Others refactorings and smells

e Conduct the Empirical Study with manually refactoring
o Contrast with our automated refactoring

52

‘ \Programming Language Laboratory U F m G Ianlso“
/ X |

software engineering laboratory

Thank You!

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ CAPES http://labsoft.dcc.ufmg.br/

\Programming Language Laboratory U F m G Ian-snﬂ
/ —
i i ing laborat

Analyzing the Effects of
Refactorings on Bad Smells

e Cleiton Silva Tavares —
Advisor: Mariza Bigonha
Co-Advisor: Eduardo Figueiredo

March 31th, 2021

Programming Language Laboratory (LLP) Software Engineering Lab (LabSoft)
http://www.lIp.dcc.ufmg.br/ http://labsoft.dcc.ufmg.br/

Extra Slide

Extract Class Introducing
Long Parameter List
Original Version

JHotDraw

; JSheetProductRefactored.java | JSheet.java &3 »
ja

527

528 fireOptionSelected(pane, option, value, pane.getInputValue());

529 }

530

531 7 o)

532 * Notify all listeners that have registered interest for

533 * notification on this event type. The event instance

534 * is lazily created using the parameters passed into

535 * the fire method.

536 ¥

537< protected void fireOptionSelected(JOptionPane pane, int option, Object value, Object inputvalue) {
538 SheetEvent sheetEvent = null;

539 // Guaranteed to return a non-null array

549 Object[] listeners = listenerList.getlListenerList();

541 // Process the listeners last to first, notifying

542 // those that are interested in this event

543 for (int i = listeners.length - 2; i >=0; i -= 2) {

544 if (listeners[i] == SheetlListener.class) {

545 // Lazily create the event:

546 if (sheetEvent == null) {

547 sheetEvent = new SheetEvent(this, pane, option, value, inputValue);
5438

549 ((SheetListener) listeners[i + 1]).optionSelected(sheetEvent);
550 }

551 }

552 }

553

554= T2%

555 * Notify all listeners that have registered interest for
556 * notification on this event type. The event instance
557 * is lazily created using the parameters passed into
558 * the fire method.

559 x/

560 protected void fireOptionSelected(JFileChooser pane, int option) {
561 SheetEvent sheetEvent = null;

562 // Guaranteed to return a non-null array

563 Object[] listeners = listenerList.getlListenerList();
564 // Process the listeners last to first, notifying

565 // those that are interested in this event

566 for (int i = listeners.length - 2; i >=0; i -= 2) {
567 if (listeners[i] == SheetListener.class) {

568 // Lazily create the event:|

55

1J) JSheetProductRefactored.java 52 | [J] JSheetjava

18 listenerList.add(SheetListener.class, 1);
19 }
20
219 /**
[] 22 * Removes a sheet listener.
23 b7 4
X ra I e 249 public void removeSheetListener(SheetListener 1) {
25 listenerList.remove(SheetListener.class, 1);
26 }
27
282 12
. 29 * Notify all listeners that have registered interest for notification on this event type.
e Extract Class Introducing e — : —
31 public void fireOptionSelected(JOptionPane pane, int option, Object value,

Object inputvalue, JSheet jSheet) {
SheetEvent sheetEvent =ﬁ
Object[] listeners = listenerList.getlListenerList();
for (int i = listeners.length - 2; i >=0; i -= 2) {
if (listeners[i] == SheetlListener.class) {
if (sheetEvent == null) {
sheetEvent = new SheetEvent(jSheet, pane, option, value,
inputValue);

Long Parameter List

Refactored Version

((SheetListener) listeners[i + 1]).optionSelected(sheetEvent);

¥
¥
HotDraw }
J /*t
* Notify all listeners that have registered interest for notification on this event type.
¥

public void fireOptionSelected(JFileChooser pane, int option, JSheet jSheet) {
SheetEvent sheetEvent = null;
Object[] listeners = listenerList.getListenerList();
for (int i = listeners.length - 2; i >=@; i -= 2) {
if (listeners[i] == SheetListener.class) {
if (sheetEvent == null) {
sheetEvent = new SheetEvent(jSheet, pane, option, null);

((SheetListener) listeners[i + 1]).optionSelected(sheetEvent);

56

