
Vanessa Vasconcelos
Advisor: Mariza Bigonha

Detecting Logical Errors
in Haskell

1

• Motivation

• Problem Definition

• Goals

• Haskell Grammar Subset

• Fault Localization

• HaskellFL

• Demo

• Test Suite

• Results

• Conclusion

Agenda

2

Motivation

3

Functional Programming

4

• Functional Programming is building software via:

• Function composition: create new functions by composing
others

• Pure functions: every time it is called, it produces the same
result

• No shared state: no global values

• Limited side effects: limited iteration with external world

• Immutability: once a variable is created, its value cannot be
changed

Functional Programming

5

Tiobe Index - February 2021

6

Tiobe - Kotlin

7

Tiobe - Haskell

8

GitHub pushes

9

Source: https://madnight.github.io/githut/#/pushes/2020/4

Compilation Errors

10

Bugs

11

Source: National Geographic

• “After Grace Hopper

colleagues at Harvard

opened-up some hardware

to try and discover what

was causing errors in the

computer, they were

surprised to find the insect

trapped in a relay"

• Bug is an error, flaw or fault in a program that causes it to
produce an unexpected result

• Logical errors: they do not cause the program to crash or simply
not work at all, they cause it to return a wrong output

Bugs

12

Problem Definition

13

• Challenges in understanding and taking advantage of the

functional paradigm

• Much time spent at debugging

• Misleading compiler messages

Problem Definition

14

• Challenges in understanding and taking advantage of the

functional paradigm

• Much time spent at debugging

• Misleading compiler messages

Problem Definition

14

• Purely functional language

• Pure functions: Haskell, calling add with the same a and b will
always return the same value

• Impure functions: C++, moveX modifies pos state

Why Haskell

15

• Purely functional language

• Pure functions: Haskell, calling add with the same a and b will
always return the same value

• Impure functions: C++, moveX modifies pos state

Why Haskell

15

• Purely functional language

• Pure functions: Haskell, calling add with the same a and b will
always return the same value

• Impure functions: C++, moveX modifies pos state

Why Haskell

15

• Purely functional language

• Pure functions: Haskell, calling add with the same a and b will
always return the same value

• Impure functions: C++, moveX modifies pos state

Why Haskell

15

• Used in functional programming introductory classes

• Several companies use Haskell in internal products or research

Why Haskell

16

Compilers

Hardware

Compilers

Finance

Advertising, Spam Filtering

Goals

17

• Project and implement a tool, containing a Haskell interpreter for

a subset of Haskell 2010 grammar

• Implement two fault localization techniques

• Build a Haskell test suite covering the chosen Haskell grammar’s

subset

Goals

18

Haskell Grammar
Subset

19

• In: functions, case, if then else, guards, pattern matching,
abstract data types, let and where, lambda function

• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset

20

• In: functions, case, if then else, guards, pattern matching,
abstract data types, let and where, lambda function

• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset

20

• In: functions, case, if then else, guards, pattern matching,
abstract data types, let and where, lambda function

• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset

20

• In: functions, case, if then else, guards, pattern matching,
abstract data types, let and where, lambda function

• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset

20

• In: functions, case, if then else, guards, pattern matching,
abstract data types, let and where, lambda function

• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset

20

HaskellFL Grammar Subset

21

HaskellFL Grammar Subset

21

HaskellFL Grammar Subset

21

HaskellFL Grammar Subset

21

HaskellFL Grammar Subset

21

HaskellFL Grammar Subset

21

HaskellFL Grammar Subset

21

HaskellFL Grammar Subset

21

Fault Localization

22

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

Example 1 - Mid

23

• Tarantula: entities that are primarily executed by failed test

cases are more likely to be faulty than those primarily executed

by passed test cases

• Ochiai: coefficient known from the biology domain, it is more

sensitive to potential fault locations in failed runs than to activity

in passed runs

Methods

24

Ochiai(s) =
failed(s)

totalfailed(failed(s) + passed(s))
Tarantula(s) =

failed(s)
totalfailed

failed(s)
totalfailed + passed(s)

totalpassed

Example 1 - Mid

25

Example 1 - Mid

25

Example 1 - Mid

25

totalfailed = 1

Example 1 - Mid

25

totalfailed = 1 totalpassed = 5

Example 1 - Mid

25

totalfailed = 1 totalpassed = 5

Example 1 - Mid

25

totalfailed = 1 totalpassed = 5

Example 1 - Mid

25

totalfailed = 1 totalpassed = 5

failed(6) = 1

Example 1 - Mid

25

totalfailed = 1 totalpassed = 5

failed(6) = 1 passed(6) = 1

Example 1 - Mid

25

Ochiai(6) =
failed(6)

totalfailed(failed(6) + passed(6))
=

1

2
≈ 0.71

totalfailed = 1 totalpassed = 5

failed(6) = 1 passed(6) = 1

Example 1 - Mid

25

Tarantula(6) =

failed(6)
totalfailed

failed(6)
totalfailed + passed(6)

totalpassed

=
1

1 + 1
5

=
5
6

≈ 0.83

Ochiai(6) =
failed(6)

totalfailed(failed(6) + passed(6))
=

1

2
≈ 0.71

totalfailed = 1 totalpassed = 5

failed(6) = 1 passed(6) = 1

HaskellFL

26

HaskellFL Architecture

27

HaskellFL Input

28

HaskellFL Input

28

HaskellFL Input

28

Faulty Code

HaskellFL Input

28

Faulty Code

HaskellFL Input

28

Faulty Code

HaskellFL Input

28

tests-pass.txt

Faulty Code

HaskellFL Input

28

tests-pass.txt

Faulty Code

HaskellFL Input

28

tests-pass.txt tests-fail.txt

Faulty Code

HaskellFL Engine

29

Line Passing	Tests Failing	Tests
1 - -
2 - -
3 5 5
4 - -
5 4 5
6 4 4
7 - -
8 4 5
9 0 2
10 4 4

Ochiai(8) =
failed(8)

totalfailed(failed(8) + passed(8))
=

5

45
≈ 0.745

Tarantula(8) =

failed(8)
totalfailed

failed(8)
totalfailed + passed(8)

totalpassed

=
1

1 + 4
5

=
5
9

≈ 0.556

HaskellFL Output

30

Ranked List

HaskellFL Output

30

Ranked List

Demo

31

32

Demo

32

Demo

Test Suite

33

• 24 problems

• Submissions from students in the Functional Programming class
at UFMG

• Two versions of mid function

• Submissions for Exercism’s Haskell track available on GitHub

Test Suite

34

Test Suite

35

Results

36

• Indicates the percentage of program elements that a developer

would have to inspect until finding the bug

Results - EXAM Score

37

• Indicates the percentage of program elements that a developer

would have to inspect until finding the bug

Results - EXAM Score

37

Ochai Best =
1
10

= 10 %

• Indicates the percentage of program elements that a developer

would have to inspect until finding the bug

Results - EXAM Score

37

Ochai Best =
1
10

= 10 %

Ochai Worst =
2
10

= 20 %

• Indicates the percentage of program elements that a developer

would have to inspect until finding the bug

Results - EXAM Score

38

Results

39

Conclusion

40

• We created an interpreter for a Haskell grammar subset

• HaskellFL tool and our test suite are available as an open source project
at https://github.com/VanessaCristiny/HaskellFL

• HaskellFL located the errors using Tarantula and Ochiai methods
examining very few lines for the majority of our test suite

• Our results showed that Ochiai presented better results than Tarantula

• Publication: Detecting Logical Errors in Haskell, to appear in the
proceedings of ICTSS 2021

41

Contributions

• Extend the grammar to include do notation and list

comprehensions

• Implement mutation-based fault localization algorithms

• Actually repair the code

Future Work

42

Vanessa Vasconcelos
Advisor: Mariza Bigonha

Detecting Logical Errors
in Haskell

43

