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Functional Programming

4



• Functional Programming is building software via:


• Function composition: create new functions by composing 
others


• Pure functions: every time it is called, it produces the same 
result 


• No shared state: no global values


• Limited side effects: limited iteration with external world


• Immutability: once a variable is created, its value cannot be 
changed

Functional Programming
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# GitHub pushes
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Source: https://madnight.github.io/githut/#/pushes/2020/4
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Bugs
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Source: National Geographic

• “After Grace Hopper 

colleagues at Harvard 

opened-up some hardware 

to try and discover what 

was causing errors in the 

computer, they were 

surprised to find the insect 

trapped in a relay"



• Bug is an error, flaw or fault in a program that causes it to 
produce an unexpected result


• Logical errors: they do not cause the program to crash or simply 
not work at all, they cause it to return a wrong output

Bugs
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• Challenges in understanding and taking advantage of the 

functional paradigm


• Much time spent at debugging


• Misleading compiler messages

Problem Definition

14



• Challenges in understanding and taking advantage of the 

functional paradigm


• Much time spent at debugging


• Misleading compiler messages

Problem Definition

14



• Purely functional language


• Pure functions: Haskell, calling add with the same a and b will 
always return the same value


• Impure functions: C++, moveX modifies pos state
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• Used in functional programming introductory classes


• Several companies use Haskell in internal products or research 

Why Haskell
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• Project and implement a tool, containing a Haskell interpreter for 

a subset of Haskell 2010 grammar


• Implement two fault localization techniques


• Build a Haskell test suite covering the chosen Haskell grammar’s 

subset

Goals
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Haskell Grammar 
Subset
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• In: functions, case, if then else, guards, pattern matching, 
abstract data types, let and where, lambda function


• Out: do notation, list comprehension, type declaration

HaskellFL Grammar Subset
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Fault Localization
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• Tarantula: entities that are primarily executed by failed test 

cases are more likely to be faulty than those primarily executed 

by passed test cases


• Ochiai: coefficient known from the biology domain, it is more 

sensitive to potential fault locations in failed runs than to activity 

in passed runs

Methods
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Ochiai(s) =
failed(s)

totalfailed( failed(s) + passed(s))
Tarantula(s) =

failed(s)
totalfailed

failed(s)
totalfailed + passed(s)

totalpassed
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Tarantula(6) =

failed(6)
totalfailed

failed(6)
totalfailed + passed(6)

totalpassed

=
1

1 + 1
5

=
5
6

≈ 0.83
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HaskellFL Input

28

tests-pass.txt tests-fail.txt

Faulty Code 



HaskellFL Engine
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Line Passing	Tests Failing	Tests
1 - -
2 - -
3 5 5
4 - -
5 4 5
6 4 4
7 - -
8 4 5
9 0 2
10 4 4

Ochiai(8) =
failed(8)

totalfailed( failed(8) + passed(8))
=

5

45
≈ 0.745

Tarantula(8) =

failed(8)
totalfailed

failed(8)
totalfailed + passed(8)

totalpassed

=
1

1 + 4
5

=
5
9

≈ 0.556
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• 24 problems


• Submissions from students in the Functional Programming class 
at UFMG


• Two versions of mid function


• Submissions for Exercism’s Haskell track available on GitHub

Test Suite
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Test Suite
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Results
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• Indicates the percentage of program elements that a developer 

would have to inspect until finding the bug


Results - EXAM Score
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Ochai Best =
1
10

= 10 %

Ochai Worst =
2
10

= 20 %



• Indicates the percentage of program elements that a developer 

would have to inspect until finding the bug
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Conclusion
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• We created an interpreter for a Haskell grammar subset


• HaskellFL tool and our test suite are available as an open source project 
at https://github.com/VanessaCristiny/HaskellFL


• HaskellFL located the errors using Tarantula and Ochiai methods 
examining very few lines for the majority of our test suite


• Our results showed that Ochiai presented better results than Tarantula


• Publication: Detecting Logical Errors in Haskell, to appear in the 
proceedings of ICTSS 2021
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Contributions



• Extend the grammar to include do notation and list 

comprehensions


• Implement mutation-based fault localization algorithms


• Actually repair the code

Future Work
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