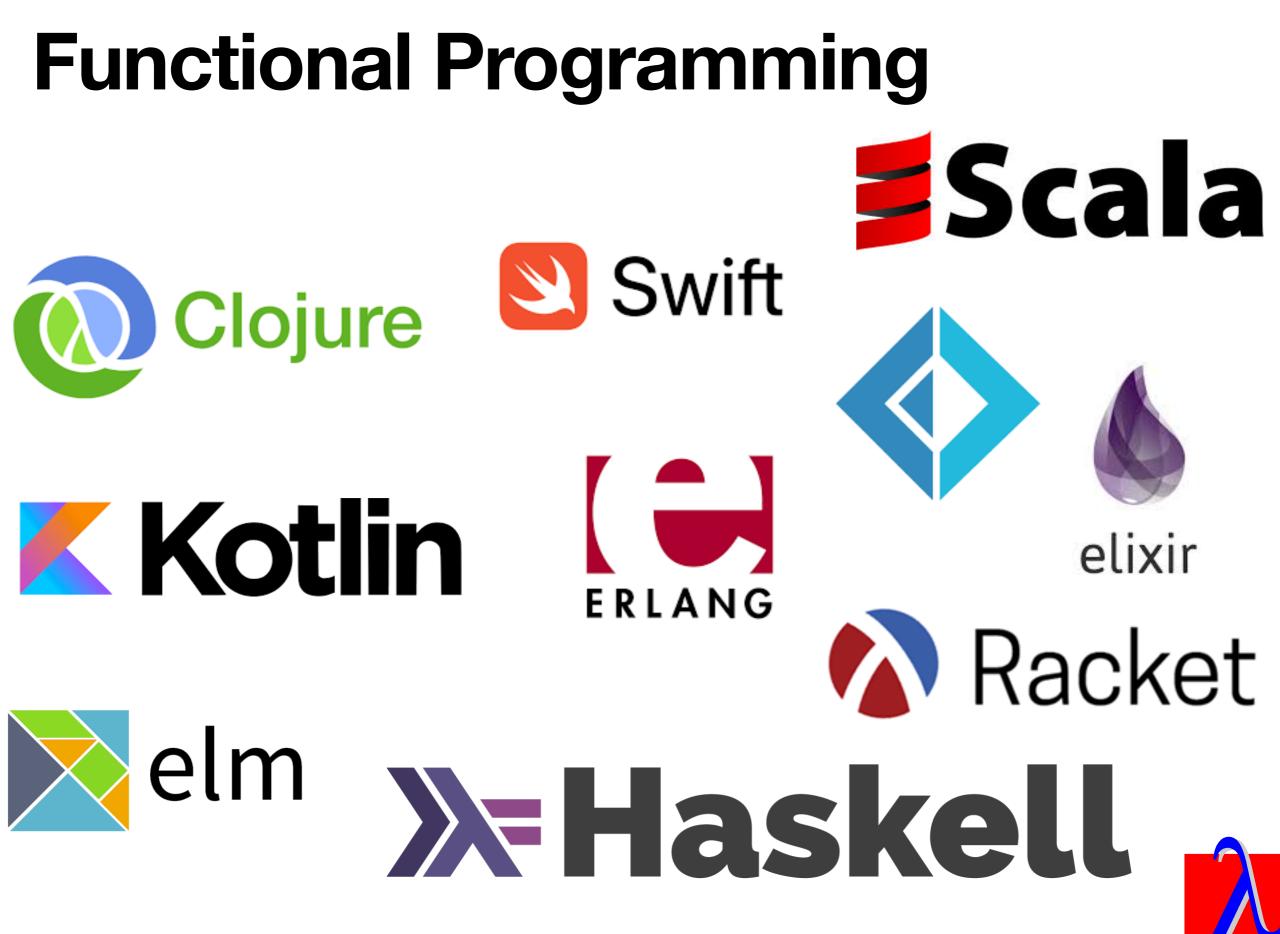


Detecting Logical Errors in Haskell

Vanessa Vasconcelos Advisor: Mariza Bigonha

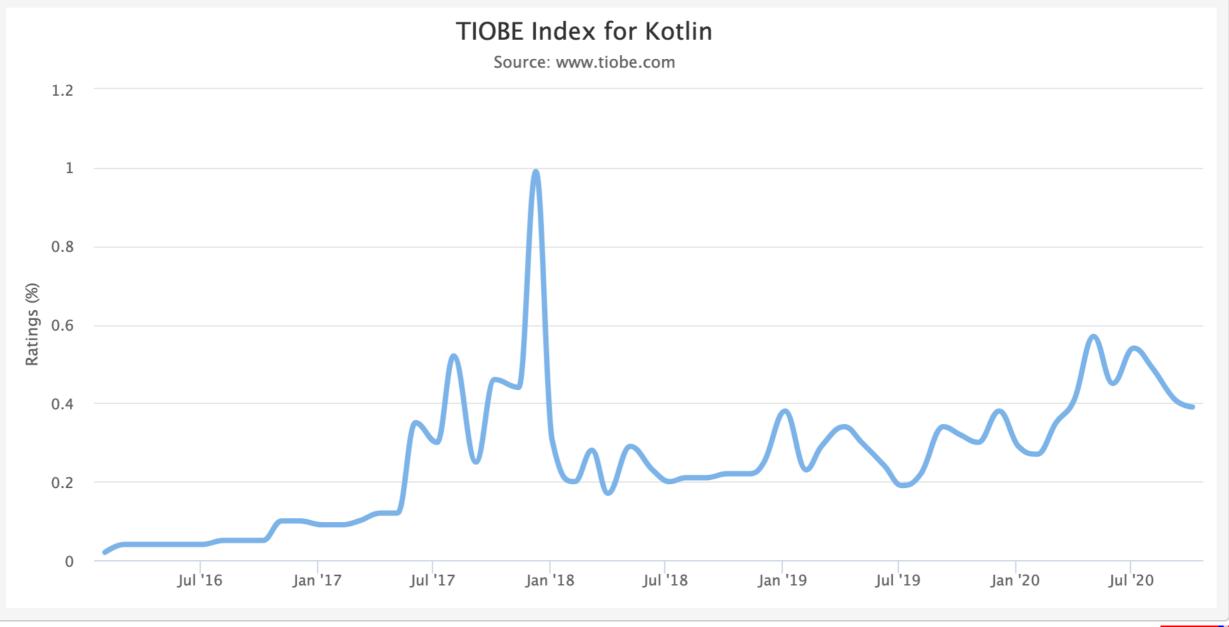

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Agenda

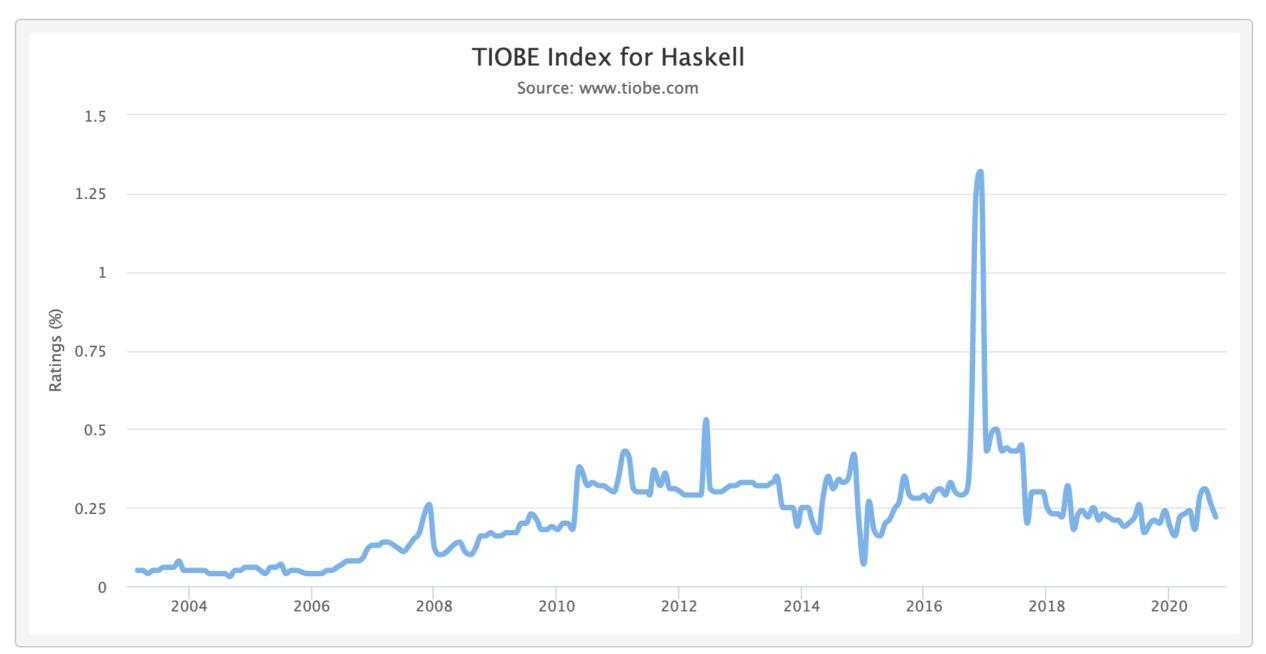
- Motivation
- Problem Definition
- Goals
- Haskell Grammar Subset
- Fault Localization
- HaskellFL
- Demo
- Test Suite
- Results
- Conclusion

Motivation

Functional Programming


- Functional Programming is building software via:
 - Function composition: create new functions by composing others
 - Pure functions: every time it is called, it produces the same result
 - No shared state: no global values
 - Limited side effects: limited iteration with external world
 - Immutability: once a variable is created, its value cannot be changed

Tiobe Index - February 2021


	35	Lisp	0.34%
	36	Scala	0.34%
	37	Lua	0.34%
	38	Logo	0.33%
(39	Kotlin	0.32%
	40	TypeScript	0.29%
	41	VHDL	0.26%
	42	Bash	0.25%
	43	LabVIEW	0.24%
	44	Haskell	0.24%
	45	VBScript	0.24%
	46	Ladder Logic	0.23%
	47	Apex	0.23%
$\left(\right)$	48	Elixir	0.22%
	49	Alice	0.22%
	50	PowerShell	0.21%

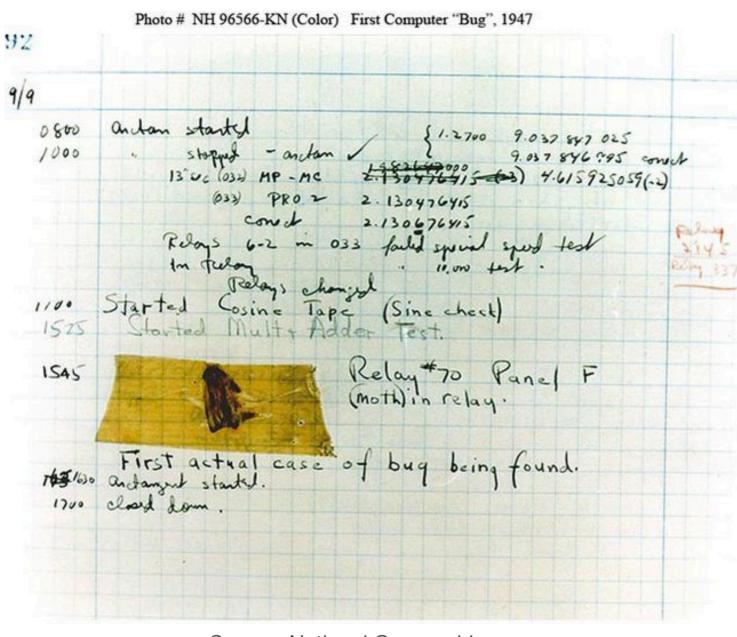
Tiobe - Kotlin

Tiobe - Haskell

GitHub pushes

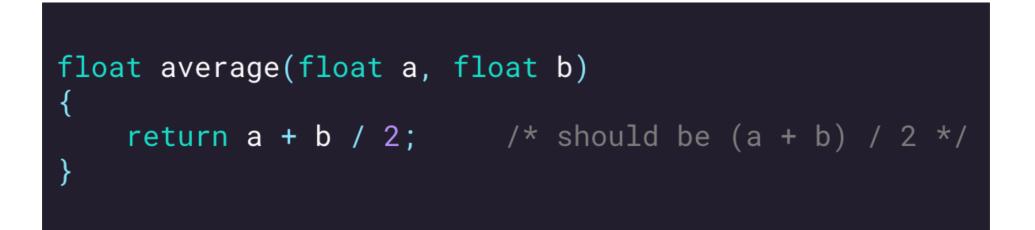
9	Go	3.728% (-1.048%)	~
10	С	3.156% (-0.564%)	^
11	C#	2.786% (-1.884%)	~
12	Scala	1.071% (+0.008%)	
13	Rust	0.606% (-0.267%)	
14	Swift	0.561% (-0.247%)	
15	Kotlin	0.535% (-0.117%)	
16	Perl	0.476% (-0.053%)	
17	Groovy	0.352% (-0.052%)	^
18	Objective-C	0.346% (-0.128%)	~
19	Dart	0.338% (+0.056%)	*
20	Lua	0.316% (+0.054%)	*
21	Vim script	0.250% (-0.083%)	~
22	R	0.248% (-0.089%)	~
23	Clojure	0.233% (-0.002%)	^
24	Haskell	0.232% (-0.037%)	
25	Emacs Lisp	0.218% (-0.090%)	~

Source: https://madnight.github.io/githut/#/pushes/2020/4


Compilation Errors

test.cpp:6:11: error: expected ';' at end of declaration

Bugs

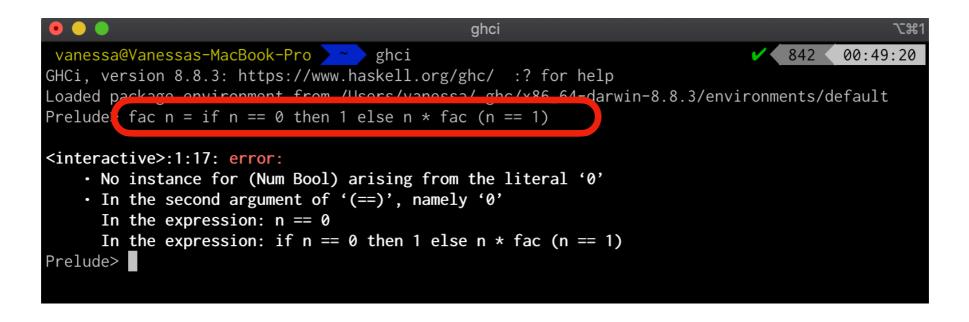

Source: National Geographic

 "After Grace Hopper colleagues at Harvard opened-up some hardware to try and discover what was causing errors in the computer, they were surprised to find the insect trapped in a relay"

- Bug is an error, flaw or fault in a program that causes it to produce an unexpected result
- Logical errors: they do not cause the program to crash or simply not work at all, they cause it to return a wrong output

Problem Definition

Problem Definition


- Challenges in understanding and taking advantage of the functional paradigm
- Much time spent at debugging
- Misleading compiler messages

Problem Definition

- Challenges in understanding and taking advantage of the functional paradigm
- Much time spent at debugging
- Misleading compiler messages

• Purely functional language

add a b = a + b

- Pure functions: Haskell, calling add with the same a and b will always return the same value
- Impure functions: C++, moveX modifies pos state

```
class Pos {
    private:
        int x;
        int y;
    public:
        Pos(int x, int y) {
            this->x = x;
            this->y = y;
        }
        void moveX(int inc) {
            this->x = this->x + inc;
        }
};
```

Pos pos = Pos(0,0);
pos.moveX(1); // 1 0
pos.moveX(1); // 2 0
pos.moveX(1); // 3 0

• Purely functional language

add a b = a + b

- Pure functions: Haskell, calling add with the same a and b will always return the same value
- Impure functions: C++, moveX modifies pos state

```
class Pos {
   private:
      int x;
      int y;
                                     Pos pos = Pos(0,0);
   public:
                                      pos.moveX(1
      Pos(int x, int y) {
         this->x = x:
                                     pos.moveX(1); // 2
                                                                   0
         this->y = y;
                                     pos.moveX(1); // 3
                                                                  0
      void moveX(int inc) {
         this - x = this - x + inc;
};
```

• Purely functional language

add a b = a + b

- Pure functions: Haskell, calling add with the same a and b will always return the same value
- Impure functions: C++, moveX modifies pos state

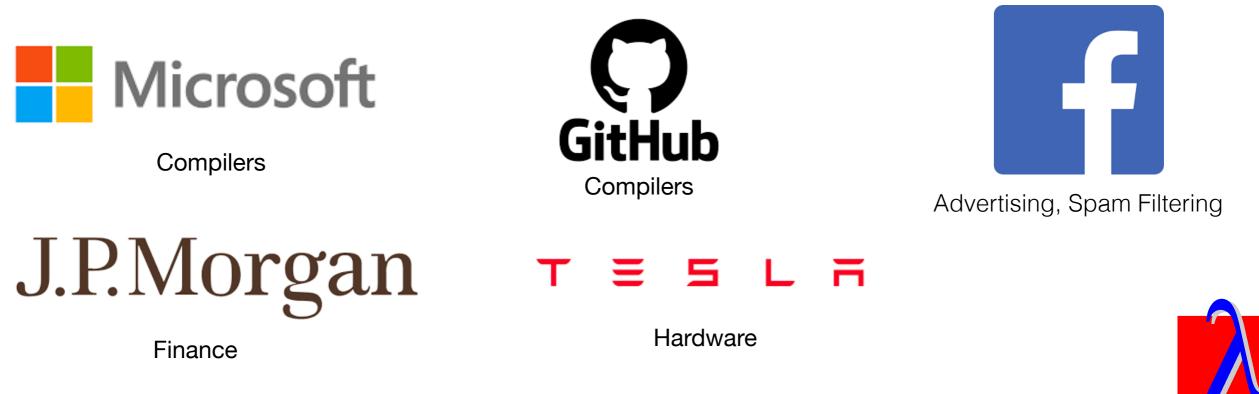
```
class Pos {
    private:
        int x;
        int y;
    public:
    Pos(int x, int y) {
        this->x = x;
        this->y = y;
    }
    void moveX(int inc) {
        this->x = this->x + inc;
        }
};
```

Pos pos = Pos(0,0);
pos.moveX(1); // 1 0
pos.moveX(1); // 2 0
pos.moveX(1); // 3 0

• Purely functional language

add a b = a + b

- Pure functions: Haskell, calling add with the same a and b will always return the same value
- Impure functions: C++, moveX modifies pos state


```
class Pos {
    private:
        int x;
        int y;
    public:
        Pos(int x, int y) {
            this->x = x;
            this->y = y;
        }
        void moveX(int inc) {
            this->x = this->x + inc;
        }
};
```

Pos pos = Pos(0,0);
pos.moveX(1); // 1 0
pos.moveX(1); // 2 0
pos.moveX(1); // 3 0

Why Haskell **XF Haskell**

- Used in functional programming introductory classes
- Several companies use Haskell in internal products or research

Goals

- Project and implement a tool, containing a Haskell interpreter for a subset of Haskell 2010 grammar
- Implement two fault localization techniques
- Build a Haskell test suite covering the chosen Haskell grammar's subset

- In: functions, case, if then else, guards, pattern matching, abstract data types, let and where, lambda function
- Out: do notation, list comprehension, type declaration

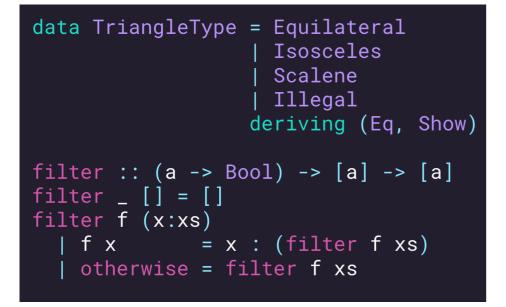
- In: functions, case, if then else, guards, pattern matching, abstract data types, let and where, lambda function
- Out: do notation, list comprehension, type declaration

lista = [x*2 | x <- [1..10]]

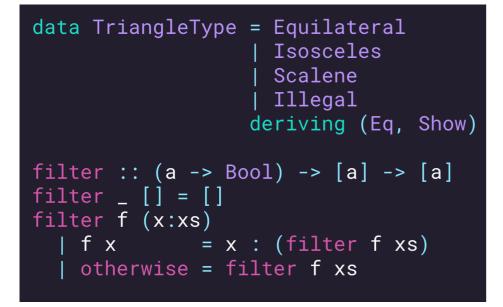
- In: functions, case, if then else, guards, pattern matching, abstract data types, let and where, lambda function
- Out: do notation, list comprehension, type declaration

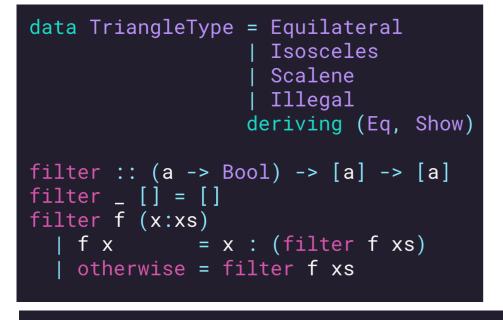
- In: functions, case, if then else, guards, pattern matching, abstract data types, let and where, lambda function
- Out: do notation, list comprehension, type declaration

type PhoneBook = [(String,String)]

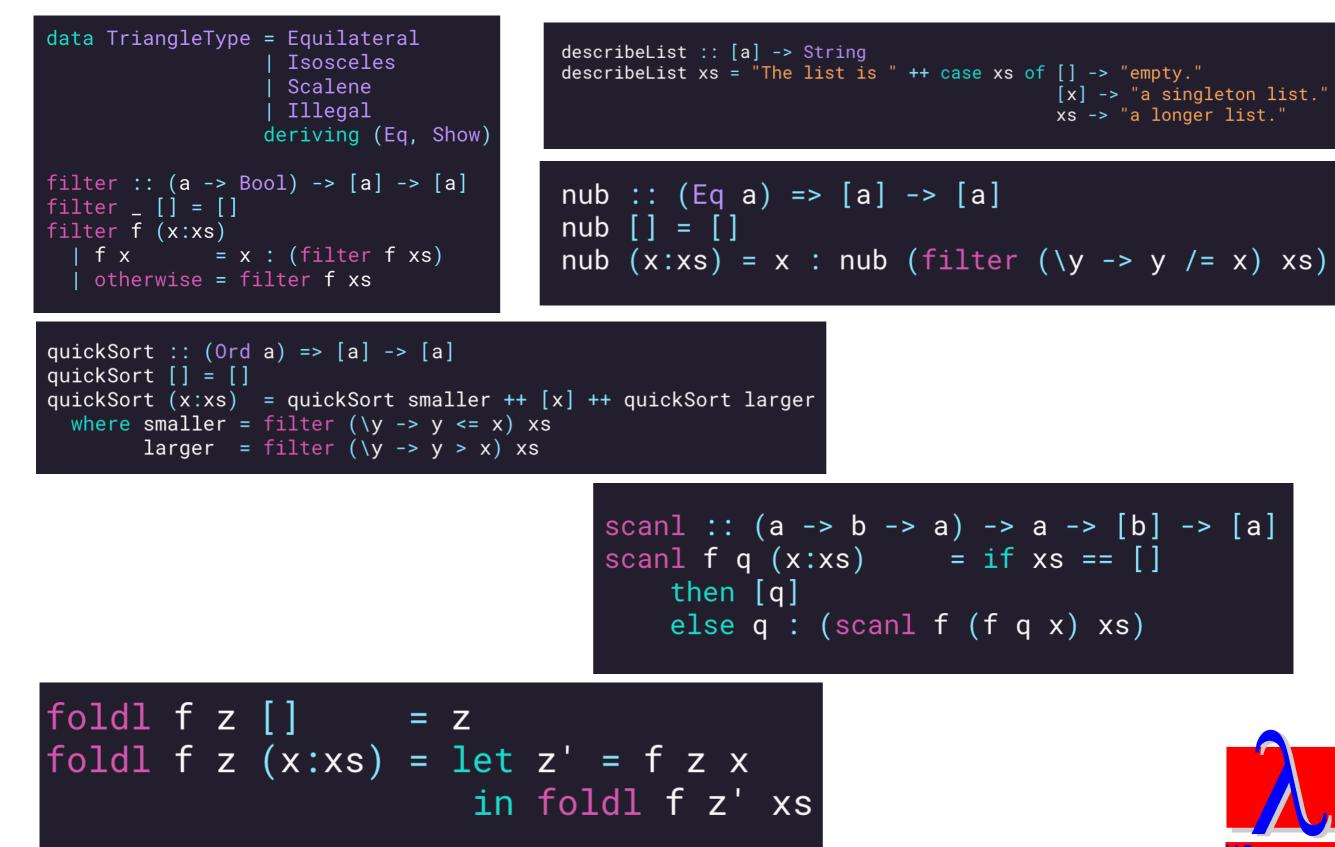

- In: functions, case, if then else, guards, pattern matching, abstract data types, let and where, lambda function
- Out: do notation, list comprehension, type declaration

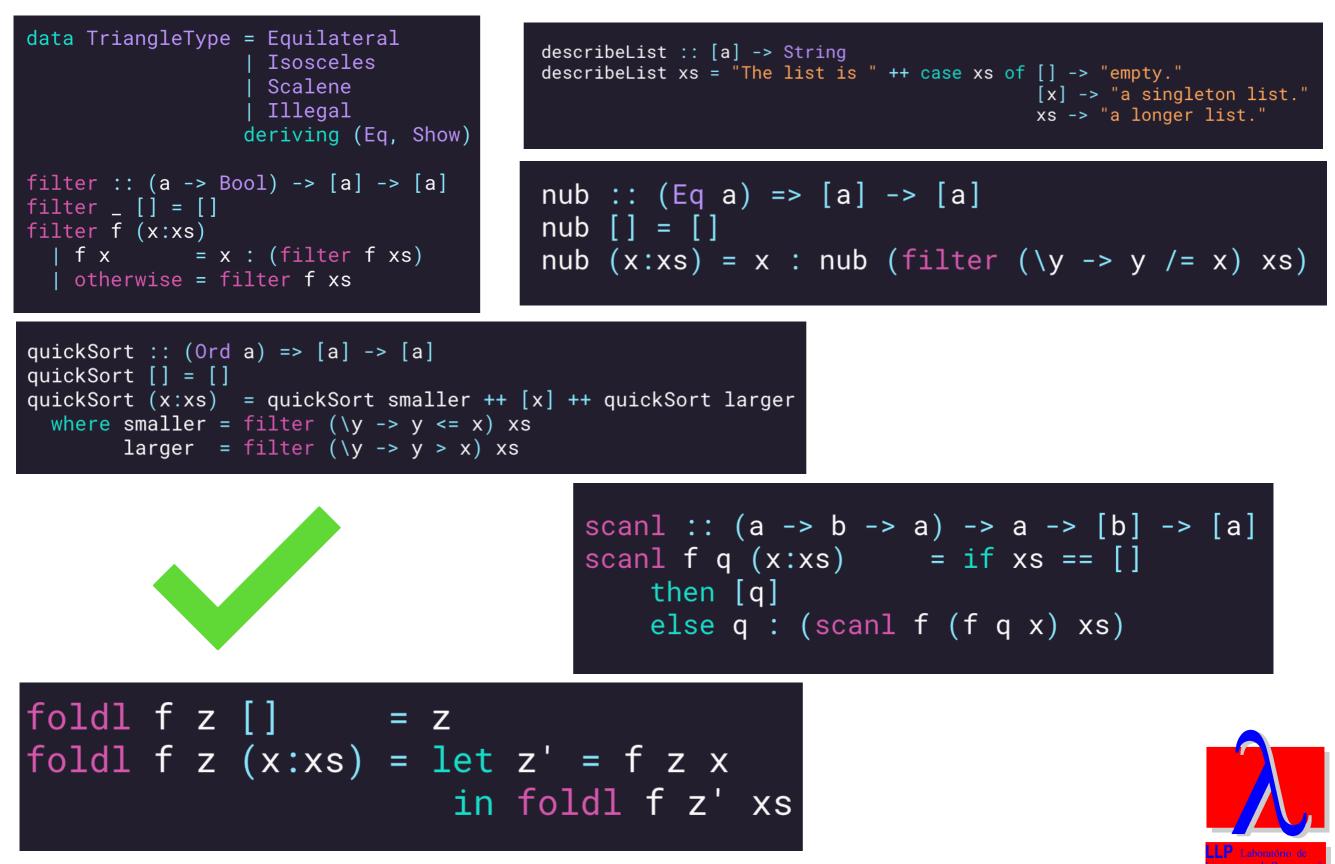
type PhoneBook = [(String,String)]

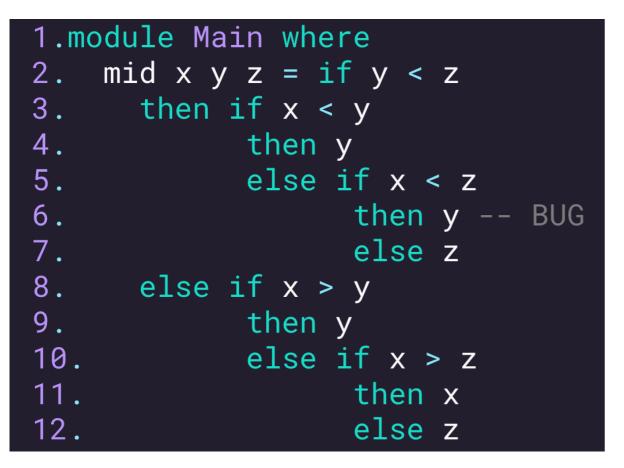


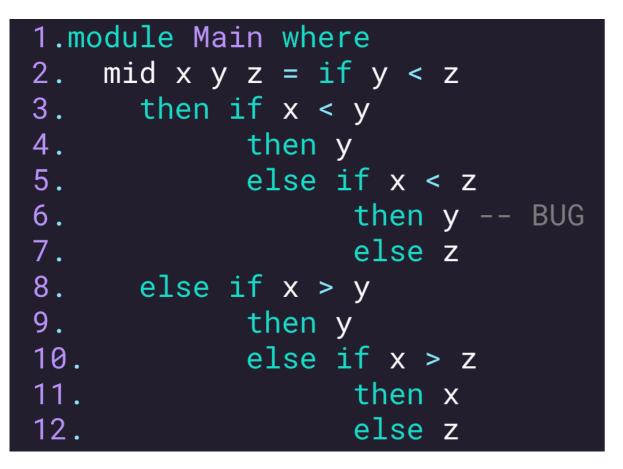


xs -> "a longer list."



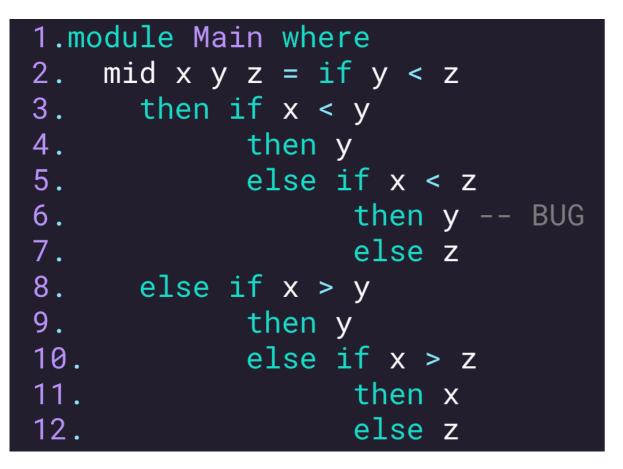





Fault Localization

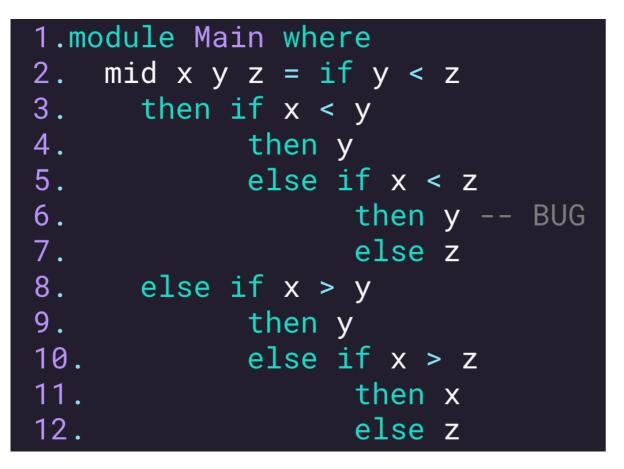
mid	3	3	5	=	3
mid	1	2	3	=	2
mid	3	2	1	=	2
mid	5	5	5	=	5
mid	5	3	4	=	4
mid	2	1	3	=	1

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•	•		•	•							P
1 2 3		•	\bullet	•									P
3 2 1		•						•	•				P
555		•						•		•		•	P
534		•	•		•		•						P
2 1 3		•			•	•							F



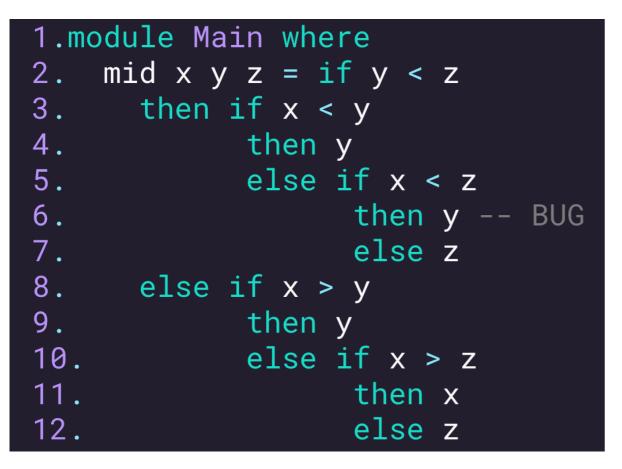
mid	3	3	5	=	3 🗸	
mid	1	2	3	=	2	
mid	3	2	1	=	2	
mid	5	5	5	=	5	
mid	5	3	4	=	4	
mid	2	1	3	=	1	

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•			•	•							P
123		•	•	•									P
3 2 1		•						•	•				P
5 5 5		•						•		•		•	P
$5\ 3\ 4$		•	•		•		•						P
2 1 3		•			•	•							F



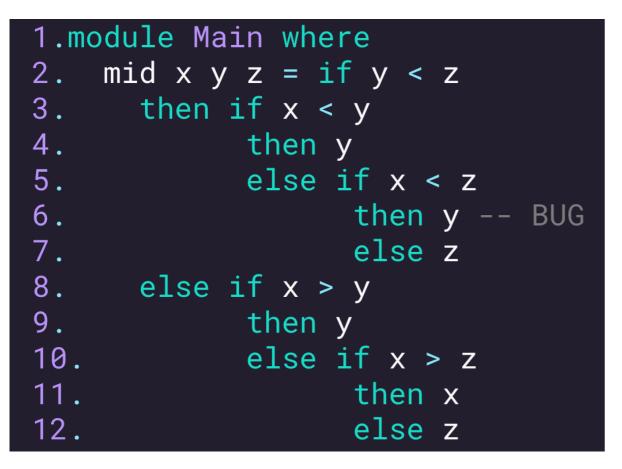
mid	3	3	5	=	3
mid	1	2	3	=	2
mid	3	2	1	=	2
mid	5	5	5	=	5
mid	5	3	4	=	4
mid	2	1	3	=	1

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•	•		•	•							P
123		•	•	•									P
3 2 1		•						•	•			1	P
5 5 5		•						•		•		•	P
$5 \ 3 \ 4$		•	•		•		•					1	P
2 1 3		•			•	•							F



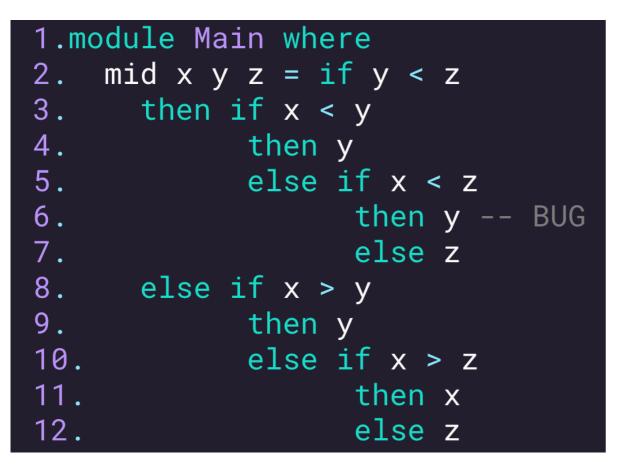
mid mid	1	2	3	=	2
mid	3	2	1	=	2
mid	5	5	5	=	5
mid	5	3	4	=	4
mid	2	1	3	=	1

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•	•		•	•							P
1 2 3		•	•	•									P
3 2 1		•						•	•				P
5 5 5		•						•		•		•	P
534		•	•		•		•						P
2 1 3		•	•		•	•							F



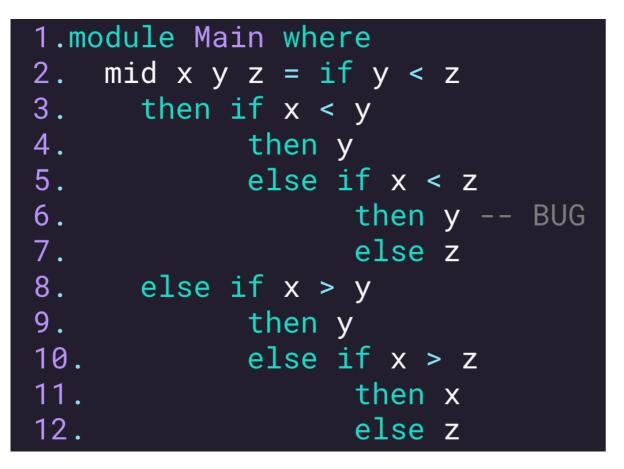
mid mid	1	2	3	=		
mid	3	2	1	=	2	
mid	5	5	5	=	5 🗸	
mid	5	3	4	=	4	
mid	2	1	3	=	1	

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•			•	•							P
1 2 3		•	•	\bullet									P
3 2 1		•							•				P
$5\ 5\ 5$		•						•		•		•	P
534		•	•		•		•			1			P
2 1 3		•			•	•							F



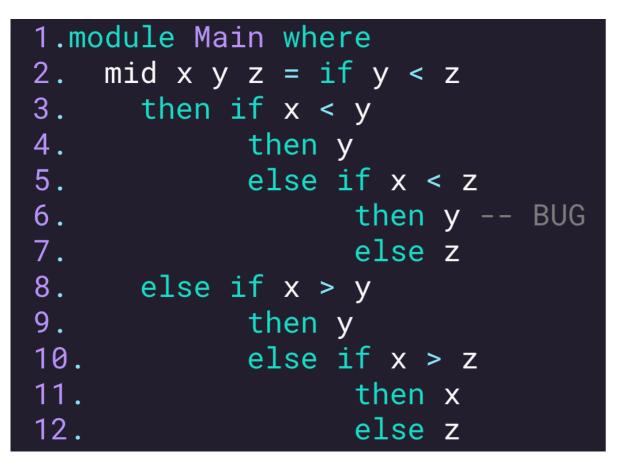
mid	3	3	5	=	3	
mid	1	2	3	=	2	
mid	3	2	1	=	2	
mid						
mid	5	3	4	=	4	
mid	2	1	3	=	1	

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•	•		•	•							P
1 2 3		•		\bullet									P
3 2 1		•						•	•				P
5 5 5		•						•		•		•	P
534		•	•		•		•						P
2 1 3		•	•		•	•							F



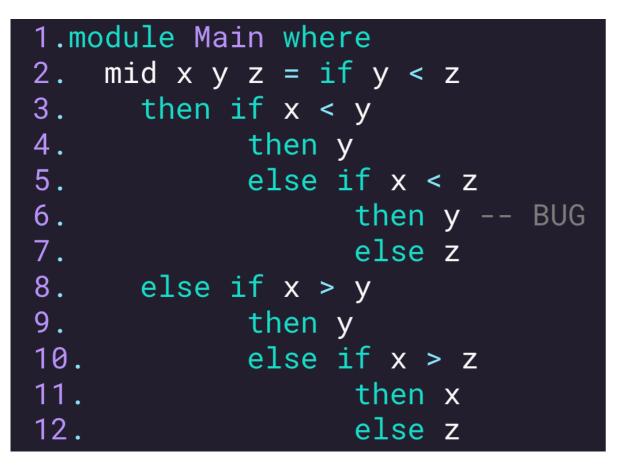
3	3	5	=	3
1	2	3	=	2
				· · · · · · · · · · · · · · · · · · ·
2	1	3	=	1 🗶
	1 3 5 5	1 2 3 2 5 5 5 3	1 2 3 3 2 1 5 5 5 5 3 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•	•		•	•							Р
1 2 3		•	•	•									P
3 2 1		•						•	•				P
5 5 5		•						•		•		•	Р
534		•	•		•		•						P
2 1 3		•			•	•							F



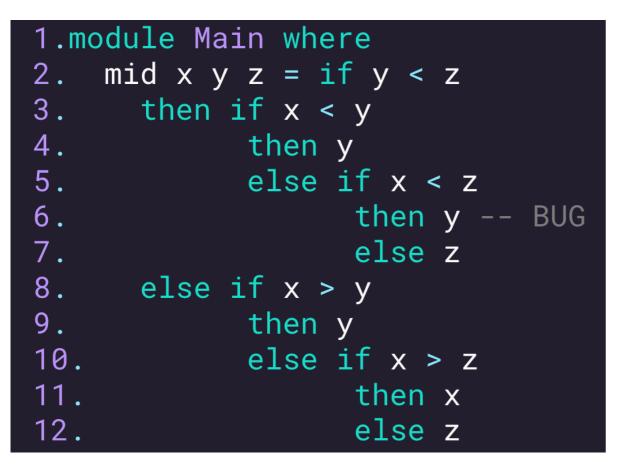
mid	3	3	5	=	3
mid	1	2	3	=	2
mid	3	2	1	=	2
					5
mid	5	3	4	=	4
mid	2	1	3	=	1 🗶

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
$3\ 3\ 5$													P
123													P
$3\ 2\ 1$		•						•					P
5 5 5		•						•		•		•	P
$5 \ 3 \ 4$		•	•		•		•						P
213		•	•		•	•							F



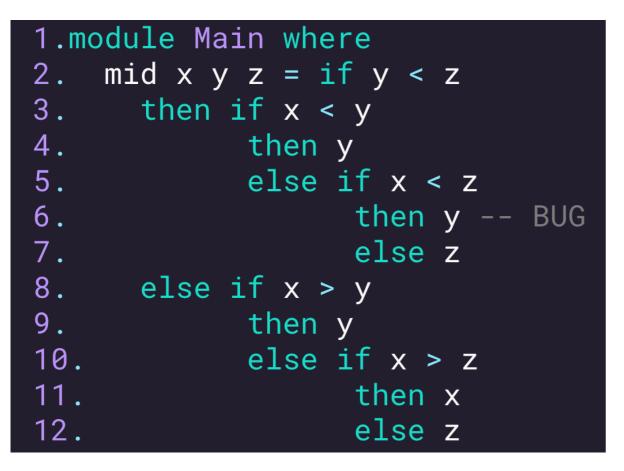
mid	3	3	5	=	3	
mid	1	2	3	=	2 🕈	
mid						
mid	5	5	5	=	5 <	
mid						
mid	2	1	3	=	1	X

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5													Р
123													P
321		•											P
$5\ 5\ 5$		•						•		•		•	P
$5\ 3\ 4$		•	•		•							1	P
213		•			•	•							F



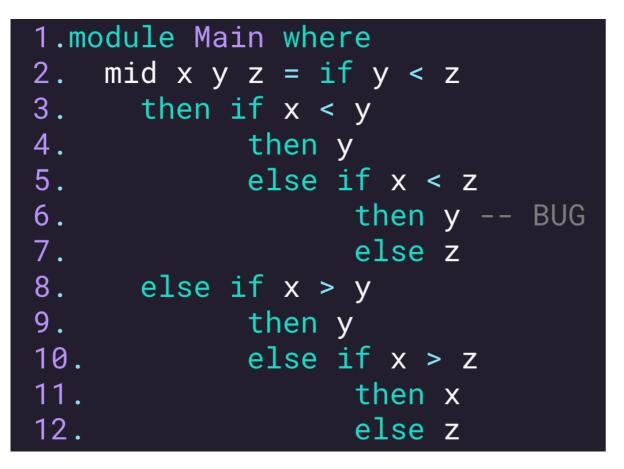
mid	3	3	5	=	3
mid	1	2	3	=	2
mid					
mid	5	5	5	=	5
mid					
mid	2	1	3	=	1 💢

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•	•		•	•							P
123		●	\bullet										P
3 2 1													P
$5\ 5\ 5$		•						•					P
534		•	•		•					1		1	P
213		•				•							F



mid	3	3	5	=	3
mid	1	2	3	=	2
mid					
mid	5	5	5	=	5
mid					
mid	2	1	3	=	1 🗶

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•	•		•	•							P
123		•	•	•									P
321		\bullet											P
$5\ 5\ 5$													P
$5\ 3\ 4$													P
2 1 3		\bullet				•							F



mid	3	3	5	=	3	
mid	1	2	3	=	2	
mid					· · · · · · · · · · · · · · · · · · ·	
mid	5	5	5	=	5	
mid	5	3	4	=	4	
mid	2	1	3	=	1 🗡	

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•			•								P
1 2 3		•	•	•									P
3 2 1		•											P
5 5 5		\bullet						•					P
$5\ 3\ 4$													P
213													F

mid	ર	ર	5	=	3
mid					
mid					
					5
mid					· · · · · · · · · · · · · · · · · · ·
mid					
mita	Ζ		З		

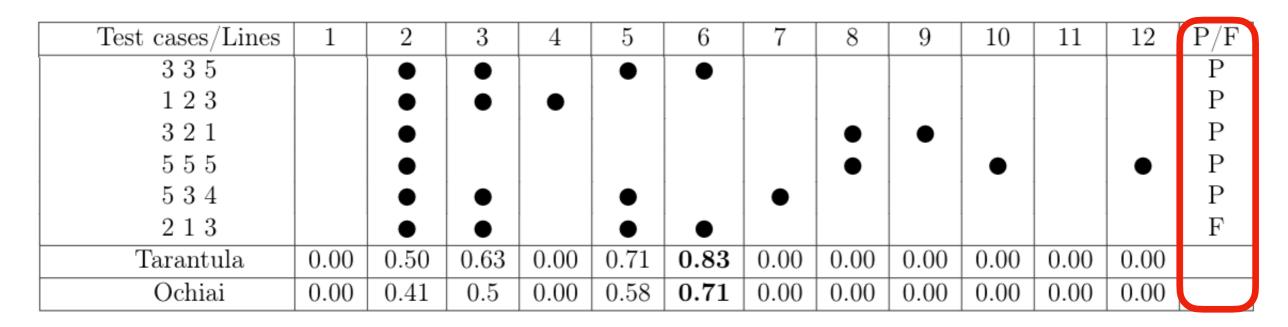
Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5					•	•							P
1 2 3		•	•	•									P
3 2 1		•						•	•				P
$5\ 5\ 5$		•						•		•		•	P
$5\ 3\ 4$		\bullet					\bullet						P
2 1 3													F

Methods

- Tarantula: entities that are primarily executed by failed test cases are more likely to be faulty than those primarily executed by passed test cases
- Ochiai: coefficient known from the biology domain, it is more sensitive to potential fault locations in failed runs than to activity in passed runs

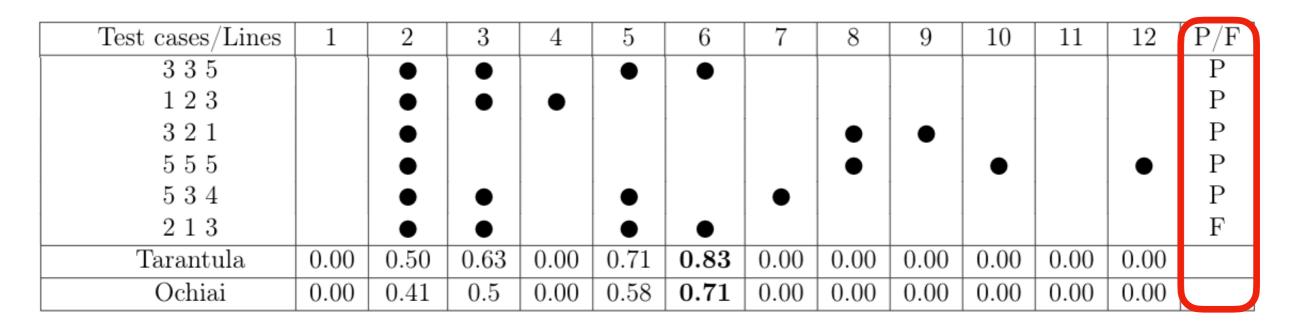
$$Tarantula(s) = \frac{\frac{failed(s)}{totalfailed}}{\frac{failed(s)}{totalfailed} + \frac{passed(s)}{totalpassed}} \qquad Ochiai(s) = \frac{failed(s)}{\sqrt{totalfailed(failed(s) + passed(s))}}$$

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
$3 \ 3 \ 5$					•								Р
1 2 3		•	•	•									P
3 2 1		•						•	•				P
5 5 5		•						•		•		•	P
5 3 4		•	•		•		•						P
2 1 3		•				•							F
Tarantula	0.00	0.50	0.63	0.00	0.71	0.83	0.00	0.00	0.00	0.00	0.00	0.00	
Ochiai	0.00	0.41	0.5	0.00	0.58	0.71	0.00	0.00	0.00	0.00	0.00	0.00	


```
1.module Main where
    mid x y z = if y < z
2.
3.
      then if x < y
4.
            then y
5.
            else if x < z
6.
                  then y -- BUG
7.
                   else z
      else if x > y
8.
9.
            then y
            else if x > z
10.
11.
                   then x
12.
                   else z
```

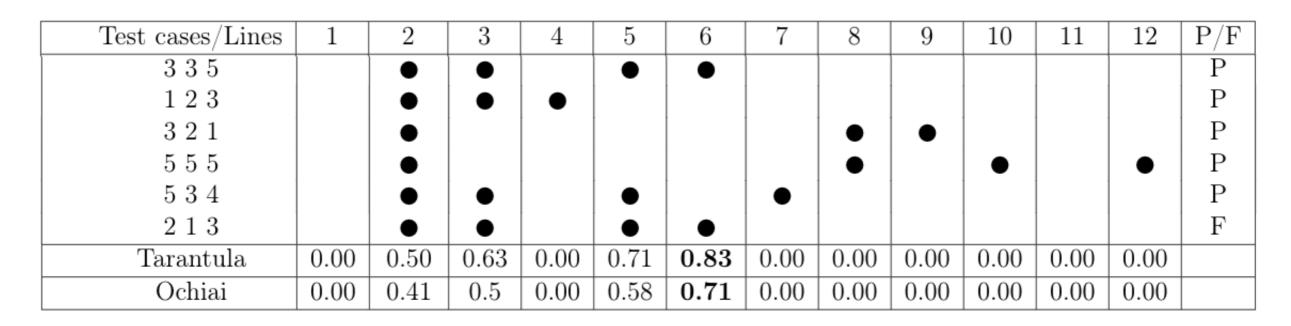

Test cases/Lines	1	2	3	4	5	6	7	8	9	10	11	12	P/F
3 3 5		•			•	•							Р
1 2 3		•											Р
3 2 1		•							•				Р
5 5 5		•						•		•		•	Р
534		•			•		•						Р
2 1 3		•			•	•							F
Tarantula	0.00	0.50	0.63	0.00	0.71	0.83	0.00	0.00	0.00	0.00	0.00	0.00	
Ochiai	0.00	0.41	0.5	0.00	0.58	0.71	0.00	0.00	0.00	0.00	0.00	0.00	

```
1.module Main where
    mid x y z = if y < z
2.
3.
      then if x < y
4.
            then y
5.
            else if x < z
6.
                  then y -- BUG
7.
                   else z
      else if x > y
8.
9.
            then y
            else if x > z
10.
11.
                   then x
12.
                   else z
```




```
1.module Main where
    mid x y z = if y < z
2.
      then if x < y
3.
             then y
4.
5.
             else if x < z
6.
                   then y -- BUG
7.
                   else z
      else if x > y
8.
             then y
9.
             else if x > z
10.
                   then x
11.
12.
                   else z
```

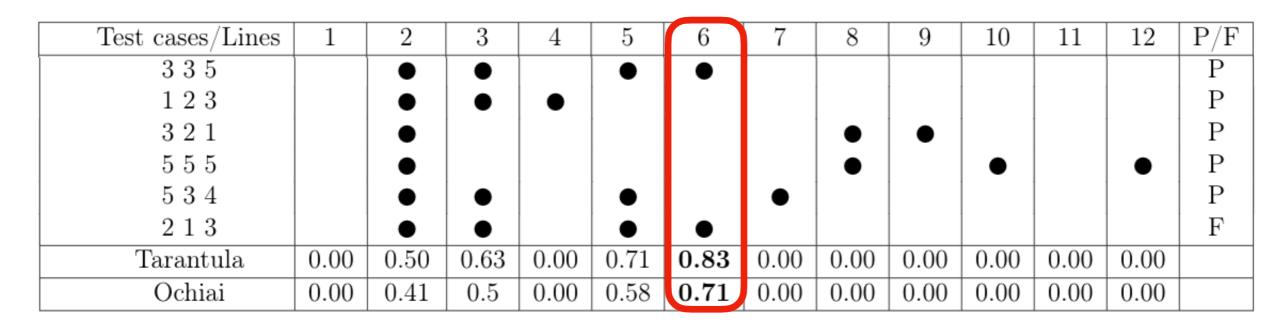
total failed = 1




```
1.module Main where
    mid x y z = if y < z
2.
      then if x < y
3.
             then y
4.
             else if x < z
5.
6.
                   then y -- BUG
7.
                   else z
      else if x > y
8.
             then y
9.
             else if x > z
10.
                   then x
11.
12.
                   else z
```

total failed = 1

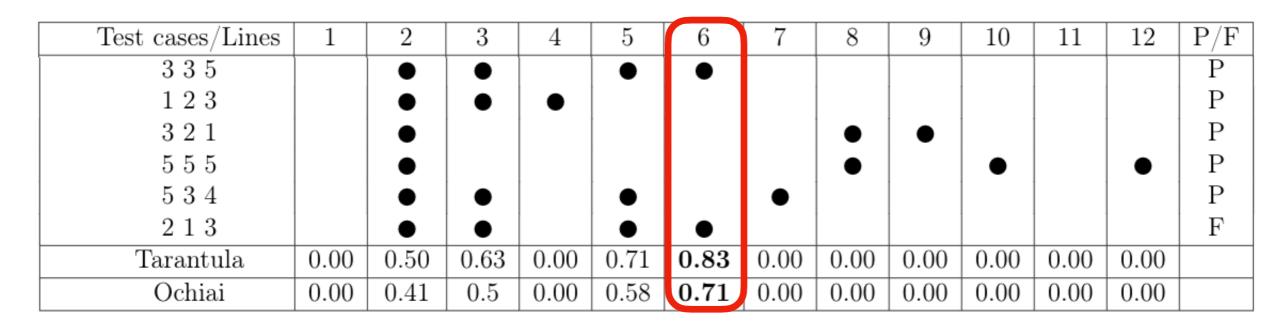
totalpassed = 5




```
1.module Main where
    mid x y z = if y < z
2.
      then if x < y
3.
             then y
4.
             else if x < z
5.
6.
                   then y -- BUG
7.
                   else z
      else if x > y
8.
             then y
9.
             else if x > z
10.
                   then x
11.
12.
                   else z
```

total failed = 1

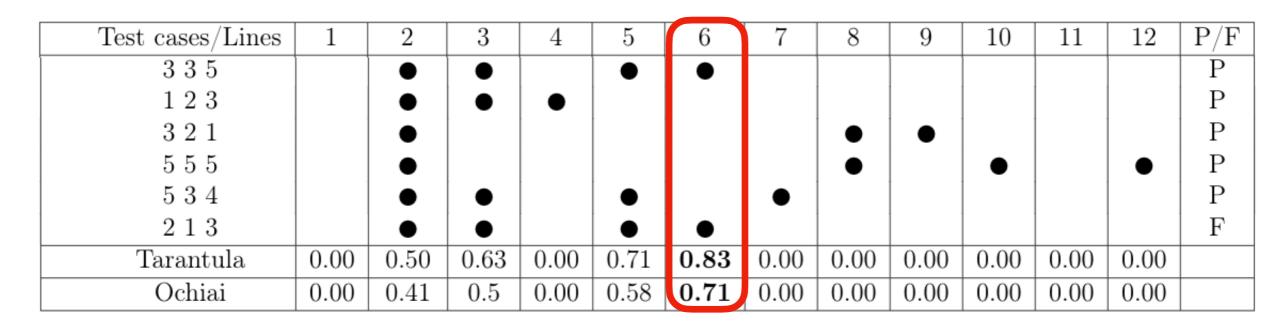
totalpassed = 5




```
1.module Main where
    mid x y z = if y < z
2.
      then if x < y
3.
             then y
4.
             else if x < z
5.
6.
                   then y -- BUG
7.
                   else z
      else if x > y
8.
             then y
9.
             else if x > z
10.
                   then x
11.
12.
                   else z
```

total failed = 1

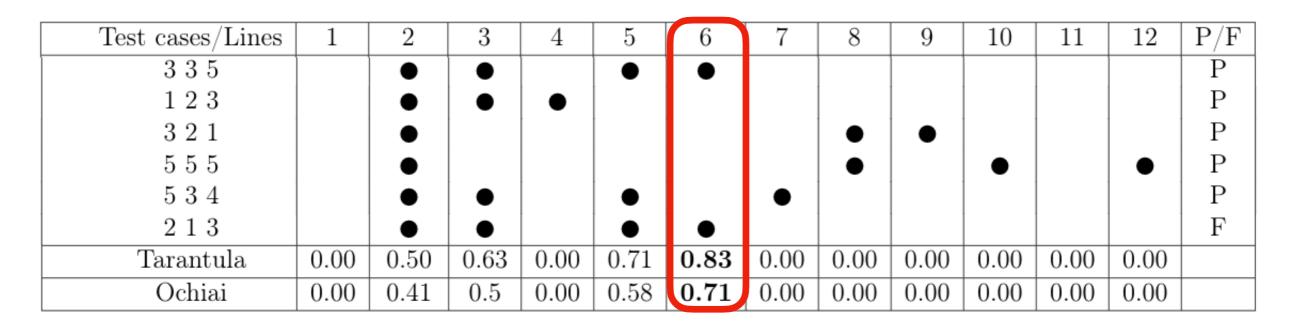
totalpassed = 5


```
1.module Main where
    mid x y z = if y < z
2.
      then if x < y
3.
             then y
4.
             else if x < z
5.
6.
                   then y -- BUG
7.
                   else z
      else if x > y
8.
             then y
9.
             else if x > z
10.
                   then x
11.
12.
                   else z
```

total failed = 1

```
totalpassed = 5
```

failed(6) = 1

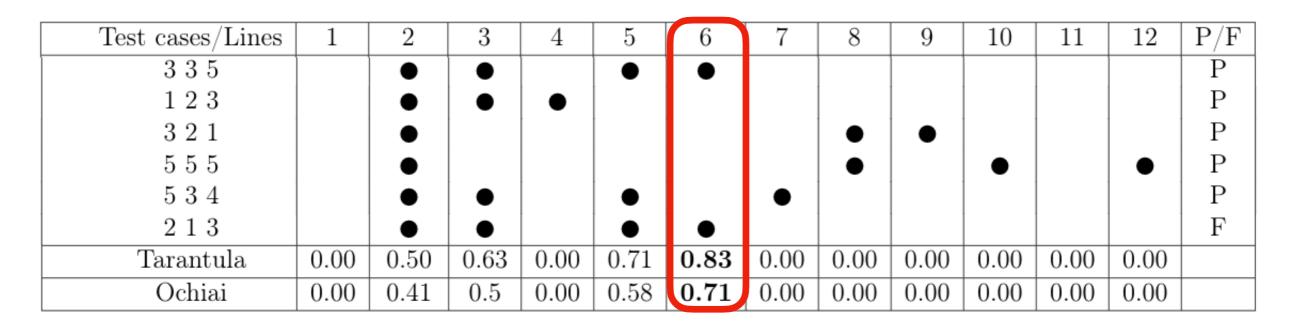

total failed = 1

$$totalpassed = 5$$

failed(6) = 1

passed(6) = 1

total failed = 1


$$totalpassed = 5$$

failed(6) = 1

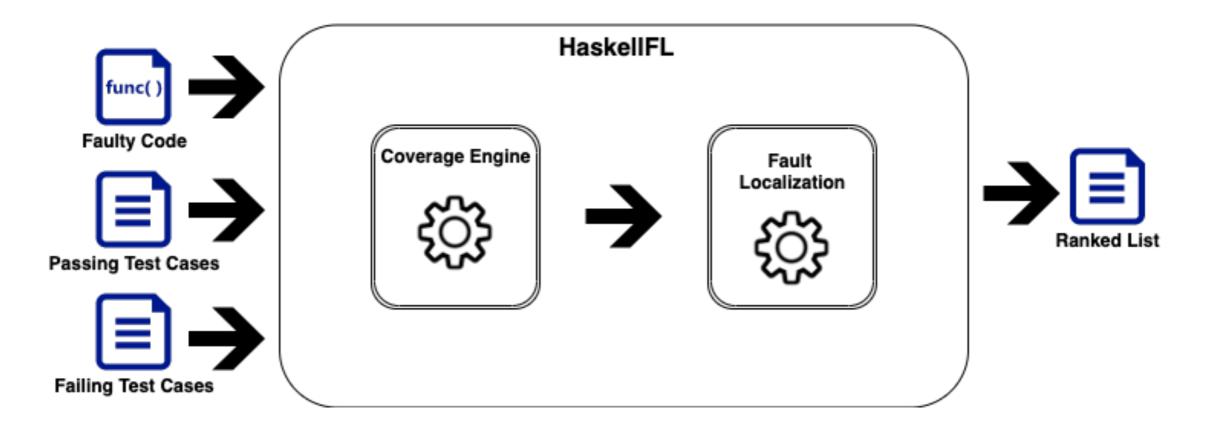
$$passed(6) = 1$$

$$Ochiai(6) = \frac{failed(6)}{\sqrt{totalfailed(failed(6) + passed(6))}} = \frac{1}{\sqrt{2}} \approx 0.71$$

$$total failed = 1$$

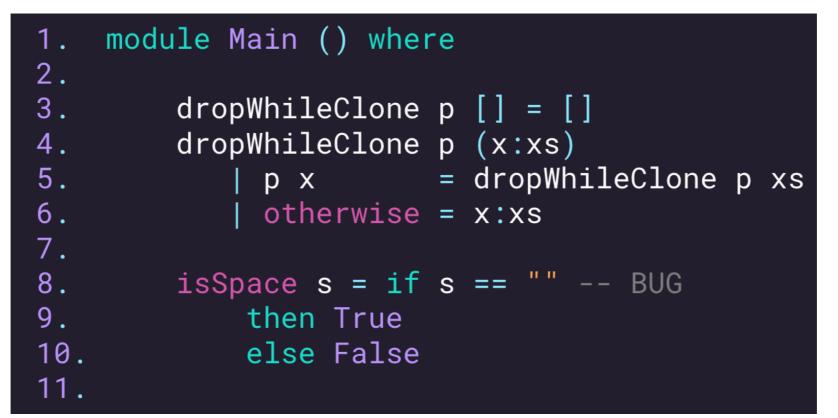
$$totalpassed = 5$$

failed(6) = 1

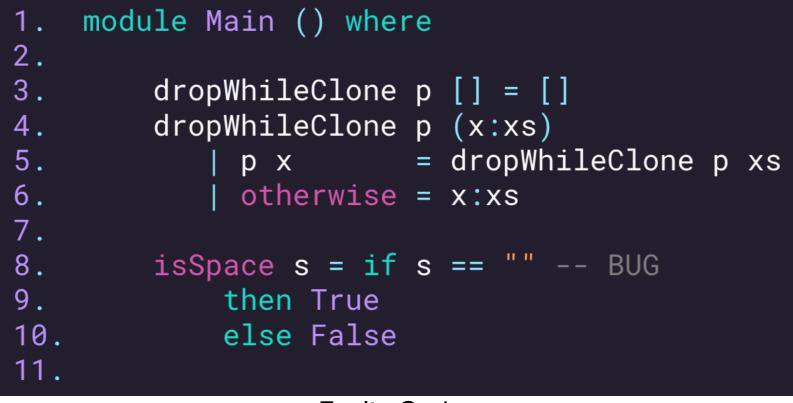

$$passed(6) = 1$$

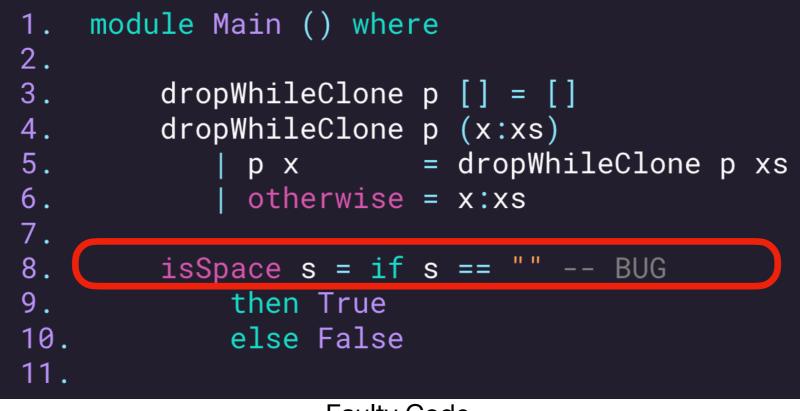
$$Ochiai(6) = \frac{failed(6)}{\sqrt{totalfailed(failed(6) + passed(6))}} = \frac{1}{\sqrt{2}} \approx 0.71$$

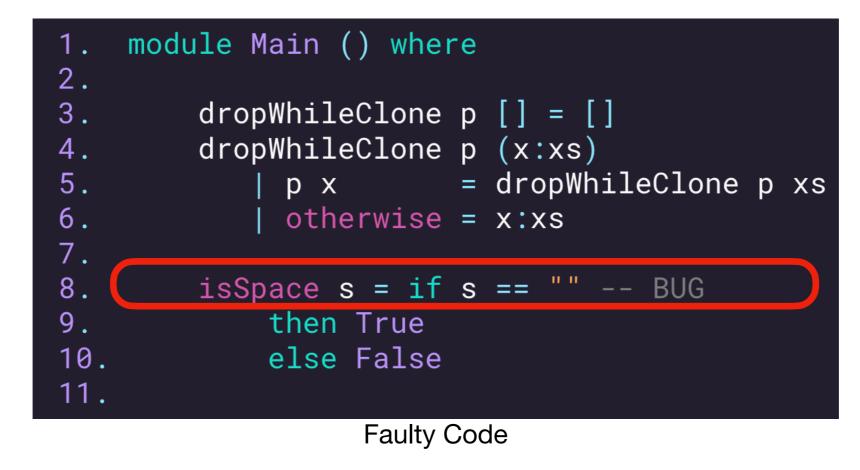
$$Tarantula(6) = \frac{\frac{failed(6)}{totalfailed}}{\frac{failed(6)}{totalfailed} + \frac{passed(6)}{totalpassed}} = \frac{1}{1 + \frac{1}{5}} = \frac{5}{6} \approx 0.83$$

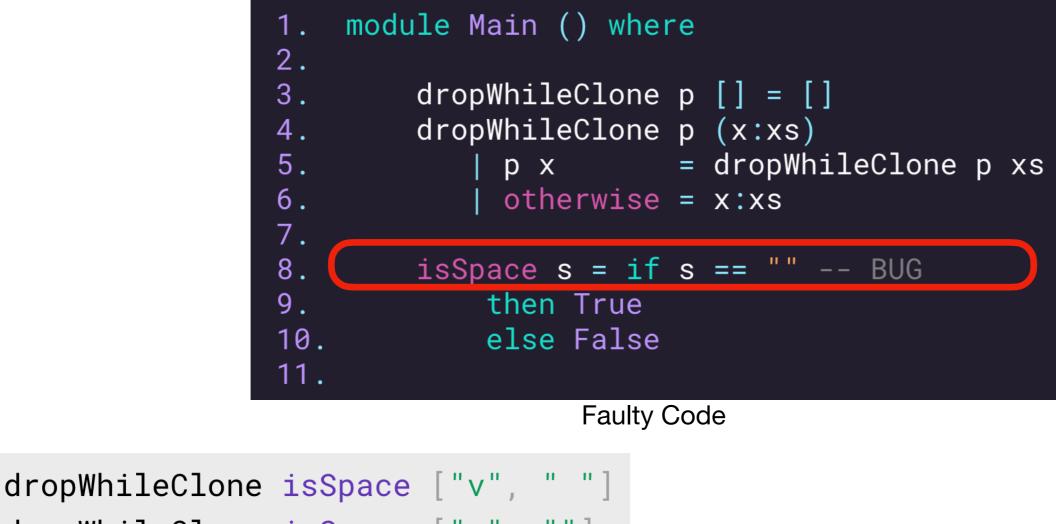

HaskellFL

HaskellFL Architecture

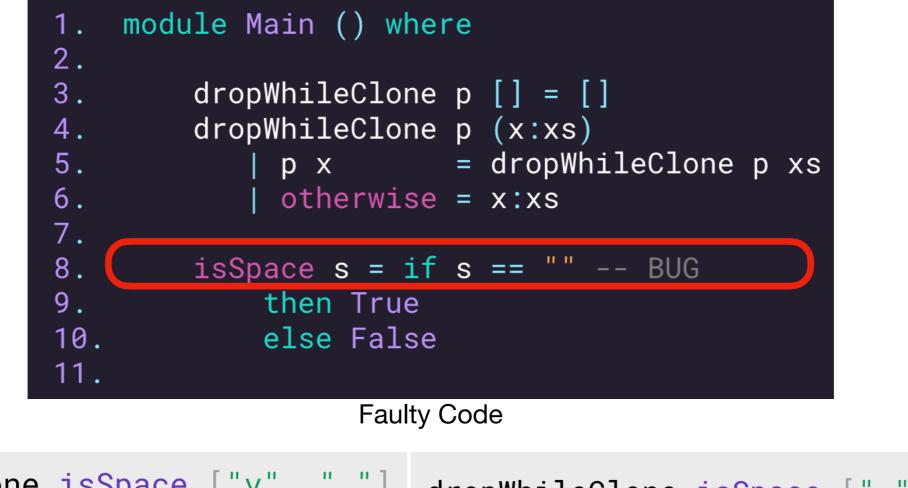





Faulty Code

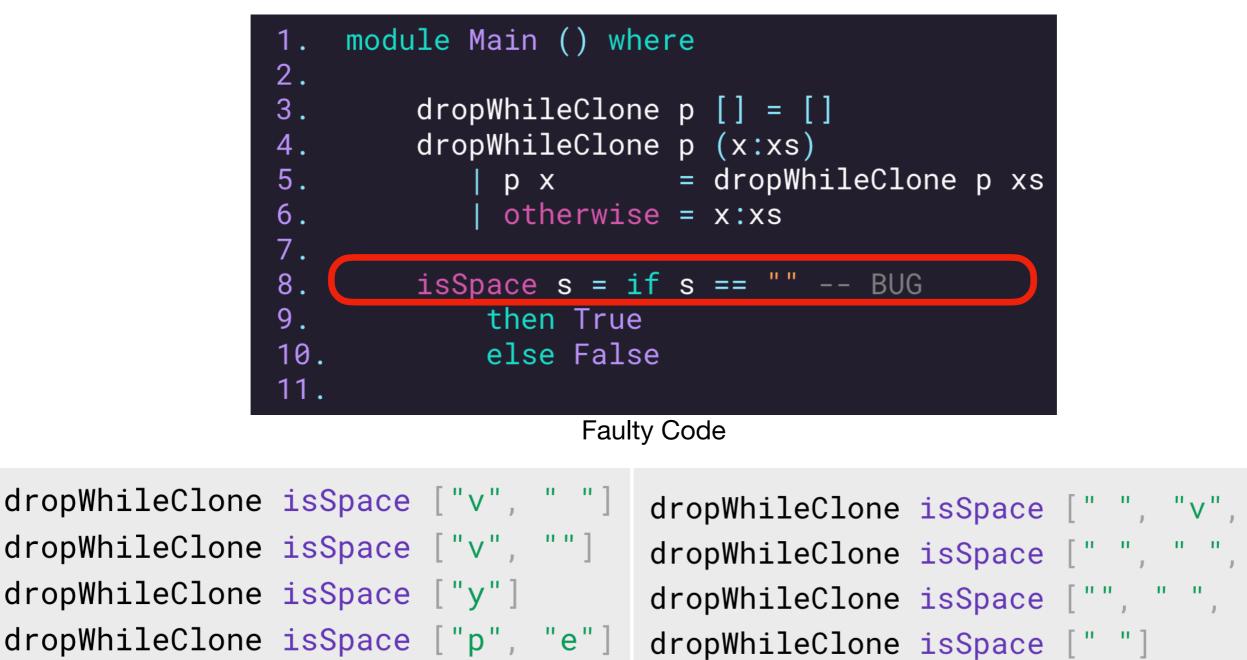

Faulty Code

dropWhileClone isSpace ["v", ""]
dropWhileClone isSpace ["v", ""]
dropWhileClone isSpace ["y"]
dropWhileClone isSpace ["p", "e"]



dropWhileClone isSpace ["v", ""]
dropWhileClone isSpace ["y"]
dropWhileClone isSpace ["p", "e"]
dropWhileClone isSpace []

tests-pass.txt


dropWhileClone isSpace ["v", dropWhileClone isSpace ["v", ""] dropWhileClone isSpace ["y"] dropWhileClone isSpace ["p", "e"] dropWhileClone isSpace []

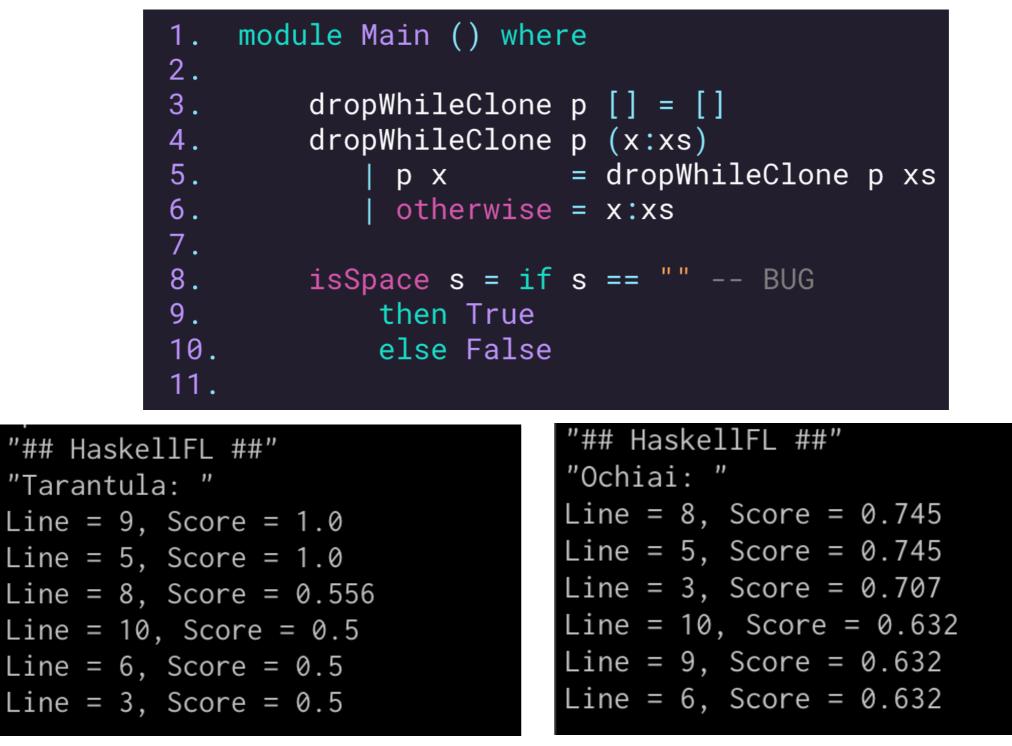
dropWhileClone isSpace [" ", "v", dropWhileClone isSpace [" ", " ", dropWhileClone isSpace ["", " ", dropWhileClone isSpace dropWhileClone isSpace [""]

tests-pass.txt

dropWhileClone isSpace []

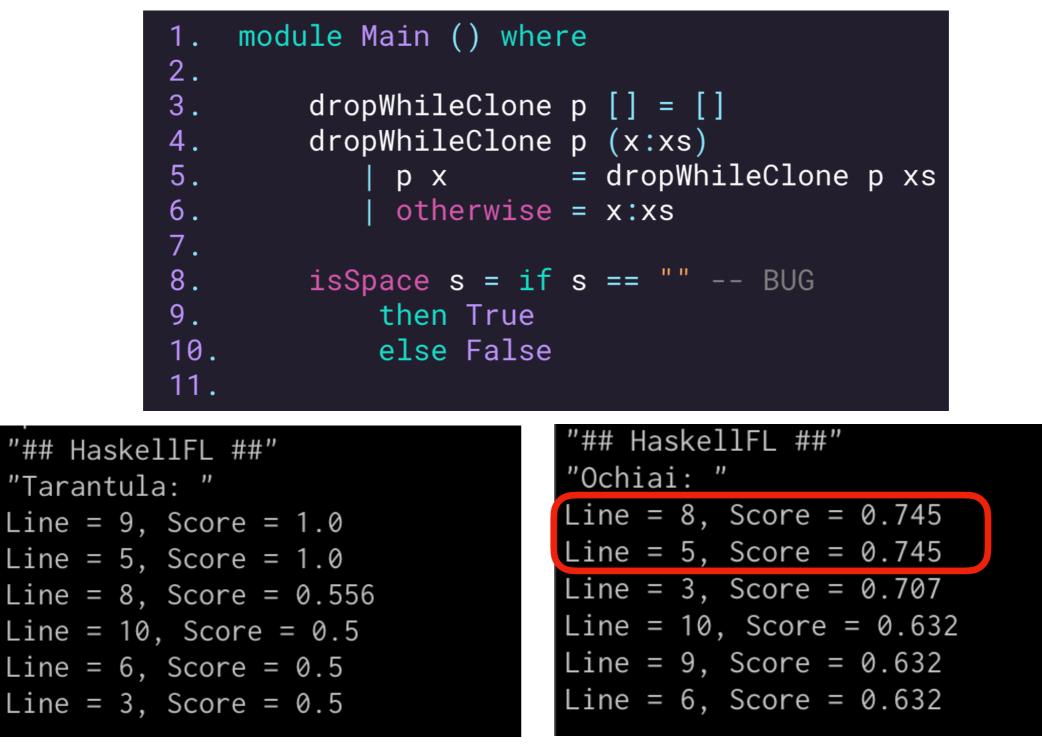
tests-fail.txt

dropWhileClone isSpace [""]

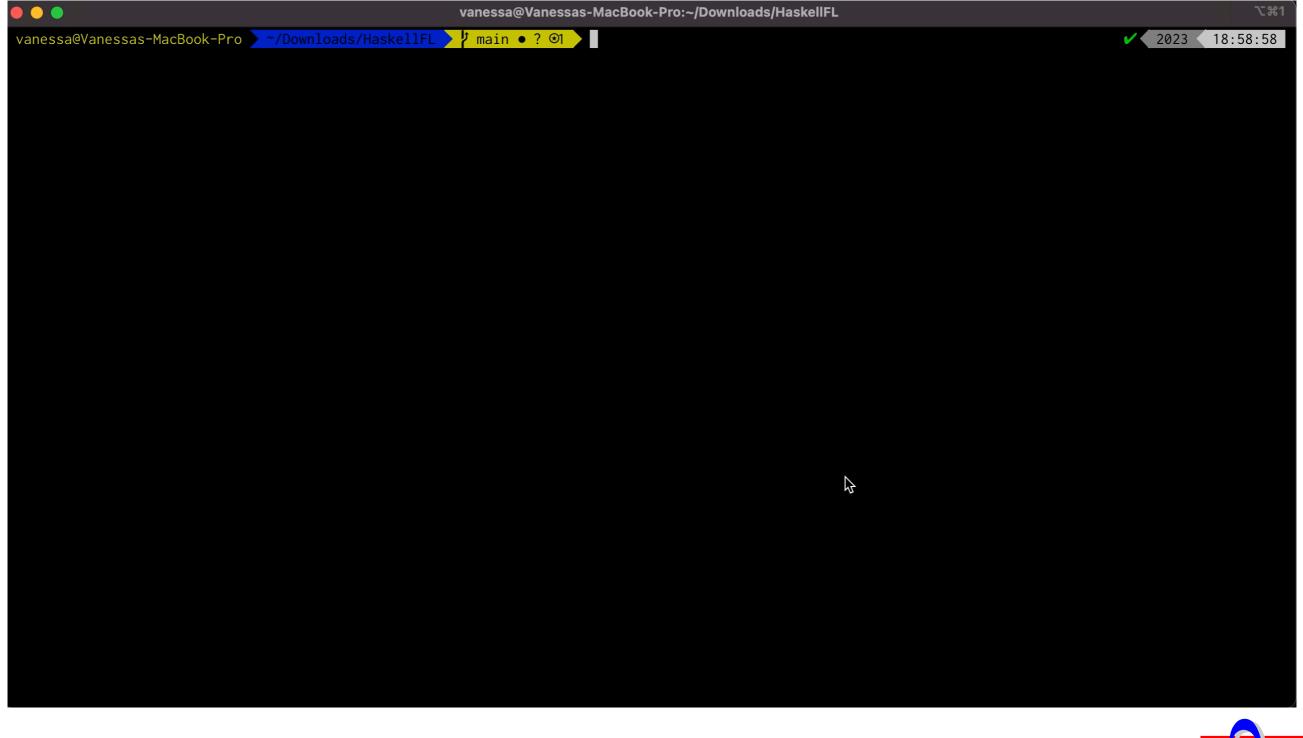

tests-pass.txt

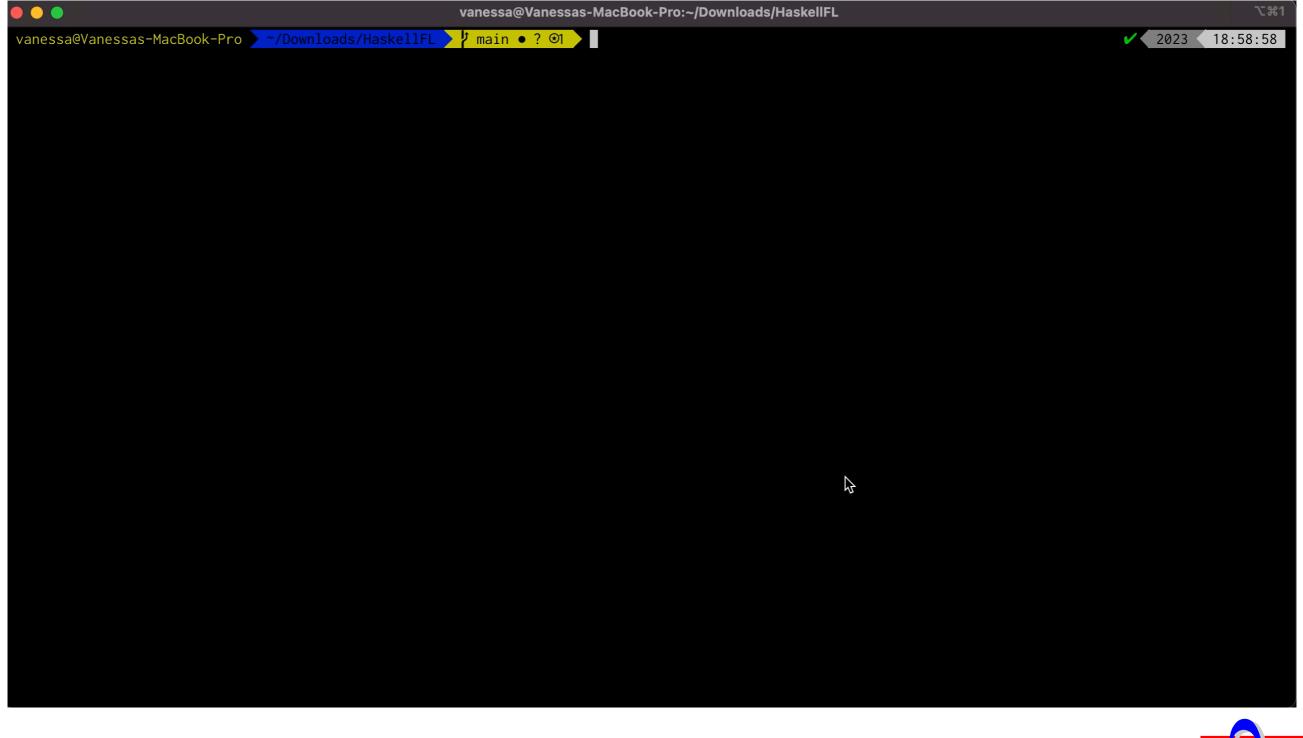
HaskellFL Engine

Line	Passing Tests	Failing Tests	 module Main () where 2.
1	-	-	<pre>3. dropWhileClone p [] = [] 4. dropWhileClone p (x:xs)</pre>
2	-	-	5. p x = dropWhileClone p xs 6. otherwise = x:xs
3	5	5	<pre>7. 8. isSpace s = if s == "" BUG 9. then True</pre>
4	-	-	10. else False
5	4	5	11.
6	4	4	
7	-	_	$\frac{failed(8)}{totalfailed} \qquad 1 \qquad 5$
8	4	5	$Tarantula(8) = \frac{\frac{1}{totalfailed}}{\frac{failed(8)}{totalfailed} + \frac{passed(8)}{totalpassed}} = \frac{1}{1 + \frac{4}{5}} = \frac{5}{9} \approx 0.556$
9	0	2	loiaijailea ioiaipassea 5
10	4	4	
		Ochiai($ = \frac{failed(8)}{\sqrt{totalfailed(failed(8) + passed(8))}} = \frac{5}{\sqrt{45}} \approx 0.745 $


HaskellFL Output

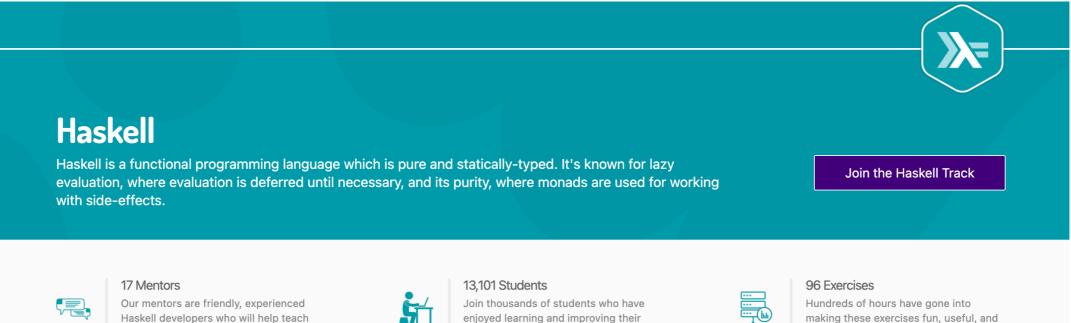
HaskellFL Output




Demo

Demo

Demo


Test Suite

Test Suite

- 24 problems
- Submissions from students in the Functional Programming class at UFMG
- Two versions of mid function

you new techniques and tricks.

Submissions for Exercism's Haskell track available on GitHub

skills by taking this track.

challenging to help you enjoy learning

Test Suite

Program	# Tests	Ranking	
		Tarantula	Ochiai
mid (Version 1)	6	5	2
mid (Version 2)	6	1	1
dropWhileClone	10	3	1
dropWhile	9	1	1
break (Version 1)	5	1	1
break (Version 2)	8	1	1
toTuples	10	1	1
remdupsReducer	7	1	1
joinr	12	1	1
separateTuplesByType	7	1	1
flip	5	1	1
unzip	3	1	1
maxSumLength	11	1	1
binary-search-tree	8	2	2
grade-school	7	1	1
luhn	6	2	2
raindrops	8	1	1
resistor-color-duo	7	1	1
robot-simulator	9	1	1
roman-numerals	8	1	1
simple-linked-list	6	1	1
space-age	7	1	1
sum-of-multiples	7	3	1
triangle	8	6	5

Results

 Indicates the percentage of program elements that a developer would have to inspect until finding the bug

```
module Main () where
1.
2.
3.
        dropWhileClone p [] = []
        dropWhileClone p (x:xs)
4.
                       = dropWhileClone p xs
5.
             рх
6.
             otherwise = x:xs
7.
      isSpace s = if s == "" -- BUG
8.
9.
            then True
            else False
10.
11.
```

"## HaskellFL ##"
"Ochiai: "
Line = 8, Score = 0.745
Line = 5, Score = 0.745
Line = 3, Score = 0.707
Line = 10, Score = 0.632
Line = 9, Score = 0.632
Line = 6, Score = 0.632

 Indicates the percentage of program elements that a developer would have to inspect until finding the bug

```
module Main () where
1.
2.
3.
        dropWhileClone p [] = []
        dropWhileClone p (x:xs)
4.
                       = dropWhileClone p xs
5.
             рх
6.
            otherwise = x:xs
7.
      isSpace s = if s == "" -- BUG
8.
9.
            then True
            else False
10.
11.
```

```
"## HaskellFL ##"
"Ochiai: "
Line = 8, Score = 0.745
Line = 5, Score = 0.745
Line = 3, Score = 0.707
Line = 10, Score = 0.632
Line = 9, Score = 0.632
Line = 6, Score = 0.632
```

 $Ochai Best = \frac{1}{10} = 10\%$

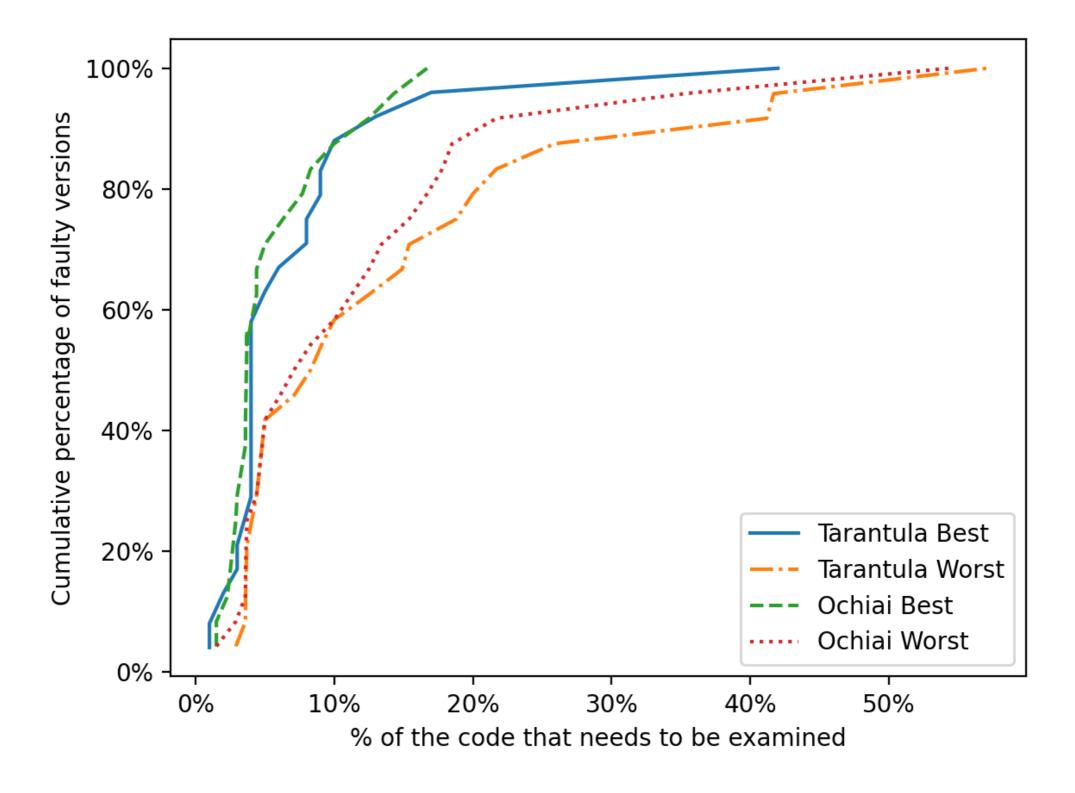
 Indicates the percentage of program elements that a developer would have to inspect until finding the bug

```
module Main () where
1.
2.
3.
        dropWhileClone p [] = []
        dropWhileClone p (x:xs)
4.
                       = dropWhileClone p xs
5.
             рх
6.
             otherwise = x:xs
7.
      isSpace s = if s == "" -- BUG
8.
9.
            then True
            else False
10.
11.
```

```
"## HaskellFL ##"
"Ochiai: "
Line = 8, Score = 0.745
Line = 5, Score = 0.745
Line = 3, Score = 0.707
Line = 10, Score = 0.632
Line = 9, Score = 0.632
Line = 6, Score = 0.632
```

$$Ochai \ Best = \frac{1}{10} = 10 \ \%$$

$$Ochai Worst = \frac{2}{10} = 20\%$$



 Indicates the percentage of program elements that a developer would have to inspect until finding the bug

EXAM Score	Tarantula Best	Tarantula Worst	Ochiai Best	Ochiai Worst
(0-4.9)%	58.33%	33.33%	66.67%	33.33%
(5-9.9)%	25.00%	20.83%	16.67%	20.83%
(10-14.9)%	8.33%	12.50%	12.50%	16.67%
(15-19.9)%	4.17%	8.33%	4.17%	16.67%
(20-24.9)%	0.00%	8.33%	0.00%	4.17%
(25-29.9)%	0.00%	4.17%	0.00%	0.00%
(30-34.9)%	0.00%	0.00%	0.00%	0.00%
(35-39.9)%	0.00%	0.00%	0.00%	4.17%
(40-44.9)%	4.17%	8.33%	0.00%	0.00%
(45-49.9)%	0.00%	0.00%	0.00%	0.00%
(50-54.9)%	0.00%	0.00%	0.00%	4.17%
(55-59.9)%	0.00%	4.17%	0.00%	0.00%

Results

Conclusion

Contributions

- We created an interpreter for a Haskell grammar subset
- HaskellFL tool and our test suite are available as an open source project at https://github.com/VanessaCristiny/HaskellFL
- HaskellFL located the errors using Tarantula and Ochiai methods examining very few lines for the majority of our test suite
- Our results showed that Ochiai presented better results than Tarantula
- Publication: Detecting Logical Errors in Haskell, to appear in the proceedings of ICTSS 2021

ICTSS 2021: 15. International Conference on Testing Software and Systems June 03-04, 2021 in New York, United States

Future Work

- Extend the grammar to include do notation and list comprehensions
- Implement mutation-based fault localization algorithms
- Actually repair the code

Detecting Logical Errors in Haskell

Vanessa Vasconcelos Advisor: Mariza Bigonha

UNIVERSIDADE FEDERAL DE MINAS GERAIS