
A Hybrid Approach to Change
Impact Analysis in Object-oriented
Systems

Mívian Marques Ferreira

Advisor Mariza Bigonha
Co-advisor Kecia Ferreira

UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Agenda

03/02/2023

•  Introduction

•  State of the Practice

•  Systematic Mapping Review

• Commits Characterization

•  A Heuristic for Co-change

•  The Proposed Change Impact Model

• Conclusion

2

Introduction

3

Context

4

• To “survive”, software MUST evolve

• Evolving implies
•  Insert new functionalities
• Correct bugs
•  Improve usability and performance

Context

5

• To “survive”, a software MUST evolve

• Evolving implies
•  Insert new functionalities
• Correct bugs
•  Improve usability and performance

 Modifying the software is crucial for it to continue to serve the
purpose for which it was developed..

Context

6

•  Source code is the most
common software artifact
modified

•  Ripple Effect - a punctual
modification in a part of the
system’s source code can
cause other parts to be
modified

Context

7

Identifying which different parts of the system were
impacted by a modification is a process called

Change Impact Analysis (CIA)

Problem

8

• To perform CIA, developers need to

ü  Understand the modification scope

ü  A lot of knowledge about the system’s structure

Problem

9

• When developers don’t

×  Understand the modification
scope

×  Have a lot of knowledge
about the system’s structure

Problem

10

Need for Methods and Tools
for CIA

Aim

11

This Ph.D. dissertation aims to
define, implement and evaluate

 a new method for change impact analysis
of classes in OOS

Dissertation Method

12

State of the Practice

13

Aim

14

This study aimed to understand the gap between the research and
the practice of software maintenance.

Software Maintenance Topics

15

• Refactoring

• Software Metrics

• Bad Smell

• Change Impact Analysis

Survey

16

• 112 software development professionals

• 92 companies

• 12 countries

• Participants Characterization
• Undergraduate degrees, certificate programs, or a master’s

degrees correspond to 95.5% of the sample
• 89.3% have more than 5 years of professional experience

Research Questions & Results

17

RQ1. Are developers familiar with the concepts of software
metrics, bad smells, refactoring, and change impact
analysis?

18

RQ2. Do practitioners apply software metrics, refactoring,
bad smells, and change impact analysis in practice?

19

RQ3. How do practitioners perform change impact analysis?

20

Manual Exploration of the Code

RQ4.How practitioners perform change impact analysis?

21

Change Impact Analysis Tools

Final Remarks

22

ü  Software metrics are not fully applied in practice

ü  Refactoring is a popular concept, but only simple refactoring
techniques are used

ü  Change impact analysis is not adequately performed in
practice

ü  Practitioners still face difficulties in performing source code
maintenance

ü  We still have many challenges to bringing theoretical knowledge
into practice

Systematic Mapping Review

23

Aim

24

The mapping aims to carry out a broad characterization of the
methods and tools proposed for CIA.

Planning

25

Formulating
RQs

Selecting
Database

Construct
Search String

Define
inclusion and

exclusion
criteria

Eletronic Database

26

• Main digital libraries and
eletronic database of
software engineering
publications.

Search String

27

(“change impact” OR “change propagation” OR “modification impact”
OR “modification propagation” OR “ripple effect” OR “co-change”

OR “software modification”) AND “software maintenance”

Inclusion & Exclusion Criteria

28

Selection of the Studies

29

Change Impact Analysis thru the Time

30

Increase of #publications

Framework for CIA
Studies’
Characteristics

31

• Extension of a framework
proposed by Li et al. (2013)

Research Questions & Results

32

RQ1. Which approaches and tools are proposed for CIA?

33

• Classification of the work into
• Method (76%)
• Method and Tool (17.7%)
• Tool (4.3%)

Many methods, fewer tools.

RQ2. Which are the characteristics of these approaches and
tools?

34

• Change Impact Analysis Approach

§ Dependency (69.7%)

§ Traceability (30.3%)

The academic community understands that analyzing
dependencies between software artifacts helps in CIA

RQ2. Which are the characteristics of these approaches and
tools?

35

• Data Source

§ Souce code (56.3%)
 Static analysis is the most used by researchers

§ Change History (30.3%)

ü  Methods and Tools use more than one data source for CIA

RQ2. Which are the characteristics of these approaches and
tools?

36

• Technique

§ Graph Analysis (42.6%)

 The dependency graph is the most used by researchers

§ Data Mining (12.7%)

§ Metrics (7.9%)

RQ2. Which are the characteristics of these approaches and
tools?

37

• Analyzed Elements

§ Source code change (43.7%)
 Classes, method, module, variable...

 Most common (33.9%)

§ File (10.6%)

§ Requirements (8.5%)

RQ2. Which are the characteristics of these approaches and
tools?

38

• Supported Language

§ Java (17.7%)

§ Language Independent (16%)

The object-oriented paradigm is the most used by
researchers when proposing methods and tools for CIA

RQ3. Which methods and metrics did the studies use in
evaluating these approaches and tools?

39

• Evaluation Methods

§ Empirical Studies (31%)

§ Case Study (29%)

§ Comparative Analysis and Usage Examples (9,9%)

RQ3. Which methods and metrics did the studies use in
evaluating these approaches and tools?

40

• Evaluation Metrics

§ Used by 68.3% of the analyzed papers

 Recall and Precision (16.2%)

 Recall, Precision and F-measure (8.5%)

Final Remarks

41

•  We analyzed 141 studies published between 1978 and 2021

•  We extended the framework proposed by Li et al. and extracted data from the
publications

ü  The studies proposed more methods than tools for change impact
analysis, it is necessary to develop tools to support them.

ü  The most applied technique for CIA is graph analysis.

ü  Source code is the most commonly artifact used in methods and tools for
CIA

ü  Most methods and tools for CIA support object-oriented software
systems.

Final Remarks

42

• State of the Practice + State of the Art
§ There is a relevant demand for more practical and effective

approaches for CIA.

• We considered that change history analysis based on commits’
data and static analysis are promissing approaches

Commits Characterization

43

Aim

44

• Characterize commits regarding
§ Number of modified files
§ Number of modified source-code files
§ Category of activities
§ Number of modified files by category
§ Co-occurrences of activities
§ Time interval in which developers perform commits

Dataset

45

24 Java projects from GitHub

ü Most popular projects -
#stars

ü Mature systems – 3 to 11
Years

ü ≈ 1 million commits analyzed

Data Extraction

46

Repository Clone Python Scripts

Data export
to .csv

Categorization

Time interval
calculation

Categorization

47

Basead on Hattori e Lanza (2008)

1.  Group commits by author

2.  Calculate the time interval

3.  Calculate the time average for each author

Author A push a commit at 12h, 13h, and 13h30min
Two time intervals: 60 and 30 minutes

Time Interval Calculation

48

Research Questions & Results

49

RQ1. How often are the activity types performed in
commits?

50

1. Reengineering - 32.97%

2. Forward Engineering -
28.2%

3. Corrective Engineering -
25%

RQ2. How often do co-occurrences between the activity
types appear in commits?

51

30% of commits
analyzed involve
more than one

activity type

RQ3. What is the size of commits in software system
repositories?

52

•  Some commits change
hundreds of files at
once

•  #files range from 1 to 10

•  #java files range from 1
to 4

RQ4. What is the size of commits according to their aims?

53

•  There is no significant
difference between the
number of files per
category

RQ4. What is the time interval a developer registers a
commit in a repository?

54

Developers perform
commits on average
every 8 hours

Final Remarks

55

ü  Reengineering is the most frequent activity, followed by Forward
Engineering and Corrective Engineering.

ü  30% of commits involve more than one type of activity.

ü  Most commits involve 1 to 10 files and 1to 4 source-code files.

ü  Many commits involve hundreds of files and those commits not
only refer to Merge or Management.

ü  On average, a developer proceeds a commit every eight hours.

A Heuristic for Co-change

56

The Heuristic

57

Evaluation Approach

58

• Comparison of two heuristics
Proposed Heuristic vs. Commit Heuristic

• Proposed Heuristic
§  Applies the three steps to filter the commits to detect co-

change

• Commit Heuristic
§ A co-change occurs if at least one commit involves the set of

classes

Evaluation Approach

59

• Dependency Graph - Oracle
–  Coupling among modules is a cause of change propagation
–  Link between co-change and static dependencies

• Co-change Graph
–  The system classes are the vertices
–  Edges represent a co-change between the classes

Dataset

60

• 32 Java systems

• ≈ 18K commits

Research Questions & Results

61

RQ1. How precise is the proposed heuristic?

62

• Precision

​𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒/𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∪ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

•  True Positive = heuristic identifies the co-change between A and B,
and there is path from A to B in the dependency graph

•  False Positive = heuristic identifies the co-change between A and B,
and there is no path from A to B in the dependency graph

RQ1. How precise is the proposed heuristic?

63

The Proposed Heuristic
(PH) has higher precision

than Commit Heuristic
(CH)

0.24

0.11

0.64
 0.55

RQ2. Does the amount of commits in a system influence the
accuracy of the heuristics?

64

The precision of the
heuristics is not
associated with the
number of commits
analyzed by them.

RQ3. Does the distance between the classes influence their
co-change?

65

•  Pearson Correlation
Coefficient

•  Classes that change together
tend to be closer to each
other

Final Remarks

66

ü  Apply commit characteristics improves the sensitivity of commit-
based heuristic

ü  There is evidence of a relationship between the distance and the
number of times two classes changed together

The Proposed
Change Impact Model

67

Proposal Description

68

•  Probabilistic Model

§ Hybrid model based on change history analysis and dependency graph

Proposal Description

69

• Change History Analysis

•  Proposed Heuristic – Co-change dataset

•  Co-change dataset

§ Extract probabilities of change impact

ü  Type of structural dependency (inheritance, use of method or
fields)

ü Distance between classes

ü  Software Metrics (cohesion, coupling...)

Proposal Description

70

• Dependency Graph

•  Edges of the graph weights will be the probability found in the
change history analysis

•  Logistic regression to calculate the edges’ weights

§ Allows using continuous and categorical predictors

Evaluation Method

71

• Modification Oracle

§ Mining from GitHub repositories files related to issues labeled
as bug

• 90 software systems

• Compare the results of the proposed model to the oracle results

Conclusion

72

Conclusion

73

We made

ü  A study to understand how software engineering research has evolved
and identify the general status of software maintenance research.

ü  A survey identifying how software maintenance has been done in
practice.

ü  A systematic mapping review on change impact analysis.

ü  An empirical study on commits’ characterization.

ü  A new co-change heuristic.

Publications

74

1.  Software Engineering Evolution: The History Told by ICSE, (shortpaper) -
(SBES), 2019.

2.  The Software Engineering Observatory Portal. (ISSI), 2021

3.  On The Gap Between Software Maintenance Theory and Practitioners’
Approaches. (SER&IP), 202

4.  Inside Commits: An Empirical Study on Commits in Open-Source Software,
(short-paper). (SBES), 2021

5.  Characterizing Commits in Open-Source Software. (SBQS), 2022

Next Steps

75

1.  Modify the CK tool to obtain data on types of dependencies between classes the
systems’ classes.

2.  Run the co-change heuristic in the remaining data set.

3.  Perform an empirical analysis to find the probabilities of change impact considering
the structural dependency type, the distance between the classes, and the software
metrics.

4.  Define and implement the change impact analysis method.

5.  Evaluate the proposed method

6.  Write the chapters of the Ph.D. dissertation describing the proposed change impact
analysis method and its evaluation.

7.  Write a paper about the proposed change impact analysis method.

8.  Present the Ph.D. dissertation.

Thanks for your
attention!

RQ3. Which are the tools most used by practitioners in
software maintenance?

77

Software Metric Tools

RQ3. Which are the tools most used by practitioners in
software maintenance?

78

Refactoring Tools

 36%

RQ5. Which metrics, refactoring techniques, and bad smells
practitioners apply in their activities?

79

Metrics

Number of
Bugs (9.9%)

Test Coverage
(8.91%)

Cyclomatic
Complexity
(7.92%)

Refactoring

Extract
Method
(21.43%)

Rename
Method
(13.39%)
Extract
Class
(12.5%)

Bad
Smell

Duplicate
Code
(23.21%)

Duplicate
Code
(23.21%)
Long Class
(9.82%)

RQ6. What are the biggest challenges faced by practitioners
when carrying out software maintenance?

80

RQ2. Which are the characteristics of these approaches and
tools?

81

• Scientific Method

§ Empirical method is the most applied by researches (114 out of 141)

ü  Which makes sense given the nature of the problem

A

82

• Research publications might not be accessible to the industry, and
their results might not be easily implemented in the practice

•  Software engineering researchers may face challenges when
collaborating with practitioners

The target of this study was to understand the gap between the
research and the practice of software maintenance.

RQ2. Does the amount of commits in a system influence the
accuracy of the heuristics?

83

Precision according to
the number of
commits of the
systems

Large

Medium

Small

