
An Environment for Language ImplementÁtion caUe'~r SIC

Abstract

Mariza Andrade da Silva Bigonha1

Roberto da Silva Bigonha2

Vales ka Gon~alves Russ03

Marco Rodrigo Costa4

SIC is a programming too1 whose purpose is to assist in the developmentpf compilers by"means of
a special purpose language, alao cal1ed SIC based on Pascal. SIC possesses facilities to specify the
syntax. of programming languages and to associate semantic routines with grammarproductions.
It also provides, without 10ss of eficiency, facilities to imp1ement interactive or batch compilers
organized in one or more passes, where each passoperates directIy on the source code, requiring
no intermediate language.

From thegiven syntax. specification, the SIC tool produces a compres sed LALR(1) table and a
parser containing a language independent error handling and recovery routine. SIC also presents
facilities to explicit1y salve LALR(1) conflicts resu1ting from the use of ambiguous grammars.

SIC provides compilers in C and Pascal and runs on MS-DOS and WINDOWS.

lDSc (PUC/RJ/1994), MSc (UFMG/1985). Professor at DCC/UFMG. E-ma:il:mar~a@.dcc.ufmg.br
2PhD (UCLA/USA/1981), MSc (PUC/RJ/1975). Professor at DCC/UFMG. ~mail: blgonha@dcc.ufmg.br
3Bacharel em Ciencia da Computa.<;a.o (UFMG julho/1996)
4.Bacharel em Ciencia da Computa<,;ao (UFMG julho/1996)

412
2do. Congreso Argentino de Ciencias de la Computación

1 Introd uction
, ". I ; ',' '.'

A programming language is, in general, very complex and full of details. For instance, to
implement a compiler for a Pascal-like language without a specialized tool takes about four
men-years. On the other hand, current research and experience with compilers have brought
a good understanding of the compilation process and of the theoretical principIes behind the
techniques involved. In particular, the identification and formalization of several common phases
of compilers, such as syntax anaIysis, lexical analysis and code generation, have permitted the
automatization of the compilation process.

The idea to use tools to automatize, at least partially, the language implementation is very
'old~' 'What makes the new systems different from the oldest ones is the t'echnological advan
ces used by them. There are actually a large nuinber of helpful systems' to support compiler
construction, running on different environments. These tools vary from simple prograinS for au-
·tomatic design of specific compiler tasks such as grammar checking and scanner generators, up
·tb large systems capable of automatically generating a compiler from the syntax and semantics
definitions of a source language.

A well known system used for parser generation is YACC [17]. It was proposed by S.C.
Johnson, from Bell Laboratories. It runs on the UNIX operating system and produces compilers
in the language C.

The methods of syntax analysis used in compiler implementations are based, in general, on
context-free grammars. These methods are cIassified in two broad approaches: bottom-up and
top-down. In a bottom-up method, the parsers build program parse trees in a bottom-up way,
starting from the leaves and working up to the root, usually from left-to-right. If the root of
the produced tree for the wholesource program corresponds to the initial grammar symbol,
the program is said to be syntactically correct. In top-down methods, the process used is the
opposite, they build parse trees from the root to the leaves.

Among the bottom-up methods, the best known and most widely used is the LR(1) family
[1,2,3,20], originally developed by Donald E. Knuth [19]. These methods have been considered
superior to the others used in compiler construction due, mostly, to their applicability, being
applied to a large cIass of context-free grammars, incIuding these programming languages of
practical use. The most used tool, YACC, uses a LALR(1) method, an efficient variant of the
LR(l) cIass.

The code generation phase in these systems follows a syntax-directed translation scheme,
with semantic actions usually associated with individual productions of a context-free grammar.
These routine's are activated by a parser before a reduction action takes place [1]. The semantic
actions, besides generating code, also manage synthesized attributes [2, 3, 1] attached in the
parse tree nodes built by the parser. These attributes, associated with the grammar symbols,
are used to propagate information in a bottom-up fashion, from the leaves to the root, on a parse
tree. This information is used during code generation. Usually, to be more efficient, the parse
tree is never effectively constructed. In its place, it is common to use a stack, which maintains
only the nodes and its associated attributes whose roots have not yet been determined. As
syntactical analyzes advances, nodes used and no more needed are dismissed.

Besides the Pascal version, we present in this paper the most recent SIC version, which
generates the compiler in the language e and runs on the WINDOWS environment. The

This paper is organized as follows: Section 2 presents the general characteristics of SIC. Sec
tion 3lists the computationaJ resources necessary to run SIC with MS-DOS. Section 4 illustrates
the generation of Pascal compilers. Section 5 presents the computationaJ resources necessary
to run SIC with WINDOWS. Section 6 illustrates the generation of the C compilers. Section 7

413
2do. Congreso Argentino de Ciencias de la Computación

describes the facilities of the SIC language. Section 8 describes the m~thod. otsyniu a:p.alysis
adopted' by SIC, and Section 10 introduces the method oféyÍitax errOr ¡'ecovery"us~a' in SIC.
Section 11 compares SIC with YACC. Finally, Section 12 concl'udes this papero .' .

2 General Characteristics of SIC

SIC, e Compiler Implementation System) is a tool to support the impleinentatión of ptógramming
languages by automatization of sorne phases of the compilation process. SIC is essentially the
compiler of a language of higher level than Pascal [16] or e [18]. This language, als~ called
SIC, is an extended Pascal or e; whose purpose is to provide facilities for the implementation
of compilers in these lang'uages.

The SIC language possesses the following facilities5 :

1. The full Pascal ande languages are supported.

2.Semantics adions can be expressed easily, with direct references to grammar symbols and
their attributes.

3. Declaration and use of synthesized attributes are supported, with respect only to the
grammar and with total abstraction of the corresponding parse tree.

4. A grammar description in a BNF like notation is accepted.

5. Permits to associate tokens or syntactic units of this type with the objective of establishing
communicatióil between the lexical analyzer defined by the user and the syntax analyzer
generated by the system.

SIC po~sesses yet the ;following facilities:

1. It generates compilers in Pascal and e, Le. it translates programsfrom the SIC language
to Pascal or C.

2. It generates an LALR(1) parser with compres sed tables [10].

3. It produces, upon an user's option, an LALR(l) parser with automatic syntax error reco
very.

4. It produces, upon an user's option, an LALR(1) interactive parser embedded with a pro
grain editor oi: without automatic error handling routines in its Pascal version.

5. It verifies und.efinedand useless symbols of the input grammar, i.e. verifies if the grammar
is reduced [2}1 '

6. It produces severai outputs: source program, grammar, uridefined or us~less symbols,
grammar cross-reference, LALR(l) table, LReO) machine [3, 1] and information about the
generated parser.

Most of the constructions introduced have the objective of facilitating the expressing of the
compilation mechanisms .. Nevertheless sorne were incorporated in SIC trying to suppress Pascal
and e drawbacks in relation to modular ptogramming.

5Every state~ent in this paper is valid for both generated compilers, e and Pascal, unless otherwiSe explicitly

indicated.

414
2do. Congreso Argentino de Ciencias de la Computación

·. For instance, with SIC it is possible, when declaring global variables, toplace.:them in the
deelaration section of the program taking into account their place to use. The same feature
exists for other types of Pascal and e declarations, allowing the user to simulate modules, Le.
allowing to group several constants, types, variables, labels and procedure declarations, letting
SIC do the job of recognizing these declarations and giving them the correct int~rpretation.

. . ' .. ~ ¡ ~ : .~, • ':

3. The Pascal Version running on MS-DOS

The SIC system was implemented in TurboPascallanguage on IBM-pe like, under an operating
.system compatible to Microsoft MS-DOS. It requires, at least, 265KB ofmemory to execute and
a disk unit of 360KB. Adittional space on disk may be necessary depending of the application
size. With a 256KB of internal memory, it is possible to generate a LALR(!) parser with about
eight hundred states for the ADA language.

The SIC design and development begun in 1983, and its first version, 1.1, was released in
1985 with the presentation of a master ~hesis [4]. The first results of this work was published
in [4, 10, 6, 5, 7]. Since that, new facilities were implemented and incorporated in the sys
temo Additionally, its interface was completely re-projected. It adopted the interface package
implemented by Roberto Bigonha [9].

4 The Generation of Compilers in Pascal

The compilation oÍ'aprogram in the SIC language is done in four independents passes. The first
one receives as input a source program in the SIClanguage, stores it in afile with extension .SIC
and from it produces output files with Pascal declarations, the grammar in its internal form, the
production table and one table for terminals and nonterminals symbols. The Pascal declarations
found in the source files are stored in separated files according to their kind: labels, constants,
types, variables and procedures. AIso are included in the procedure's file, the procedure produced
by SIC, with the semantics routines, the procedure with the algorithm of the parser and the
main body of SIC.

The second pass receives as input a symbol table and the grammar in its internal form
produced in the first pass and produces as output a file containing the LR(O) table and another
containing the LALR(1) table compressed.

The third pass gets as input the declaration files generated in the other passes and put
everything together, producing as output a procedure or a complete program in Pascal.

To satisfy Turbo Pascal restrictions, the compiler produced is divided in fouJ' parts and stored
in files with the extensions .DeL, .SEM, .PRS and .PRO respectively. Each file may contain
onesource' of approximately 61.000 bytes. It is the user responsibility to join these: files.

Finally, the fourth pass treats the compilation ofthe Pascal program to produce an executable
module with extension .EXE, that together with a LALR(1) parsing table plus the production
table produced before forms the desired compiler.

5 The C Version running on Windows

The C version of the compiler generated by SIC uses the language C [18] and was developed
between August/1995 and June/1996. It runs on WINDOWS on a 16 or 32 bits PC. The original
C version was implemented in Delphi 1.0 on a 16 bits pe under the WINDOWS operating
system. Today it runs also on Delphi 2.0, on 32 bits PC under the WINDOWS. It requires for

415
2do. Congreso Argentino de Ciencias de'/a Computación

execution at least version 3.1 oí the WINDOWS operating system, a 80386 pró¿~~ii~r~ 4MB' oí
RAM ~~ 1M:B oí disk ~pace to work [8]. In this ease, aditti()nal space on disk, .may benecessary
depending on the application size.

6 The Generation of Compilers in C

To generate a compiler in C we íollow the same procedure shown in Section 4 except for the files
generated in the third pass. The result of this pass is a complete program in C. This: program is
divided in four files produced in the following way: the declaration files are combined in a single
file with extension ".h 11 • In this file are included the function and prpeedure prototypes defined
by the user, besides the ones generated by SIC. The files containing' the semantic actions plus
the other proeedures are already in a separated file, both with extension ".e" . The four file
names are constructed using the following criterion: the first three characters of the compiler
name given by the user are followed by the suffix: GLB. H. SEM. C. PRO. C and PRS • C where:
• XXXGLB. H represents the global definitions.
• XXXSEM. C represents the semantic routines.
• XXXPRO. C represents the procedures and functions.
• XXXPRS.C represents the parser file and the main body of the compiler.

Finally, the íourth pass treats the compilation oí the C program to produce an executable
module with the extension .EXE, that together with a LALR(1) parsing table plus the production
table produced before forms the desired compiler.

7 The Language SIC

A SIC program possesses a header íollowed by several sections and finishes by the keyword
Y.Y.END. These seetions may, in principIe, occur in any order, it must only follow the rule that
a declaration must always precede its use. Eaeh section begins with a proper keyword and is
valid until the beginning of the next section. The keywords oí SIC alwa,ys begin with %%. The
sections of SIC have the following functions:

1. To specify the type oí a compiler.

2. To specify the number oí passes.

3. 1'0 define thé tokens.

4. To declare the attribute symbols.

5. To declare labels; constants, variables, procedures and íunctions.

6. To define scope-map.

7~ To define non-terminals íor handling error recovery.

8. To specify grammar and semantic actions.

~. To solve conflicts in syntax analyis.
. '¡p

10. To specify the main body oí the compiler.

416 \
2do. Congreso Argentino de CienciáS de la Computación

7.1 Header
;l

The header,; which begins with the keyword Y.1.COMPILER, specifies if the desirable compiler is a
program or a procedure. Examples:

1. To generate a main program in Pasc~;
y'y'COMPILER program MR Y.Y.BATCH:

Y.Y.end.

2. To generate main program in C:
y'y'COMPli.ER main Y.Y.BATCH:

Y.Y.end.

3. To generáte a main program in C:
y'y'COMPILER Y.Y.BATCH:

Y.Y.end.

4. To .generatea procedure in Pascal:
y'y'COMPILERprocedure MR Y.Y.BATCH:

Y.Y.end.

5. To generate a procedure in C:
y'y'COMPILER MR Y.Y.BATCH:

y'y'end.

7.2 Kinds oí Compiler

This section specifies the options that can be used to generate different kinds oí compilers. In
the C version the only option available is Y.Y.BATCH. In the Pascal version the options are:

1. Y.Y.INTERACTIVE NOREC
Indicates that an interactive compiler should be generated together with a text editor but
without automatic syntax error recovery.

2. Y.Y.INTERACTIVE REC
Indicates that an interactive compiler should begenerated together with a text editor and
syntax error handler.

3. Y.Y.BATCH
Indicates tbat a "batch" compiler should be generated together with or without automatic
syntax error bandler.

4. Y.Y.INCREMENTAL
Indicates that an incremental interactive compiler should be generated together with a
text editor.

417
2do. C;ongresoArgentino de Ciencias de la Computación

7.3 Number of Passes

This section is used to indicate the number of passes a generated compiler shouldhave andto
identify each ,páss: .

YoYoFIRSIT PASS
IlI.dicates that the compiler will have several passes and delimits the start'of tIle
identification or first pass.

YoYoOTHER PASS
Indicates the start of this identification oí other passes oí the compiler. If this
section is onlitted, the system assumes that the compiler has a single pass. For
each kind of compiler described in Section 7.2 there·exists one specific parser.
These parsers are implemented as procedures in Pascal or Cread by SIC and
incorporated in the generated compiler Pascal or C at the proper.place.

7.4 Deftnition of Tokens

The goal oí thls section, which begins with the keyword YoYoTOKENS, is to establish the co;rrespon
dence between the syntax analy~ers generated by SIC and the lexical analyzer YYSCAN written by
the user. This procedure is Ítlvoked by theparser oí the generated compiler each time it needs

. ,. rtl "

a new token or a symbol oí t~e source code is required to continue the compilation. For each
token recognized, YYSIMB must return its type and, in sorne cases, additional iníormation about
it, ~.g., its attribute values. Besides that, it is necessary that the parser recognizes each token
typein' order to establish the corresponden ce between each token that app-ears in the gralllmar
and the corresponding type returned by YYSCAN. 'This section establishes the mappingoftQ~ens . .
and their types.

Example:
YoYoTOKENS

lIident ll = Typeldentj
IIconstll = TypeConstj
11<11 == lessj
lIeoí". = YYEOFj

The symbols at the leít-hand-side oí the equal sign are grammar token symbols and the
identifiers on the right-hand-side are names of integer constants, whose definitions will be au
tomatically generated by SIC, that represent the type oí the associated symbols. There is no
restriction in the name of identifiers used, except by the mandatory presence oí a reserved type
YYEOF, which identifies the end-oí-file oí the source programo

The procedure YYSCAN returns the type oí each token read using an integer global variable
YYSIMB pre-declared by the SIC system. The returning oí additional iníormation about the token
is done by direct setting oí token attributes, as shown in the next section.

7.5 Declaration of Attributes

This section, which begins with the keyword YoYoSTACK, is used to declare the synthesized attri
butes of the terminal and non-terminal symbols of the grammar. Each attribute can be 'seen as
a Pascal record, which is attached to a corresponding symhol node in a parse tree. In the C
version, each atributte can be seen as a typedef struct. At this point occured the only syntax
modification on the SIC language. This happens because in C the type identification oí the

418
ido. Congreso Argentino de 'Ciencias de la Computad6n

attributes may have more than one name, for instance, e:cpr = (r, type: unsigned int), while in
Pascal the identification of the attribute type is composed by only one word like char, integer,
boolean, etc.

From the attribute declaration, SIC creates in t11e compiler a stack whose elements may have
any of the declared attributes. This stack is used to store the parse tree nodesthat have not
been completely processed, e.g., it stores the parse tree portion that must:be processed.

Example: .
Y.Y.STACK 200 OF' ATTRIBUTES

expr = (addr : integer; mode: TMode);
"ident" = (value : TValue) { lIident" .value := empty }
"const" = (value : integer) {"const" .vaJue := O }

The integer value 200 corresponds to the stack size. For every grammar symbol that has
an attribute associated with it, the user must specifies its name, the equal sign and, inside
parentheses, its attributes with its respective types. The type of an attribute must be an
identifier according to the language, e or Pascal.

Some terminal symbols have their attributes defined by semantic actions, or more frequently,
by the procedure YYSCAN with an assignment of the form: "ident" .value := StringRead.

SIC should make sure that the attribute value defined aboye has been put in the no de
corresponding to "ident" in the parse tree when the parser is activated, and that the aboye
token is found in the source code.

The text between braces shown in the example is optional and denotes initializat~ons. These
actions are executed only when the corresponding symbols are inserted in the source file as a
result of a syntax error recovery action. This facility allows to assure that the stack contains
only well defined values.

7.6 Declarations

This section is composed by subsections of Pascal declarations for labels, constant's, variables,
procedures and functions. Each of these subsections begins with a proper keyword: Y.Y.LABELS for
labels, Y.Y.CONSTANTS for constant definitions, Y.Y.VARIABLES for variable declarations, y'y'TYPES
for type definitions and y'y'PROCEDURES for Pascal procedure and function declarations. This is
also valid for e, excluding the Y.Y.LABELS subsection, not present in e, and the prototypes of
procedure declarations.

Examples:
Y.Y.LABELS1000, 9999
y'y'CONSTANTS

y'y'TYPES

MaxId = 8;
MaxTs = 500;

TMode = (Expreonst, ExprVar);
TValue = array[1..MaxIdent] of char;

Y.Y.VARIABLES
X : integer¡
Y: real;

419
200; Congreso Argentino de Ciencias de /p Computación

7.'7' 'Scope Map l.:

This section begins with the keyword y'y'SCOPEMAP. It shows the delimiters "tíf nested cons
tructions of a source language, such as procedures, blocks, parentheses expressions, etc. The
knowledge of these delimiters allows the implementation of a soph~stica,ted mechanism of auto
matic syntax error recovery [4, 5, 11, 12]. This section is optional.

'Exainp1e: '
y'y'SCOPEMAP

'1(" ~")";
"bégin" ': "end" ;
Itwhile" : "do" ;

7.8 Non-terminals for Error Recovery

This section, which begins with thekeyword y'y'NTMAP, allows to.i~entifythe non-termirial sym
bols of the gramma.r which can be used in the syntax error recovel'Y phase as cand.idate for
insertion at the point of error, substituting the erroneous sy:mboL If this section is omitted oruy
terminal symbols are allowed as insertion or exchange symbols.

Example: y'y'NTMAP Expr, Ded, Cmd.

7.9 Grammar and Semantics Routines

This section begins with the keyword Y.Y.GRAMMAR. It allows the definition of the grammar rules
of the source language and the semantic actions associated with them. From the grammar" SIC
generates parse tables which directs the LALR(1) algorithm of parser. The semantic actions,
thense1ves, are collected, translated to Pascal or C and mergad with the genera.ted compiler, to
be activated in the moment an associated production is used in a reduction, ~.ctión during the
syntax analysis. The semantic rules endosed in braces followi~g each productión are composed
by a sequence of Pascal or C statements, which allows qualified references to symbols that ap
pear in the production associated. Ambiguous references to symbols that occur more than once
in some productions are solved by indexing, which distinguish between the desired occurrence
of the symbol. The i-th occurrence of a symbol in one production must be indexed by an integer
greater than zero. '

Example:
y'y'GRAMMARprog ,AND ,SEMANTICS

prog = expr;
expr = expr "+" expr

{ expr.addr := GenTemp;
Gen(IIADD" , expr[l].addr, expr[2].addr, expr[3].addr)
ir (expr[2] .mode = ExprConst) and (expr[3] .mode = ExprConst)
then expr.mode := ExprConst'
else'expr.mode := ExprVar; }

In this example, expr. addr. expr[1]. addr and expr .mode indicate the attributesaddr
and mode of the symbol expr which appears on the 1eft-hand-side of the corresponding rule;

420
2do. Congreso Argentino de Ciencias de la Computación

expr [2] . addr, expr [2] . mode indicate the attribu tes of the second exprj expr [3] . addr ,
expr [3] .mode denote the attributes addr and mode of the third occurrence of expr in the rule.
Note that expr. addr is equivalent to expr [1] . addr.

7.10' Conftict Resolutión

Context-free grammars are very useful to define with precision the syntax of a programming
language and provide an effective way for the generation of deterministic syntax analyzers, for
instance LALR(1). There are situations where programming language construct would be more
compactly and naturally specified if an ambiguous context-free grammar could be used. In this
case, the LALR(1) method will indicate conflict actions when the grammat is ambiguous and
there is no way to solve these confiicts looking only at the information provided by the grammar.
On the other hand, some confiict actions may be solved directly by the user, which has additional
information, such as knowledge of context and operator priorities.

SIC permits to provide an LALR(1) with information about priority and associativity of
binary operators, and the ordering of certain actions, allowing the use of ambiguous grammars.
So; as soon as the conflicts are detected, the LALR (1) generator uses this information to solve
the conflicts, giving preference to high priority actions. The priority of shift action "[3, 1] is
given by precedence and associativity of the readsymbol, if the user had specified them. The
precedence of a reduction action [3, 1] is the same as that of the rightmost terminal symbol in
the corresponding production.

TIte declaration of precedence and associativity are made by clauses beginning with the
keywords: Y.Y.RIGHT, y'Y.LEFT and Y.Y.NONE. The keyword Y.Y.RIGHT declares an operator to be right
associativej Y.Y.LEFT declares an operator to be left associative, and y'y'NONE, when association is
not possible. In the conflict resolution section, which is identified by the keyword y'y'CONFLICTS,
the ciauses bellow must be .specified, giving precedences in the order in which they appear in
the declaration, lowest first.

Example:
Y.Y.CONFLICTS

Y.Y.NONE "<", ">" , "="
Y.Y.LEFT '~+" ., "_."
Y.Y.LEFT 11*11 , "/"
,y',~~IG~T¡ 11**11 j,

7.11 Main Section

This section, which begiils with the keyword y'y'PROGRAM, defines the main body of the compi
ler. This body is a list of Pascal or C statements, containing necessarily the activation of the
procedure YYPARSER, pre-defined by SIC and which represents a call to the parser.

8 The LALR(1) Table

An LALR(1) parser consists of an input, an output, a basic algorithm, a stack, and a parsing tableo
The algorithm is fixed, and each grammar has its own tableo This table, in its normal form, is a
sparse matrix, where the row indexes represent possible states names, and the column indexes
represent terminal and nonterminal symbols of the underlying grammar. For a programming

,languageof real size like Pascal, an LALR(1) parsing table may have 300 X 100 entries. Each
entry represents one possibleparsing action: shift, reduce, accept or error.

421
2do. Congreso Argentino de Ciencias de la Computación

The generation of an LALR(l) parser consists in prod~~íng the p~¡'sl.ng t~bl~ . .tr~D:)., a given
grammar. To do that, SIC uses an algorithm proposed by Kdstensen [20), éxteÍided to manage
ambiguou,s g~am~ar!3,. In this algorithm, conflict resolution is dqne by .first loo:ijng at theLR(O)
machip~: f3, l~ 20], <t~d if the confl~cts still remain, SIC uses information abqut plliQrities .specified
by ,the !user in the ~onflict resolution section .

. ' Th~ LALR(l) table in its original, rectangle matrix form, spends too much space. In practice,
most of the entries are empty, Le. they denote error actions, which permits the application oí a
moreefficien·t,storage methods. The compactation method forLALR(l"'parsing tables used in
SIC, which is described in detail in [10), is based on intrinsic "j>roperties of the" parsing method,
and allows LALR(1) tables' needs oí space to be substantially reduced without compromising
table accessing time. ~he reductiori in memory occupancy is clainied tó be g!eater' tha.tt 96% of
the area oí the original matrix reptesentation. For instance, thecompacted" parsing' t~ble for the
ADA language requires only 12Kbytes oí memory space to encode all the 800 LAJ,.R(l) parser
states.

'9 The Program Editor

One kind of parser generated by SIC possesses a text editor embedded with ¡t. This allows
the generation of interactive compilers like Turbo Pascal [15), which, when a syntax error is
detected the user automatically sees the source program at the error position in edition mode.
The SIC text editor was implemented by Eduardo Costa e Silva [13), from the Borland Turbo
Editor ToolBox [14), but it has not yet been integrated to the system.

10 Error Recovery

The automatic syntax error recovery method used on SIC is based in the ideas oí Burke & Fisher
[11, .12]. In this method, the best action of error recovery considered is that which permits the
compiler to go further in the source file. This method is implemented using three strategies
[41 5]: initially, it tries to insert, delete or replace a symbol at the point. of error or before it.
Secondly, if it fails, it tries to close the nearest scope using information given in the. section
y'y'SCOPEMAP (Section 7.7). Finally, if it also fails, the third strategy consists of deleting pieces
of source code starting with the symbol that detects the error in conjunction with insertion,
deletion and replacement of symbols on the left-hand-side of the erroneous symbol. After all
these tries, the system selects to correction the candidate which permits the parser to advance
farther from the error position. Just one of the candidates is efectively used by parser and the
other ones are shown to the user with the objective of facilitating the real identificationof .t:p.e

." .
error.

11 Comparison With Another Systems

The compiler implementation system that most approximates SIC is YACC [17]. Nevertheless,
the SIC system is more powerful than YACC in the following aspects:

1. The syntax error recovery mechanism used in S:DC is more transpa.rent a:nd produces better
error messages. The recuperation method implemented in SIC do es not make any restric
tion in the use of default reductions and its use proved that it does .~ot disturb the error
recovery mechanism [5].

422
2do. Congreso Argentino de Ciencias de la Computación

2. The scope of SIC options is greater than YACC, it permits the generation of several kinds
ofcompilers, for instante, an interactive compiler.

3. SIC, in its earlier· versions, executed under operation systems compatible to SISNE of
seo PUS, which, at that time, was an advantage because its widspread in Brazil with
respect to Unix. Today it still operates in MS-DOS, as well as under the WINDOWS
environment.

4. 'l'he syntax table compression method oí SIC is more efficient than the one use in YACC
and the one proposed in [1].

5. The assodation oí semantk routines with initialization of grammar symbols used in error
recovery allows insertion or substitution of nonterminal symbols during error recovery.

The YACC system produces compilers written in the language e, while SICproduces compilers
in Pascal or e, giving the user the option to choose the language in which the generated compiler
is implemented. Taking to account that compilers in e have been implemented more efficiently,
producing code ·oí higher quality than Pascal, this certainly turns the e ,version .of SIC more
efficient than its Pascal version. Nevertheless, both the Pascal and e versions of SIC have
proved to be very useful up to now, mainly, on compiler courses. Its output is more readable
than that oí YACC, what makes it easier to follow the LR(O) and LALR(1) parsing tables if one
has to analyze the output. For instance,on the presence oí conflict actions.

12 Conclusion

A tool to help compiler implementation under WINDOWS and MS-DOS systems has been
presented in this paper. Its most important contributions are related to the automatization oí
several aspects of the compilation process, the production oí a support tool, the implementation
of languages and the proposal oí new techniques oí language and compiler implementation
systems.

The Pascal version oí SIC is complete with all options listed in this papero SIC can also
produce compilers in e in Y.Y.BATCH mode. Developments are still necessary in the e version,
for instance, to finish the generation of interactive compilers with or without error recoveryj in
particular, it is planned to convert the implementation fo SIC to e and to join the text editor
to its e version. Additionally, the SIC system does not runs under UNIX operational system
yet, but this will be in the near future.

Referentes

[1] Alfred V. Aho, R. Sethi, and J. D. Ullman. C~mpiler Principals, Techniques and Tools.
Addison Wesley Publishing eompany, 1986.

[2] Alfred V. Aho and J. D. Ullman. The T~eo.ry o/ Parsing, Translation and Compiling,
volume 1 and 2. Prentice-Hall, Englewood eliffs N.J., 1973.

[3] Alfred V. Aho and J. D. Ullman. Principals o/ Compiler Design. Addison Wesley Publishing
eompany, 1977.

[4] Mariza A. S. Bigonha. Sic - sistema de implementa~ao de compiladores. Master's thesis,
Universidade Federal de Minas Gerais, Julho 1985.

423
2do. Congreso Argentino de Ciencias de !a ComP'MPeión

[5] Mariza A. S. Bigonha and Roberto' S. Bigonha. Dnia: exp'eriencia na implementa~ao de
um recuperador de erro lr(l). In Anais do V Simpósio sobre Desenvolvimento de Software
Básico, Sociedade Brasileira de Computat;ao, pages 158-171, Belo Horizonte, Minas Gerais,
1985. '

[6] Mariza A. S. Bigonha and Roberto S. Bigonha. Sic: Sistema de implementa~ao de compi
ladores. Série de Monografias T02/86, Departamento de Ciencia da Computa~a.o, UFMG,
1986.

[7] Mariza A. S. Bigonha.and Roberto S. Bigonha. Sic: Um sistema de suporte a. implementa~a.o
de compiladores. In Anais do' VI Congres.so da Sociedade Brasileira de Computat;iio, pages
429-442, Recife - Pernambuco, 1986.

[8] Mariza A. S. Bigonha et al. Sic: Sistema de implementa~a.o de compiladores - manual do
usuário, versao c 1.0. Relatório Técnico 020/96, Departamento de Ciencia da Computa~ao,
UFMG, 1996.

[9] Roberto S. Bigonha. Window 2.0: Um sistema básico de gerencia de interface. Relatório
Técnico OJ1/90, Departamento de Ciencia da Computa~a.o, UFMG, 1990.

·1.

[10] Roberto S. Bigonha and Mariza A. S. Bigonha. Um método de compacta~a.o de tabelas lr(1).
In Anáis 'do III Seminário sobre Desenvolvimento Software Básico, Sociedade Brasileira de
'Computat;iio, pages 141-157, Rjo de Janeiro, RJ, 1983.

[11] M. Burke and J.A. Fisher. A practical method for syntatic error diagnosis and recovery. In
CA CM, 1982.

[12] M. Burke and J .A. Fisher. A practical method for Ir and 11 syntatical error diagnosis and
recovery. In TOPLAS, April 1987.

[13] E. Costa e Silva. Um editor para ambientes de programa~[o~Master's thesis, Universidade
Federal de Minas Gerais, 1988.

[14J Bodand International. Turbo Editor Toolbox. Bodand, 1985.

[15] Borland International. Turbo Pascal V. 3. O. Bodand, 1985.

[16] N. Jensen, K. & Wirth. User Manual and Report. Springer-Verlag, 1974.

[17] S. C. Johnson. Yacc - yet another compiler compiler. Technical Report 32, Computer
Science, AT & T Be11 Laboratories, Murray Hill, New Jersey, 1975.

[18] Brian W. Kernighan and Dennís Ritchie. The C programming language. PrEmtice Hall., 2
ed., 1988.

[19] D. E. Knuth. On the transaction of Ianguages from left to right. Information and Control,

8:607-639, 1965.

[20] O.L. Kristensen, B.B. & Madsen. Methods for computing lalr(k) lookahead. ACM Tran
sactions on Programming Languages and Systems, 3(1):60-83, January 1981.

424
2do. Congreso Argentino de Ciencias de la Computación

