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Abstract

Modern computer architectures have motivated research for more efficient compiler techniques.
These new architectures delegate the solution of the most complicated problems in code generation
to the compilers. This paper describes the design of a code generator system for superscalar
architectures based on a formal machine description. We also discuss several problems related to
code generation for these processors.
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1 Introduction

Superscalar processors are the focus of the code generation system described in this paper. The
architecture of these processors is an evolution of the RISC (Reduced Instruction Set) architecture,
which includes several common features, among which the most important for our purposes are: (a)
the ability to execute more than one instruction per cycle; (b) the incorporation of multiple functional
units operating in parallel; (c) the inclusion of a pipeline mechanism. An important advantage of
these features is the ability to exploit instruction level parallelism by executing concurrently a number
of operations at the various pipeline stages and in different functional units[6]. Independently of
the technique used to extract these concurrent operations from an essentially sequential instruction
stream, the compiler must effectively take advantage of these features in order to generate high quality
code. Register allocation and instruction scheduling play a very important role in this process.

The global register allocation algorithm maps user variables and compiler-generated temporaries to
machine registers over an entire procedure. The allocation is considered good if user variables stay in
registers during their entire lifetime. Instruction scheduling is the process of moving instructions in
order to allow them to be scheduled to different units of the processor. This process minimizes the
total execution time and produces code that uses pipelines and functional units of the target machine
more efficiently. The two most important points for instruction scheduling are: (i) good utilization
of the target architecture and (ii) preservation of the semantics of the original program, i.e., a valid
scheduling must always preserve the execution order described by the edges of the graph given by
instruction dependencies.

The most important unresolved problem is to determine the necessary degree of communication
between register allocation and instruction scheduling that makes possible to generate an efficient
scheduling. Questions like how much these two functions must be cooperate in order to improve the
generated code still remains without answer, despite the work that has been done on this subject
[21, 7, 3, 4, 2]. The machine description language issue is another defying problem in the sense that
no language completely covers the RISC class [7].

OOOOENACCOOEAN,OPAREOOOM O
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The goal of this work is to present a tool based on the ideas proposed by Bradlee [3, 4, 5], to help the
implementation of compilers in a superscalar machine environment. This work addresses the following
issue: (a) the design and formal definition of the syntax and semantics of a machine description
language (LDA) that allows specification of instruction scheduling requirements along with other code
generation information related to superscalar architectures; (b) the project of a retargetable code
generator (GGCO) whose objective is the automatic generation of tables from the machine specification
of an architecture? in order to guide the work of the code generator kernel; (c) the identification of
the necessary level of integration between instruction scheduling and register allocation.

€

%2 retargetable code generator is one that can be changed automatically from the description of a new target machine, ' %
so that it can generate code for that new target @
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2 Compiler Construction Methodology

In the last decade instruction selection for Complex Instruction Set Computers (CISC) was the big-
gest issue in code generators by compiler developers, as it can be seen in systems like PO (12] and
successors, in CODEGEN [20] and AutoCode [11]. Since CISC architectures implement common
operations in many different ways, their code generators concentrated on machine specifications so
as to allow instructions to be selected by pattern matching [1]. In the case of Reduced Instruction
Set (RISC), the phase of instruction selection in compilers for these architectures was simplified. In
these new processors, all arithmetic, logical, or conditional instructions are register-based. All me-
mory accesses are done with loads and stores, the functional units and pipeline cost are exposed to
the code generator. F urthermore, RISC architecture implement most operations in only one way. As
a consequence, compilers do not need to choose anymore from instructions with multiple addressing
modes. Therefore, the compiler’s emphasis is shifted from code selection to instruction scheduling
and register allocation. As the emphasis has been changed, problems related with code generators for

s related to CISC architectures, Now, to produce

3
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4 In practice, retargetable code generators systems specifically desi

exist. Even less for superscalar machines. The Gnu [24] and Marion systems [3] are the only ones

found in the literature. Until today, Marion [3] is the only system that includes a machine description
language, but it cannot model complicated fe

SPARC’s register windows, instruction side effec
instruction issues, and the 88000’s resource

gned for RISC architecture do not

contention priority scheme.

Until recently, the interpreted machine description present in the GNU system did not contain sche-
duling information. Now, there exists at least two GNTU versions that include a method to schedule
instructions. One of them uses Gibbons (et al) algorithm [16], in which register allocation is made
before instruction scheduling and there is no communication between these two phases. The other

one includes an algorithm developed by Tiemann (25], with target-dependency latency and resource
information encapsulated.

)

3 The GGCO System
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» depicted in Figure 1, comprises the following parts: (a)

omatically generated tables and routines. (b) gen-mdc,
a module containing a semantics description in LDA (see Section 5); (c) MD.h, a module containing

definitions of data structures and types used in MD.c; (d) The front-end modules which correspond
to the LCC file written by Fraser and Hanson (15]; (e) The back-end module [3] which contains
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the instruction scheduling and register allocation strategies. The GGCO system receives as input a
processor specification in the machine description language LDA (see Section 4), and produces and
provides automatically a set of tables and functions that represent the result of executing directives
of LDA. File MD.c, and the front-end and back-end files are processed by MAKE to produce the mce
compiler for the desired architecture. The mcc compiler receives a C input file, convert it into an
intermediate language and gives control to code generator that produces an object code semantically
equivalent to the input file. Figure 1 shows its architecture.

formal machine description in LDA

¥
( gen-mdc I

i
|
|

MD.c j}nle MD.h file front-end file back-end file
{ i ! '
‘ -
| Make |

!

mcc compiler file

T Y YT Y Y s

Figura 1: Code Generator Generator Architecture-GGCO

The front end of the compiler accepts ANSI C and generates code in an intermediate language of
directed acyclic graphs (DAGs). This language provides the initial configuration for the code DAG.
The DAG edges represent all possible operators present in the instruction set of the architecture under
analysis. The front end transforms all control flow operators (i.e. for, while, if, etc.) into low level
compare and branch operations. Operators with side effects of C language are changed into explicit
arithmetic and branch operations.

(D @ @ @ M

Each code generator is produced from a machine description of a specific machine architecture and
performs code selection by pattern matching and then moves control to the code generation strategy.
The code generation strategy is responsible for: (1) activation of instruction scheduling and global
register allocation; (2) establishement of the necessary degree of communication between these two
functions; (3) inclusion of the scheduling algorithm.

L pga)

The GGCO code generation strategy is the same proposed by Bradlee in the Marion system [3]. It é
consists of two parts, the first being strategy-independent, and the second strategy-dependent. The €
strategy-independent part of the back end has three components: the builder of the code DAG, the é

global register allocator and the constructor scheduling support. The DAG code builder is responsible
for the construction of a DAG from machine instructions for each basic block. A basic block is a ;
sequence of code that has no internal branching. Scheduling support handles low-level scheduling 1 &
details; for instance, it controls the list of instructions that can be scheduled without causing delay, &
and verifies resource conflicts. The strategy-dependent part includes the scheduling algorithm, and
tables and functions generated from the machine specification. Its modular structure permits quick
reconfiguration of new strategies of instruction scheduling and register allocation. Based on this
modularity, we have incorporated this new strategy in GGCO.

52




_EXIV Conferencia Latinoamericana de Informadtica Quito - Ecuador

E

1

4

:
b
P 3.1 Instruction Scheduling

T T

p Themost important data structure in the scheduling process is the scheduling graph, the code DAG. In
r this data structure the basic block instructions in which the program was divided are represented. In
¥ he DAG code. nodes represent instructions, and directed labeled edges represent dependences between

w

instructions. As scheduling considered in this project is performed inside basic blocks, the precedence
B restrictions considered are those based on data and on control dependences. Control dependence
exists only between basic blocks and their corresponding edges are derived from the control flow graph
of the program. The data dependence between instructions can be a true-dependence or a false-
dependence. A true-dependence, also called flow dependence, is an edge from a definition to a use. A
p false-dependence is classified as output dependence and anti-dependence. An anti-dependence is an
% edge from a use to a definition. An output-dependence is an edge between two definitions [27].

b The approach used for instruction scheduling is list scheduling [14], [18], [19], [13], [16], [3], (26], [17).
. 1t works as follows: given a code DAG, the scheduler keeps a list of instructions that are ready to
P be scheduled without causing a delay. On each iteration it selects the highest priority node in the
P ready list to be scheduled using a heuristic and then updates the list. According to [3] this approach.
p in general, has worst-case running time of Ofe), where e is the number of edges in the DAG, but
the heuristic can increase the complexity. All list scheduling algorithms found in the literature use
) heuristics to assign priority to nodes in the ready list. The difference between these systems is in
B the order in which the heuristic is applied. A frequently used heuristic for assigning priority is called
p mazimum distance. This heuristic is defined in terms of the length of the longest path in the code
. DAG from an instruction node to a leaf node. The length of a path is the sum of all edge labels along
b the path. The idea behind this heuristic is that the node which is the farthest from completion is the
D most critical, so the other nodes can be scheduled later. Another heuristic gives higher priority to
b nodes with more successors. The point here is that scheduling a node with several successors creates
more opportunities for the scheduler in the next cycles because it permits more nodes to become
b ready sooner. A third choice is a heuristic which chooses a node with greater operation latency to
D have higher priority than that of its successors. The motivation is that scheduling such a node first will
generate more opportunities to overlap the latency with other instructions. GGCO’s code generation
strategies use list scheduling algorithms with mazimum distance as the primary heuristic, as in [3].

3.2 Register Allocation

The register allocation problem is similar to that of coloring a graph. In this approach, nodes in the
b graph represent variables and edges represent interference. Therefore, we connect two variables in the
) graph if there is interference between them, i.e., if they cannot simultaneously use the same register

at some point in the program. The objective of the register allocator algorithm is to assign a register
D ( color) to every variable such that each one has a different color from any of its neighbors [10]. With
b the advent of new architectures, such as superscalar and parallel, which allows the parallelism between
) ill§tructions, an “optimal” coloring of interference graph does not necessarily results in a good machine

utilization. This happens because in these architectures it is also necessary to take into account
D the reordering of instructions performed by the instruction scheduler algorithm. When instruction ;
b Teordering is done after register allocation, the selection of registers may limit the possibilities to
b reorder instructions due to false dependencies that are introduced with the reuse of registers. On
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the other hand, when instruction reordering is performed before register allocation, the number of
live registers increases, implying longer register lifetimes, and thus more registers are needed and
more spills may be introduced. In addition, in some cases register allocation must precede instruction
scheduling since an exact register assignment is needed by the scheduler [19].

Several compilers use different graph models to implement register allocators and instruction scheduler
functions [3, 17, 26]. Since the meanings of nodes and edges in these graphs are different, a simple
combination is impossible. Nevertheless, the strategy used in GGCO for register allocation and ins-
truction scheduling uses a simple common graph called the parallel interference graph, for representing
the input program for both tasks. In this framework the emphasis is on register allocation, and the
method used to allocate registers is based on Chaitin’s work [9]. This strategy was originally proposed

by Pinter [23].

ﬁmﬁﬁ@%@@@@@%gﬁf

o

Pinter’s algorithm works as follows: to generate a parallel interference graph, first we introduce all
scheduling constraints explicitly in the schedule graph. In this approach, the more edges are present
in the graph the better the result will be; that happens so because what we really use are the edges
that are in the complement of the constructed graph. The edges in the complement graph present
the parallelism available in the machine for the given program. The next stage of his algorithm is
to integrate those edges with the interference graph. With this new graph the register allocation
algorithm can take the available parallelism into account. Scheduling is done after register allocation.

Since the minimum coloring problem is NP-complete, the number of registers is, in general, smaller
than the number of colors. Thus, in practice a spilling stage is carried out. With this in mind, the
problem of register allocation for superscalar machines becomes that of finding an optimal register
mapping with fewer number of registers, a minimized cost of spilling and whose scheduling graph does
not have false-dependences so, it is necessary to apply on the parallel interference graph the same
heuristics used during register allocation or scheduling. One tipe of heuristic could eliminate edges
from the graph, but to do so it is necessary to know which edges may be eliminated. This involves

consideration of both the scheduler and the allocator. For instance, if removing edges that prevent
false-dependences is considered, some parallelization options are lost because of register pressure. On
the other hand, it is possible to remove interference edges which may lead to spill and preserve some @
edges that yield good parallelization. P

)

Chaitin [9] and Pinter’s [23] algorithms do not deal with the register pairs problem. Pairs of registers
are often needed in processors to represent half registers in double precision load, store and move
instructions. In these algorithms, a pseudo-register can be removed from the graph if it is guaranteed
that there exists one physical register for it during the coloring phase, which we call an unconstrained
node. This means that its degree, i.e., the number of its neighbors in the interference graph, is
fewer than the number of available physical registers. Register pairs change the definition of an
unconstrained node. A node now is considered unconstrained if the sum of the number of physical
registers required by of its neighbors plus the number of physical registers required by itself is less than
the total number of available registers. With this new definition it is possible to get a good coloring
of the parallel interference graph, even though the demand of the neighbors of a node may be greater
than the number of available registers. The reutilization of colors in neighbors whose edges do not
constrain can generate a coloring of this graph that reaches the objective proposed by Pinter, namely
to “find an optimal register allocation whose scheduling graph does not have false dependence”.
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4 LDA, The Machine Description Language

GGCO’s machine description in LDA, has th
writer’s virtual machine description, and (c)i

ree main sections: (a) resource declaration, (b) compiler
the registers, machine resources,

nstruction definitions as i [3]. In the declaration section,
functional units, constants, memory size and other features of the

€S 1ot yet treated by other-
], the following ones:

ters and arguments separately,

compiler systems. LDA possesses,
(1) facilities to support register wi
to model register renaming;

(2) the machine description language, LDA, establishes resources necessary
this information, LDA constructs a resource vector for each instruction. Ea
vector contains all resources needed on a particular cycle. In the
the priority is defined as follows: integer instructions have the highe
instructions, and lastly load instructions. To solve the structured h
regulate the use of the register write-back

suggested by Bradlee [B: (a) a priority range is associated with a res
description; (b) an element of a resource ve
(c) priorities are examined when checkin

-n addition to all features of Marion [3
ndows. It is possible to specify parame

for each instruction. With
ch element of the resource
Motorola 88010 processor [22]
st priority, then floating point
azard like a priority scheme to

he number of delay

slots with no-ops as in Marion (3], w.
Hennessy [19] algorithm in GGCO.

scheduling. This algorithm attempt
with instructions that follow the br
and Hennessy found that, on a mac
their algorithm filled, counted stat;

slots in a instruction directive. To

€ are going to implement 2 Gross and
including it as a separated intra-procedura] pass after instruction

s to fill delay slots for instructions that occur before the branch,
anch target, and with instructions that follow the branch. Gross

hine whose branches have one delay slot that is always executed,
cally, 90% of the delay slots.

5 Philosophy of the LDA Formal Definition
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Function gen-
tree, .
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‘ elab-declare
decls

Y YYYYXYYYY

Syntax domain Semantic domain

Figura 2: Mapping of LDA in Mdc.

generator. This formal definition can be seen as a code generator generator system produced from
a machine description. The piece of code generated is stored in file MD.c. Function elab-declare
processes LDA declarations; function elab-vmdecl elaborates information about the virtual machine;
function elab-instr processes the instructions of LDA, and function elab-tables elaborates the
final tables, producing the C code. The complete formal specification of LDA can be found in 7.

Currently, the formal definition is written in SCRIPT (8], which is a functional language that offers
a simple notation to describe the denotational semantics of a programming language in a modular
and legible style. The abstract syntax is defined in SCRZPT as a production list of a context free
grammar. Non-terminals represent syntactic domains and tokens are "quotation" domains. The
formal definition of all semantic domains are grouped in modules, which control the visibility of their
denotations and provide the services associated with each domain. For each of the most important
semantic domains used in the definition of mapping gen-mdc there exists a module SCRIPT, which
encapsulates their denotations and provides the associated services.

The most high level function of the LDA formal definition, gen-mdc, maps LDA descriptions into

portions of C code, which comprise the machine dependent part of the code generator. This piece of @
program stored in file MD.c includes the data structure and type definitions declared in the previous €
MD.h file (see Section 3). @

The most important generated tables are those of resources and productions. The resource table
describes the resources used by instructions and is one of the most important information for the
scheduler. Its contents is used essentially in basic routines of instruction scheduling to verify existing
conflicts and to group instructions. The production table is an array that contains information about
instructions. Each array element corresponds to an instruction directive given in the description and
contains: (a) a pattern tree and a replacement symbol derived from the expression given in the di-
rective; (b) an array that indicates, for each instruction, its operand kind and their location within

& e &
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the pattern and subject trees: (

¢) an index into an array of resource vectors; and
and delay slot data. Information

in this table js used by the code generator when pe
\ tion scheduling, register allocatio

1 and code selection. Other generated tables con
information about the virtua] machine, classes and elements, auxiliary latencies, pa

(d) cost, latency
rforming instruc-
tain declarations,
tterns, etc.
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B This paper described a code generator generator, named GGCO. The most important contribution is
) the formal specification of the processor de endent part of the code generator by means of a special
p p D g

b purpose language. Its forma] definition may be seen as g code generator system which provides, from

the machine description a mapping from a processor description to jts code enerator, and whose fina)
: P ping p p g
B result is a program piece in C, which corresponds to the machine dependent part of the code generator
B for the described architecture.

The system prototype is not yet fully i » 1or example, facilities to support
register windows for the Sup SPARC i i ) ‘indow. Additional studies must be
done before the Incorporation of the regi i

svstem, in order to evaluate and compare it with the alg
and register allocation. Gross and Henessy’

with valid instructions during scheduling. Th
priority
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