
Interacting Abstract State Machines

Marcelo de Almeida Maia1, Vladimir Oliveira Di Iorio2, and Roberto da Silva
Bigonha3

1 Universidade Federal de Ouro Preto, Brazil, marcmaia@dcc.ufmg.br
2 Universidade Federal de Vi�cosa, Brazil, vladimir@dcc.ufmg.br

3 Universidade Federal de Minas Gerais, Brazil, bigonha@dcc.ufmg.br

Abstract. In this work we propose an extension to the original model of
Abstract State Machines. We focus on the modularization support and
on the explicit interaction abstraction between the modules (units of
speci�cation). We provide the new language syntax and semantics, and
also the speci�cation of the Alternating Bit Protocol using the proposed
method.

1 Introduction

Much of the work being done in the software engineering area concerns the
development of mechanisms that facilitate the reuse and
exibility of software
components. The most powerful resource to achieve these goals is modularity,
which is based upon abstraction and information hiding and it is the only e�ec-
tive way to break down the complexity of large systems. Even though Abstract
State Machines[4] support abstraction and information hiding, we advocate more
powerful abstraction mechanisms. If we consider the inherent methodology of
producing ASMs speci�cations as a methodology that provides a vertical ab-
straction mechanism, in the sense that the ground model is successively re�ned
until considered adequate, it is reasonable to think that it does lack some kind
of horizontal abstraction to support the reuse of existent speci�cations. An ar-
gument to support this view can be found in [8], where are de�ned some desired
characteristics for good modularization mechanisms such as modular compos-
ability, modular decomposability, modular understandability, modular continu-
ity and modular protection. Considering these characteristics, a central theme
that a�ects directly each one of them is the speci�cation of how software modules
interact with each other. So, our decision is in the direction of a formalism that
explicitly enables the software engineer to write down how the interaction occurs
between the modules. We adopt a message exchanging style because we believe it
provides a natural abstraction of how objects interact in the real world. When we
explicitly specify the interaction between modules, we are automatically inclined
to think about the concurrency issues involved in the interaction process. In our
view, modularization and concurrency concepts are interdependent and should
not be addressed separately, and this has in
uenced our decision of putting them
together in a unique framework.

In the context of ASMs, there is already some work in the direction of pro-
viding them with some kind of horizontal abstraction. Glavan and Rosenzweig
developed a theory of concurrency [3] that enables the encoding of some tra-
ditional calculus as the ��calculus [9] and the Chemical Abstract Machine [2].
However, we can not see an explicit message passing mechanism and it does not
support encapsulation and information hiding mechanisms, issues which will be
directly treated in this work. May [7] has developed a work with the same aims
as ours, and although it provides some form of encapsulation and information
hiding, the usual modularization concepts must be further added to the model.
The explicit message passing encoding is not considered too.

Instead of putting on the user the burden of providing the complete speci�ca-
tion of the message interchanging between di�erent speci�cations, our approach
provides special constructions to help the explicit speci�cation of how di�erent
pieces of speci�cations interact with each other. This idea can be thought as
a better development of the concept of external functions [4], because the ap-
proach provides some environment behavior formalization. It is not necessary
to know how the environment behaves internally, but it is necessary to know
how it interacts with the system being speci�ed. So, when we specify a system,
we must have in hands a minimal formalization of the observed environment
behavior that a�ects the system, what is a little diferent from the raw concept
of external functions.

In the Section 2 we present the proposed new constructions. In the Section
3 we develop the semantics for that constructions. In the Section 4 we present
an example of usage. And �nally, in the Section 5 we conclude standing up
for the suitability of the new constructions in the development of large scale
speci�cations. In the Appendix A we explain the syntactic conventions used
throughout the text.

2 The Interactive Abstract State Machine Language

A speci�cation is de�ned as a set of unit de�nitions and unit instances. Units
de�nitions are classi�ed as system units and environment units. System units
are those which will be completely speci�ed, whereas environment units will
be partially speci�ed. We use the word environment not only referring to the
external portion of the system, but also referring to some components of the
system that had already been speci�ed and are being reused.

The intention of specifying a system as a set of units is to encapsulate some
portion of the state inside small pieces of speci�cation. This leads to an isolation
of the internal state of a unit. The information contained in the internal state of
a unit only can be communicated to other units by explicitly specifying a pattern
of interaction between the involved units. This interaction speci�cation does not
only specify the information
ow but also the synchronization restrictions within
the interaction.

In the sequel we present the abstract syntax of our proposed language.
A system unit de�nition Us is composed of several parts and it is de�ned as:

Us ::= unit unit name

function names function names

interaction interaction

rules rules

where:

{ function names is a subset of the vocabulary that contain the names of
the functions. It represents, together with the respective interpretations of
the names into the super-universe, a local state alterable only by the local
unit rules and interaction. Each function name may be optionally initialized
with an arbitrary value. In order to make the ideas clear, we will de�ne an
abstract data type (ADT) Stack, as we explain the parts of a unit. For the
Stack unit we may have the following function names:

function names
max := 100 % Maximum length of Stack
s % The stack itself
top := 0 % Index of the top elem
topelem % The top element
ack % Acknowlegdement of pushing
c % The client of the Stack

{ interaction is de�ned as:
interaction ::= internal pub name -> u name

j bu�ered var <-- u name.pub name

j var <- u name.pub name

j connect unit : U:s j connect unit : U j connect u
j new unit : U
j destroy unit : U
j interaction + interaction

j interaction j interaction
j interaction ; interaction
j interaction : l
j waiting(name)
j if guard then interaction

j extend U with x I endextend

j choose v in U satisfying e I endchoose

j var v ranges over U I endvar
The basic operators for interaction are those that provide input and output
within a unit. They are the -> and <-, used to send a value to a unit and
to receive a value from a unit into a variable, respectively. The operator <--
denotes a bu�ered input that avoids an inconsistent update if two or more
di�erent inputs to same variable occur in the same step. Since we expect
to de�ne dynamically the communication topology, we provide the connect
operator which binds a unit name to some unit instance. The operators new
and destroy are used to create and destroy unit instances. Since units are
mapped into agents, these operators update the corresponding enumerating
set of agents derived from a module. In order to address complex interaction

patterns that may exist between units we provide the well-known compo-
sition operators "+" (non-deterministic choice), "j" (parallel composition),
and ";" (sequential composition). As we will de�ne soon, one cannot reason
about the relative speed of execution of an atomic interaction compared to
an internal rule of a unit. Thus in order to synchronize the interaction part
with the computation part of a unit we introduce labeled interactions and
the barrier waiting(name). The label l uniquely identi�es an interaction,
and denotes how many times the interaction labeled with l has completely
occurred. Its initial state is zero. We also inherit from the ASM notation the
if, extend, choose, and the var rules.
Coming back to our example, the ADT Stack may be seen as a server and
thus it must connect with the Client before performing any information
exchanging. As we will see, the connect operator used below waits until
there is an interested unit instance requesting the connection. After the
connection, it may receive requests from the Client instance. The requests
guide the sequel of the interaction, and the unit Stack interacts with its
Client by sending to it the element on the top of the stack (popping it or
not) or receiving from it an element to be pushed onto the stack.

interaction
connect c;
request <- c;
if request = "top" then

topelem -> c
elseif request = "pop" then

waiting(popped);
topelem -> c

elseif top < max then
elem <- c.elem;
waiting(pushed);
ack -> c

endif

{ rules is de�ned as an element of ASM RULES. These rules work by chang-
ing the internal state represented by function names. In the abstract data
type Stack we may de�ne the rules as:

rules
if waiting(popped) then

top--;
waiting(popped) := false;

endif
if waiting(pushed) then

top++;
s(top+1) := elem;
waiting(pushed) := false;

endif

Now, let us de�ne an environment unit as a restriction on a system unit. It
shows the public portion of a system unit that can be imported by other units
and can be de�ned as:

ue ::= environment unit unit name

interaction interaction

Each system unit has a corresponding environment unit specifying what will
be exported to other units.

3 Semantics

In this section we specify the IASM language semantics. Whenever readability
is not impaired, we give a translational semantics that maps a syntactic domain
corresponding to the IASM constructions into the original ASM language de�ned
by Gurevich[4].

Whenever the translational semantics turns to be quite complicated we will
prefer to give informal semantics, while giving precise de�nitions about the
meaning of the IASM language. The interested reader may �nd the complete
translational semantics in [6].

3.1 Unit De�nition

The U compilation scheme translate unit de�nitions and is de�ned as:
U , Umod: IASM CONSTRUCTIONS ! ASM RULES

U [[U1; : : : Un]] =
S

n

i=1
Umod[[Ui]]

Umod [[U]] =
module U

I [[U:interactions]]
S

R [[U:rules]]
end module

The idea of this compilation scheme is to put together, inside a module,
the rules corresponding to each construction of each unit de�nition. The source
code of the module will be generated from the unit de�nition U . This compilation
guarantees that each unit instance derived from this unit de�nition will have its
own clock, and thus its execution will be independent from other instances. We
will also make use of the function Self which allows an agent to identify itself
between other agents.

3.2 Unit Instantiation

The instantiation of a unit means an extension of the universe that enumerates
the instances of a unit de�nition. There are two ways of declaring units:

1. statically: the startup de�nition declares the initial unit instances. This dec-
laration actually creates statically the unit instances which will live during
the whole execution of the speci�cation.

2. dynamically: the declaration of a unit as part of the internal state of another
unit does not create an instance. Instead, the declaration produces a function
name that will be dynamically bound to a unit instance, either a statically
created, or a dynamically created one. A dynamic unit may be created and
destroyed with the interaction instructions new and destroy, respectively.

Because unit instances are agents, creating and destroying units means to
extend or retract the enumerating universe that contains the agent names of
the speci�ed module.

3.3 Output Interaction

The �rst case of interaction is when an internal value is sent to a unit. This
sending means that the internal universe MSG is extended with a new message.
This universe contains the messages exchanged between the units. A message
carries its target, a label denoting the source of this value, and a value.

I [[internal pub name -> u name]] =
extend MSG with x

target(x) := `u name;
label(x) := `self:internal pub name;
cont(x) := internal pub name;

endextend;

3.4 Input Interaction

There are two possible semantics for receiving a value from another unit. The
name responsible to store the received values may be bu�ered or not. In either
case, it is done a query into the universe MSG to �nd a message that matches the
required input interaction. If this message exists then the corresponding updates
are done and the used message is discarded from the universe MSG.

In the case where received values are not bu�ered, the variable is translated
into a function name and if there is a message that matches the input interaction
then the corresponding updates take place.

I [[var <- u name:pub name]] =
if has message(`u name.pub name) then

choose x in MSG satisfying match msg(x, `u name.pub name)
var := cont(x);
MSG(x) := false;

endchoose;

endif;

In the other case, the bu�ered variable will be translated into a universe. Each
time the variable receives a value, the corresponding universe will be extended
with that value.

I [[bu�ered var <-- u name:pub name]] =
if has message(`u name.pub name) then

choose x in MSG satisfying match msg(x, `u name.pub name)
extend bu�ered var with y

cont(y) := cont(x);
end extend;

MSG(x) := false;

endchoose;

endif;

In order to access the bu�ered values we will assume that a timestamp is
assigned to each value received into a bu�ered variable. This timestamp is in-
cremented with step one, and if there are many incoming values in the same
step in the same variable, then the corresponding timestamps are assigned non-
deterministically to each value. For example, suppose there is a bu�ered variable
x that is receiving two values, for instance \v1" and \v2", in the same step. If
the current timestamp to be assigned to the incoming value is, for example, 8,
then the timestamps to be assigned non-deterministically to \v1" and \v2" will
be 8 and 9, and the current timestamp will be set to 10.

3.5 Unit Connections

As stated before, a unit declaration inside a unit de�nition only produces a
function name. Our intention is that this function name should be further bound
to another unit instance which also has a function name bound to the former
unit instance. This situation indicates an agreement between the two instances,
and it is performed with the operator connect. The arguments for this operator
are: 1) a function name u corresponding to a unit instance, 2) the name U

corresponding to the unit de�niton from which the instance u was derived, and
3) a function name s declared inside U that we expect to be bound to the current
unit instance.

There are some possibilities when using connect:

{ All arguments are de�ned. Then it must be checked that if there is an-
other instance that attempted a connection that matches this one. If there
is such attempt, then the connection is successfully performed, otherwise it
is blocked until such attempt occurs.

{ Some arguments are unde�ned. This possibility is necessary because when
establishing a connection we may not know in advance which unit instance
will be connected or even from which unit de�nition the unit to be connected
was derived. We may write "connect u: U", where "u" is unde�ned and we
are not interested on which function name inside "U" will receive the name of
the current instance. Alternatively, we may want more
exibility and write
"connect u", where "u" is unde�ned. In this case, any unit wanting to
connect through the channel "u" can match this connection.

The semantics of this operator may be given de�ning a universe Connections
that the operator connect can update and query in order to establish the con-
nection. Each element of this universe is a pair representing the two connected
instances. Each element of the pair is a triple (u; U; o), where u is the name of
the instance involved, U is its corresponding unit de�nition name and o is the
function name whose value is the name of the other instance belonging to the
pair.

3.6 Interaction Composition and Runs

Since an IASM speci�cation can be translated into the pure ASM notation,
as a set of modules and agents, the notion of run for interactive ASMs is the
same as that of pure ASMs. But, compared with the pure ASMs, the composed
interaction portion of the speci�cation has a di�erent state transition granularity.
So, the reasoning mechanism of pure ASMs should not be used for Interactive
ASMs, which have a more elaborated notion of move. Thus, in the sequel, we
de�ne a special notion of interaction cycle that is independent from the notion
of move of the internal rules. The latter obeys the partially-ordered semantics
of distributed ASMs.

De�nition 1. Interaction tree is the abstract syntax tree derived from the in-
teraction part of a unit de�nition.

De�nition 2. Interaction cycle is the result of executing the moves of the rules
corresponding to a node of the interaction tree until there are no more pending
nodes waiting to be executed. It is executed according to the following de�nitions.

De�nition 3. Parallelism: If there is an enabled interaction tree with the fol-
lowing form: (i1j i2j � � � j in) then all interactions ik (1 � k � n) are enabled
and the execution of each ik is cyclic and do not depend on each other.

De�nition 4. Sequence: If there is an enabled interaction tree with the following
form: (i1; i2; � � � ; in) then one and only one interaction ik (1 � k � n) is enabled
at each time and all the sequence is executed in the cycle.

De�nition 5. Non-determinism: If there is an enabled interaction tree with the
following form: (i1+ i2+ � � � + in), then one and only one interaction ik (1 � k �
n) will be e�ectively performed on each cycle of the non-deterministic interaction.

De�nition 6. Blocking input: Suppose there is an enabled interaction tree with
the following form: (a <� u:b; i1), where a is a function name, and u:b is an
incoming value from the function name b of the unit u. Then, the respective
input blocks i1, until the input e�ectively occurs.

3.7 Synchronization of Internal Rules and Interactions

Unit internal rules are just like ASM rules and its semantics is exactly the same.
But, there is no direct relation on the synchronism between the interaction rules
and internal rules. In order to guarantee appropriated synchronization when
executing these rules, the IASM method provides:

1. A waiting rule used in the interaction section. This rule is represented by a
boolean function name. When executed the rule updates the function with
true and freezes the execution of the current node in a interaction cycle
until the function is updated with false.

2. All interactions may be labeled, for example:
msgrec <- S.msgsend : nb rcvd msgs

The corresponding label denotes an integer value which corresponds to how
many times an interaction has been completed. This value can be used by
the internal rules.

4 An example - The Alternating Bit Protocol

In this section we show a more elaborated example: the speci�cation of the Alter-
nating Bit Protocol [1]. The problem consists of transmitting messages through
an unreliable channel. The channel delivers messages in the same order they
were sent, but can occasionally loose some of them.

The speci�cation is composed of three main unit de�nitions: Sender, Receiver
and Channel. In addition, four other units are de�ned as environment units:

{ unit ClientSender: Simulates the behaviour of a client that delivers messages;
the messages are sent to the unit Sender, which sends copies of them to
ensure the correct delivery.

{ unit ClientReceiver: Simulates the behaviour of a client that receives mes-
sages from the unit Receiver.

{ unit Timer: Sends periodically a message to the unit Sender, at a �xed rate,
to indicate that a new copy of the current message must be sent. Timer has
a behaviour which is similar to that of external functions in pure ASM.

{ unit Loose: Sends messages to the unit Channel non-deterministically, indi-
cating when a message will be lost. Like Timer, its behaviour is similar to
that of external functions.

Sender
Client
cs:

s: Sender

t: Timer Channel

l: Loose
r: Receiver

Receiver
Client

Channel
srchan:

rschan:

cr:

Fig. 1. Units and the
ow of messages in the AB Protocol.

Figure 1 shows the relationship between these units. Note that two instances of
the unit Channel are necessary.

After the unit Sender has performed the connections, it receives from the
client a message which must be delivered to the receiver through an unreliable
channel. Then it sends copies of the message through an output channel (srchan),
together with a signal bit. This process is repeated until the unit Sender receives
a correct acknowledgement message from the input channel. Then it waits for a
new request from the client.

The timer is used to indicate that the sender has spent a certain amount
of time waiting for the correct acknowledgement signal and must then deliver a
new copy of the message. Note that after the message was sent via srchan, either
the sender receives non-deterministically an acknowledgement bit or a timeout
signal, as we should expect.

unit Sender
function names

timeout, connected := false;
msg, recvbit;
bit := 0;
next := true;
srchan := "srchan"; rschan := "rschan"; c := "c1"; t := "t";

interaction
if not connected then

connect srchan: Channel.input, rschan: Channel.output,
c: Client, t: Timer; : Connection

else
if next then

msg <- c.msg;
msg -> srchan ; bit -> srchan;
(recvbit <- rschan.bit +
timeout <- t.timeout);
if not timeout and recvbit = bit then

ack -> c;
waiting(nextmsg);

else
waiting(samemsg);

endif
rules

if Connection > 0 then
connected := true;

if waiting(nextmsg) then
bit := toggle(bit); next := true;
waiting(nextmsg) := false;

endif
if waiting(samemsg) then

timeout := false; next := false;
waiting(samemsg) := false;

endif
end unit

After the unit Receiver has performed the connections, it receives a message
from the input channel (srchan) and if it is not a copy of the last value received,
it is sent to the client. It also sends an acknowledgement signal via an output
channel (rschan). Note that msg is also sent via rschan in order to correctly
match the interaction pattern of Channel.

unit Receiver
function names

connected := false;
msg, bit;
currbit := 0;
srchan := "srchan"; rschan := "rschan"; c := "c2";

interaction
if not connected then

connect srchan: Channel.output, rschan: Channel.input,
c: Client; : Connection

else
msg <- srchan.msg ; bit <- srchan.bit;
((if bit = currbit then

msg -> c;
waiting(nextmsg);

endif)
|
(msg -> rschan ; bit -> rschan))

endif
rules

if Connection > 0 then

connected := true;
if waiting(nextmsg) then

currbit := toggle(currbit); waiting(nextmsg) := false;
end unit

The unit Channel simulates a channel that delivers the messages in the order
they are sent, but it may occasionally loose some of them. It connects to the
units representing the input and output of the channel and also to a unit Loose
that determines non-deterministically when a message will be lost. Note that
the connection of the input and output will be blocked waiting the assignment
that will be done in the units Sender and Receiver.

unit Channel
function names

input, output, msg, msg2, bit, bit2;
loose: Loose;
connected := false;
queue := nil;

interaction
if not connected then

connect input, output;
connect loose: Loose; : Connections

endif ;
((msg2 <- input.msg ; bit2 <- input.bit ;
waiting(buffering))

|
(if msg <> undef then

msg -> output ; bit -> output ;
waiting(cleanmsg);

endif)
|
(loosemsg <- loose.loosemsg ;
waiting(LoosingInQueue))

)
rules

if Connection > 0 then
connected := true;

if waiting(buffering) then
queue := append((msg2, bit2), queue);
waiting(buffering) := false;

endif
if waiting(cleanmsg) then

msg := undef; waiting(cleanmsg) := false;
if waiting(LoosingInQueue) then

queue := tail(queue); waiting(LoosingInQueue) := false;
if msg = undef and queue <> nil then

msg = first(head(queue)); bit = second(head(queue));
queue := tail(queue);

endif;
end unit

This protocol has been previously formalized using the ASM method in [5]. In
that work, the behaviour of the communication channel was not clearly de�ned.
It was necessary to write identical code for both the communication sender-
receiver and receiver-sender.

For the sake of space economy we will not specify the environment units
ClientSender, ClientReceiver, Timer, and Loose. The startup speci�cation that
creates the initial unit instances may be written as:

specification ABP
rschan, srchan: Channel;
s: Sender; r: Receiver;
t: Timer; l: Loose;
c1: ClientSender; c2: ClientReceiver;

end specification

5 Conclusions

We have presented a proposal to promote the reuse of ASMs speci�cations while
addressing important issues such as communication and concurrency. The idea
of explicitly isolating the interaction between computing units with di�erent
purposes make clearer their interdependencies. This also provides a useful mech-
anism to formalize the environment in which a speci�cation will work.

The approach was successfully used in the speci�cation of the Alternating Bit
protocol, where we have reused the speci�cation of the unit Channel, which may
be connected di�erently depending on its usage. We have shown that the explicit
message passing mechanism composed with well-known operators provides a
powerful and natural speci�cation mechanism.

The dynamic con�guration of the communication topology presented is an
essential feature that may be used to specify mobile systems which are being
increasily used but still lacks more suitable formal approaches.

There are some aspects that must be further studied:

{ study of static checking mechanism, e.g., type systems;
{ study of more powerful reuse mechanisms, e.g., inheritance;
{ encoding of procedure and/or function calls and/or method invocations;
{ use of the approach in large scale speci�cations.

References

1. K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A Note on Reliable
Full-Duplex transmission over Half-Duplex Links. Communications of the ACM,
12(5):260{261, May 1969.

2. G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer
Science, 96(1):217{248, 1992.

3. P. Glavan and D. Rosenzweig. Communicating Evolving Algebras. In E. B�orger,
H. Kleine B�uning, G. J�ager, S. Martini, and M. M. Richter, editors, Computer
Science Logic, volume 702 of Lecture Notes in Computer Science, pages 182{215.
Springer, 1993.

4. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor, Speci�ca-
tion and Validation Methods, pages 9{36. Oxford University Press, 1995.

5. J. Huggins and R. Mani. The evolving algebra interpreter version 2.0. Manual of
the interpreter (http://www.eecs.umich.edu/gasm).

6. M. Maia and R. Bigonha. The Formal Speci�cation of the Interactive Abstract
State Machine Language. Technical Report 005/98, Universidade Federal de Minas
Gerais, Brazil, 1998. http://www.dcc.ufmg.br/~marcmaia/iasmformal.ps.gz.

7. W. May. Specifying Complex and Structured Systems with Evolving Algebras.
In TAPSOFT'97: Theory and Practice of Software Development, 7th International
Joint Conference CAAP/FASE, number 1214 in LNCS, pages 535{549. Springer,
1997.

8. B. Meyer. Object-oriented Software Construction. Prentice Hall, 1997.
9. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and

II). Information and Computation, 100:1{77, 1992.

A Syntactic Conventions

We have used the following conventions:

{ Unit de�nition is the speci�cation of the code of a unit.
{ Unit declaration creates a function name or a unit instance.
{ Italic letters: ui; ui:interactions denote syntactic elements.
{ Typewriter letters: denote reserved words of the original ASM language and
of the constructions proposed here.

{ `a : denotes a label that uniquely identi�es the syntactic element a, i.e., is
the element of the vocabulary without being interpreted.

{ [[...]] : denotes syntactic elements.
{ a += b; � a := a + b;

{ a -= b; � a := a - b;

{ has message(origin) =(9 x 2 MSG) target(x)=self ^ label(x)=origin
{ match msg(x, origin) = target(x) = self ^ label(x) = origin

