A Type with a View

January 31, 1999

Abstract

All modern approaches used for the definition of abstract types in programming
languages do not allow values of these types to be used in pattern-matching. This
limits the use of abstract types in programs. In this paper we propose a new form
of abstract type definition, based on Wadler’s notion of views, which allows pattern-
matching for values of abstract types.

With our approach, a type definition provides, in a simple and uniform way, either
a type synonym, a datatype, an abstract type, an abstract type with views, a subtype
of an existing type, or a module (collection of declarations).

The paper presents a very simple semantics of a kernel language with the proposed
type definition mechanism. The mechanism can be efficiently implemented, and can
use pattern-matching on constructors of the representation type whenever there is an
isomorphism between (the relevant view of) the abstract type and its representation
type; the decision of when such an isomorphism exists is simple and based directly
on the abstract type definition.

With datatype definitions, if a type (implementation) is changed then all program
parts that perform pattern-matching on constructors of values of that type need
to be modified. With abstract type definitions, a representation may be changed
without the need for these modifications, but no pattern-matching can be performed
on values of this type. A type with a view changes this situation. Its representation
(implementation) may be changed without having to change user’s code, if the view
(interface) is not changed.

Keywords: abstract type, pattern-matching, type definitions

1 Introduction

The following approaches exist for the definition of abstract types in programming lan-
guages.

A first approach, used for example with the abstract data type construct of SML, uses
a datatype as the representation type. For example, a definition of an abstract data type
set, for sets of values which can be compared for equality, defining a union operation
between sets, is sketched below:

abstype ’’a set = set of ’’a list with

fun union (set x) (set x’) = set (union’ x x’)

Function union’ (x, x’) is assumed here to be defined so as to include all elements of
x not already in x’ (note that x’, representing a set, is assumed to consist of distinct
elements). To define the union of sets recursively, we might write:

abstype ’’a set = set of ’’a list with

fun union (set []) s = s
| union (set (a::x)) (s@set y) =
if a mem y then union (set x) s
else let val set x’ = union (set x) s
in set (a::x’)

Another approach, that avoids the explicit “wrapping” and “unwrapping” of construc-
tors (required by the use of a datatype as the representation type), is adopted for example in
Gofer and Hugs[Jon98]. Abstract type values are considered as values of the representation
type in definitions of “functions of the abstract type”, and as values of the abstract type
itself elsewhere (unless stated otherwise in type signatures of the abstract type functions).
The example above can be written in Gofer/Hugs as follows:

type Set a = [a] in ..., union

union [] s = s
union (a:x) s
| a ‘elem® s = union x s
| otherwise = a:(union x s)

In this approach, the abstract type is transparent (i.e. synonymous with the representation
type) in the definition of the abstract type functions (specified after in). Otherwise, the
abstract type is opaque (the implementation is hidden, since values of the abstract type
are not compatible with values of other types, and can only be used with the abstract type
functions).

In Gofer and Hugs, such transparency, applied to operations overloaded for both the
abstract and representation types, has an unfortunate consequence. In Gofer and Hugs,
these overloaded operations never use the operation defined for the abstract type (despite
the use of any type signature). Furthermore, the use of any other function which should

use itself an instance of overloaded operation defined for the abstract type, applies instead
the overloaded function for the representation type.

For example, in Gofer/Hugs, the overloaded equality in s::Set a == s’::Set a, used
in the definition of functions of abstract type Set, refers to list equality, instead of set
equality.

In Haskell [Pe97, Tho96] and SML [MTH89, Pau96|, abstract types can be defined by
means of the module system. In Haskell, the approach requires the use of datatypes as
representation types; an abstract type is defined by not exporting the constructors of a
datatype. In this way, only the exported functions can be used to operate on values of that
type. As with the abstract type construct in SML, this approach uses explicit constructors
in the definition of the abstract type functions.

In another approach based on the module system, a signature (i.e. a description of the
interface of a module) can be used to abstract from the representation type of a module
(called a structure in SML). In such a signature, only the (so-called) arity of a type can
be specified, in order to hide the representation type. It should be noted that the module
system in this approach is not simply used as a means of controlling the name space.

All these approaches, used for the definition of abstract types, do not allow values
of these types to be used in pattern-matching. This limits the use of abstract types in
programs. In this paper we propose a new form of abstract type definition, based on that
used in Gofer and Hugs, which allows pattern-matching for values of abstract types.

Abstract type definitions can use Wadler’s notion of views[Wad87b]. A type definition
can now give, in a simple and uniform way, either a type synonym, a datatype, an abstract
type, an abstract type with views, a subtype of an existing type, or a module (collection
of declarations). As with Wadler’s views, the main motivation is to provide the possibility
for values of abstract types to be used in pattern-matching, giving these values a first-class
status.

It is possible to specify more than one view associated with a given abstract type. The
representation can be changed without changing the abstract type view, in which case
users won’t have to modify their code. This enables an easy and incremetal extension of
types, with propagation of type information.

With regards to the relation between abstract and representation types, it holds that:

e the representation type may have values with no abstract counterpart. For example,
for an abstract type Rational implemented with representation type Integer X
Integer, all values (n,0), where n is an integer, have no abstract counterpart;
DateOfYear with representation type Day X Month X Year may have several values
with no abstract counterpart (for example, with Year = Integer).

e the representation type may have more than one value that have the same abstract
counterpart. For example, for the Rational type above, (m,n) and (m',n’) represent
the same rational number if m xn' = m/ x n; for a queue a; - - - a,b,, - - - by represented
as a pair of lists ([a1, ... ,a,], [b1,. .., bn]), values ([], [b1, ... , bn]) and ([by, - .. , b1], [])
represent the same queue.

When writing an abstract type definition, an abstract value should always be guar-
anteed to have a valid representation. When more than one representation exists for the
same abstract value, an abstraction function specifies one of them as canonical.

The paper describes the semantics of a kernel language with the proposed type def-
inition mechanism, which can lead to a simple and efficient implementation, based on
transformations to pattern-matching on values of the representation type whenever there
is an isomorphism between (the relevant view of) the abstract type and its representation
type; the decision of when such an isomorphism exists is simple: it exists exactly when no
abstraction function is needed (for that view of the abstract type).

The type of values of the representation type is synonymous with that of the abstract
type in definitions occurring inside the abstract type definition. These values are inter-
preted (unless explicitly indicated otherwise, by means of a type annotation), as values of
the abstract type. This allows overloaded operations defined for the abstract type to be
used inside the abstract type definition.

With datatype definitions, if a type (implementation) is changed then all program parts
that perform pattern-matching on constructors of values of that type need to be modified.
With abstract type definitions, a representation may be changed without the need for these
modifications, but no pattern-matching can be performed on values of this type. A type
with a view changes this situation. Its representation (implementation) may be changed
without having to change user’s code, if the view (interface) is not changed.

The rest of the paper is organized as follows. Section 2 presents the type definition
construct by means of several Haskell-like examples, section 3 gives the semantics and
section 4 concludes.

2 Proposal

This section introduces, by means of several Haskell-like examples, the ideas related to
a unifying programming language construct to support the definition of synonym, data,
abstract and sub-types.

2.1 Stack and Rational

We start with a very simple and widely used example, of type Stack:

type Stack a = [a]

in emptyStack = []
push = (:)
pop = tail
top = head

The definition patently specifies the identity isomorphism between stack and list types. In
spite of this, values of type Stack cannot (yet) be used in pattern-matching.

The bindings for emptyStack, push, pop and top can be used to create, and operate
on, values of type Stack.

In this example, push has type a -> Stack a -> Stack a. This means that, in the
abstract type definition, values of the representation type are typed as values of the abstract
type. This can be overriden by means of explicit type signatures. In the abstract type
definition, the abstract and representation types are synonymous.

To enable pattern-matching, a view must be given:

type Stack a = [a]
in emptyStack = []

push = (:)
pop = tail
top = head

is EmptyStack | Push a (Stack a)

This is all that is required for values of type Stack to be used in pattern-matching.

The constructors of values of type Stack, namely EmptyStack and Push, have corre-
sponding bindings that give values of the representation type, respectively emptyStack
and push.

Functions pop and top above could as well be defined, respectively, by pop (Push a
x) = x and top (Push a x) = a. A more complete and careful definition would also give
proper error indications for the cases of popping from and accessing the top element of an
empty stack.

The following example defines abstract type Rational, illustrating the definition of an
abstraction function, that occurs due to the possibility of having more than one represen-
tation for the same abstract value. Type Rational is defined as follows:

type Rational = (Integer, Integer)
in rat (x, y) = reduce (x * signum y) (abs y)

where reduce _ 0 = ... invalid rational number:denominator=0
reduce x y = (x ‘quot‘ d, y ‘quot‘ d)
d =gcdxy

is Rat (x, y)

It should be noted that, in an expression like let Rat (x,y) = rat (4, 2) in ... |,
for example, (x,y) is equal to (2, 1), and not to (4,2).

The absence of constructors and of bindings for abstract type functions and values
indicates a transparent (synonymous) type definition, as in type Stack a = [a]. In the
absence of the type equality and bindings, we have a data type definition, as in type Stack
is EmptyStack | Push a (Stack a). In the abscence of constructors and type equality,
we have bindings, forming a module.

2.2 Type Queue

It has already been mentioned that abstract values should always be constructed so that
it is guaranteed that they have a valid representation. This ensures that pattern-matching
of abstract values will never fail because a value has been created with no correct abstract
view. If there exists more than one valid representation for the same abstract value,
an abstraction function must be defined in order to choose a given (so-called canonical)
representation.

Type Queue defined below illustrates a case with more than one representation for the
same abstract value:

type Queue a = ([al,[al)
in emptyQueue = ([1,[])
ins a (f,r) = (f, a:r)
rem ([1,[]) = error ...
rem (a:f, r) = (a, (f,r))
rem ([1, r) = rem (reverse r, [])

For example, values ([1, [2,1]) and ([1,2], []) represent the same queue.
In such case, a canonical representation is required for pattern-matching:

type Queue a = ([al,[al)
in emptyQueue = ([1,[1)
ins a (f,r) = (f, a:r)
rem ([],[]) = error ...
rem (a:f, r) = (a, (f,r))
rem ([1, r) = rem (reverse r, [])
is EmptyQueue | RView a (Queue a)
abs ([1, [1) = EmptyQueue
(f, a:r) = RView a (f,r)
(f, [1) = abs ([], reverse f)

Thus, for example, ([1, [2,1]) is the canonical representation for a queue with 2 in the
rear and 1 as the only other element.

2.3 Complex with Cartesian and Polar views

This section illustrates an example with two views (cartesian and polar) for the same type
(of complex numbers), which can be mixed together. Cartesian coordinates is the chosen
representation:

type Complex = (Real, Real)
in cart x y = (x,y)
pole r t = (r*cos t, r*sin t)
is Cart x y

is Pole x y
abs(x,y) = Pole (sqrt(x~2 + y~2), atan2 y x)

We can now write, for example:

(Cart x y) + (Cart x’ y’) = cart (x+x’) (y+y’)
(Pole r t) * (Pole r’ t’) = pole (r*r’) (t+t’)

magnitude (Pole r t) =r
abs z = cart (magnitude z) O

2.4 Extending Types

Normally, one cannot change the representation of a type without having to modify every
piece of code that performs pattern-matching on constructors of values of that type. No
longer: with pattern-matching on abstract types, we can change the representation, modify
and provide new, more efficient abstract functions that operate on the changed representa-
tion, and simply provide an abstraction function corresponding to the new representation.
If the abstract view can remain the same, users will not have to modify their code.
Consider for example a binary search tree implemented by means of a binary tree:

type BTree a is Leaf | Node a (BTree a) (BTree a)

type BSTree a = BTree a
in leaf = Leaf
insert ... =
delete ... = ..
size Leaf = 0
size (Node a t t’) =1 + size t + size t’

is BTree a

We can define, for example, a function to return the so-called n-th element of the search

tree, as follows:

gElem:: Int -> BSTree a -> a
gklem n Leaf = error ...
gElem n (Node v t t’)
n
n

| n < st = gElem (n-1) t
| n > st = gElem (n-1-st) t’
| n == st=v

where st = size t

Suppose then that we want to change the representation of the binary search tree, by
adding an extra field to hold the size of the tree. Then, we can maintain the same abstract
view, and change only abstract type functions, as follows:

type BSTree a = L | N a (BTree a) (BTree a) Int

in leaf = L
insert ...
delete ...
size L = 0
size (Natt’>n) =n

is BTree a
abs N att’>n=DNode at t’

Function size, using the new modified representation, must be defined in the abstract

type definition.

2.5 SubTypes

A Wadler’s view[Wad87b] defines a subtype of a given (viewed) type, not a new abstract
type. For example, type Peano[Wad87b, Section 2] is a subtype of Int that avoids the
inefficient datatype representation data Peano = Zero | Succ Peano . We write it as

follows:

type Peano <= Int
is zero = 0
succ:: Int -> Peano
succn | n>= 0 = n+l
is Zero | Succ n
abs 0 = Zero
n = Succ(n-1)

The explicit signature for succ is used to allow, for example, succ 4 instead of succ (succ
(succ (succ zero))). The latter form is still allowed, as Peano is a subtype of Int
(cf. Peano <= Int).

The condition n>=0 guarantees that no invalid representation is created for a value of
type Peano.

A user of type Peano can write a recursive addition function on peano values as follows:

Zero+n = n
(Succ n’)+n = succ(n+n’)

Considering that the binding for (+) above involves a recursive definition, we obtain
(+)::Peano -> Peano -> Peano.

3 Semantics of Pattern Matching

This section describes the semantics of bindings that use constructors of values of abstract
types, and illustrates it with some examples.

Following the Haskell report [Pe97], the semantics is defined by translation to a simpler
case expression. We need to be concerned only with the translation of case expressions,
since all patterns (occurring in function bindings, lambda abstractions, pattern bindings
etc.) ultimately translate into case expressions.

The semantics is based on using the abstraction function to convert values of the rep-
resentation type into values of the abstract type, and on performing pattern-matching on
values of the abstract type.

We consider the semantics of a case expression ¢ in the following form, to which more
general case expressions may be semantically translated:

case z of
p —>e€
> ¢

where z is a variable, p is a pattern of a given (view of) abstract type T, and e, ¢’ are

expressions.
We let p= C xy - - -z, for some variables x1,... , x,,, and define the semantics of ¢; as
follows:
[eo] = if abs(z) = Ce;---e,, for some ey, ... ,e,,
then case ¢; of
x) => ... casee, of
x> e[y = 2, ... xn = 2l]]

else [¢']

The notation e[x; :— e;] denotes the textual substitution of e; for z; in e.
Letting p = C xy - - -z, does not impose any restrictions since, for any other patterns
Pi,--- ,Pn, We have:

[case @ of {Cpi---pp => €5 - > €}] =
case x of {
Cuxy+--x, => case x; of {
p1 -> ... case x, of {p, => [e]; - —> [€']}

Values abtsract type T are represented as values of type R; view types (i.e. abstract
types) are constructed only for pattern-matching, using the abstraction function (abs)
defined for that view.

In some cases it is not necessary that the abstraction function be explicitly defined.
These are cases where there exists a “simple” isomorphism between the abstract and rep-
resentation types, in the sense that, for each constructor of the abstract type of a given
arity, there exists a unique corresponding constructor of its representation type with the
same arity. In such a case, whose occurrence is easy to be checked statically, the abstraction
function is implicitly defined by abs(C! x;; - - - wi,) = C; x4y - - - @4, , for each i = 1,... | n,
where {C;} and {C!} (for i = 1,...,n) are respectively the sets of constructors of type T
and its representation type, and C' = (Y, for some 1 < k < n.

The following example illustrates the transformation of a case expression to the form
of ey above:

[case e of { alts } | =
(\z -> case x of { alts }) ¢

It should also be noted that an implementation is not expected to use this semantics
directly, since that would generate inefficient code. A more efficient implementation can
use the same general ideas explored in e.g. [Wad87a).

In particular, the implementation can be based on values of the representation type,
whenever no abstraction function is defined, or when the abstraction function is defined
and its right-hand side does not use functions, but only variables and constructors.

For example, the abstract view of Rational is isomorphic to its representation type
(Integer, Integer) (no abstraction function is defined), and the translation of:

let Rat(x,y) = rat(x,y) in ...

can be given as follows:

case rat(x,y) of
(x,y) => ...

The canonical representation can be used in order to keep performing pattern-matching
on values of the representation type, if the abstraction function is defined by using only
variables and constructors, as illustrated by the following example. The translation of:

size q = case q of
EmptyQueue -> 0
RView a g -> 1 + size q

can be given as follows:

size q = case canonical q of

(i,) >0

(f, a:r) =1 + size (f,r)

where function canonical is obtained directly from the abstraction function:

canonical ([1, [1) = (0, [1)
(f, a:r) = (f, a:r)
(f, [1) = canonical ([], reverse f)

If function calls are used in the definition of the abstraction function, as for example
in the case of complex numbers (section 2.3), pattern-matching is done on values of the
abstract type, using the abstraction function. For example, the translation of:

(Pole r t) * (Pole r’ t’) = pole (r*r’) (t+t’)

can be given as follows:

x * y = case abs (x) of
Pole r t -> case abs (y) of
Pole r’ t’ -> pole (r*r’) (t+t’)

4 Conclusion

A simple language construct has been presented. It constitutes a unifying mechanism that
supports the definition of type synonyms, datatypes, subtypes, modules (collections of
declarations), abstract types, and abstract types with views. Abstract types with views
allow pattern-matching for values of abstract types.

A very simple semantics of pattern-matching for values of abstract types has been
presented. The proposed construct for the support of abstract types has a simple and
efficient implementation. In particular, it can use pattern-matching on constructors of the
representation type whenever there is an isomorphism between (the relevant view of) the
abstract type and its representation type; the decision of when such an isomorphism exists
is simple and based directly on the abstract type definition.

Further work is planned in order to implement a prototype supporting the proposed type
definition construct. This will provide scope to obtain more experience on the expected
advantages of this construct, in particular with respect to the ability of using pattern-
matching on values of abstract types and changing the implementation of an abstract type
without changing its views.

References

[Jon98] Mark Jones. Hugs ~ The Haskell User’s Gofer System.
http://www.haskell.org/hugs/, 1998.

[MTHS89] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1989.

[Pau96] Lawrence Paulson. ML for the Working Programmer. Cambridge University
Press, 1996. 2nd edition.

[Pe97] John Peterson and Kevin Hammond (eds.). Report on the Programming Lan-
guage Haskell, A Non-strict, Purely Functional Language (Version 1.4). Tech-
nical report, Haskell committee, April 1997.

[Tho96] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-
Wesley, 1996.

[Wad87a] Philip Wadler. Efficient Compilation of Pattern-Matching, chapter 5 of The
Implementation of Functional Programming Languages, Simon Peyton Jones,
pages 78-103. Prentice-Hall, 1987.

[Wad87b] Philip Wadler. Views: a way for pattern matching to cohabit with data abstrac-
tion. POPL’87, 14:307-313, 1987.

