III Simpésio Brasileiro de Linguagens de Programagao 93

Interaction Based Semantics for Mobile Objects

Marcelo de Almeida Maia
marcmaia@dcc.ufmg.br
Universidade Federal de Ouro Preto

Roberto da Silva Bigonha
bigonha@dcc.ufmg.br
Universidade Federal de Minas Gerais

Abstract

In this work we present the use of a novel language based on Gurevich
Abstract State Machines[7] to specify active mobile objects semantics. We
focus on the mobility support based on the explicit interaction abstraction
between units of specification. The mobility is expressed by changing the
communication topology dynamically. The interaction specification part of a
unit also provides usual constructions, such as sequential, parallel, and non-
deterministic composition, used to describe the synchronization restrictions
the units must preserve between themselves. We show how the proposed
method provides a suitable way to reason about specifications.

Keywords: mobility, formal semantics, reasoning, ASM

I Introduction

The nineties have been marked by a great explosion in the use of the Internet. The
Wide World Web is accessible everywhere in the world, and this situation causes a
fubstantial impact on how people use computers. Tools for developing the corre-
iponding new generation of programs have been evolving to address problems such
il mobility, security, fault-tolerance and many others. But such class of tools still
lncks solid mathematical foundations that would help assessing the final product
lishavior. Because of the inherent difficulty of these issues, i.e, mobility and con-
tiirrency, the use of mathematical formalism to help the systematic development of
turrect new generation applications is even more imperative than for the classical
applications. '

In order to address these issues, we have proposed new abstraction mechanisms[9)
[t tho context of Abstract State Machines (ASM) formal method[7]. The methodol-
upy for producing ASM specifications provides a vertical abstraction mechanism, in
Ll wonse that the ground model (the model resulted from transcripting the informal
apecification into the moethod language) is successively refined until considered ade-
iate, Mowaver, 16 sl doog Inele soma kitd of horizontal abstraction for composing

94 111 Simp6sio Brasileiro de Linguagens de Programagio

existent specifications. In the context of ASM, there is already some work in the
direction of providing them with some kind of horizontal abstraction. Glavan and
Rosenzweig developed a theory of concurrency [6] that enables the encoding of some
traditional calculus, such as the 7—calculus{11] and the Chemical Abstract Machine
[2]. However, Glavan’s work does not address an explicit message passing mech-
anism and it does not support encapsulation and information hiding mechanisms,
issues which will be directly treated in this work. May [10] has developed a work
with similar aims as ours, and although it provides some form of encapsulation and
information hiding, the usual modularization concepts must be further added to the
model. The explicit message passing encoding is not considered too.

Instead of putting on the user the burden of providing the whole low-level spec-
ification of the communication topology and the message interchanging between
different specifications, as it occurs with the pure ASM method, our approach pro-
vides special constructions to help the explicit specification of how different pieces
of specification interact with each other. We will not try to defend, for the moment,
the choice of this approach, since we hope the reader will be convinced when reading
our case study.

In the next section,-we set the context on which we will be interested. In Section
3 we review the ASM method. In Section 4 we review our extension to the original
language of the method. In Section 5 we go into more details of the main body of
our extension: the interaction specification. In Section 6 we illustrate the method
by means of a case study. And finally, in Section 7 we conclude standing up for
the suitability of the new constructions in the development of large scale concurrent
mobile specifications.

2 Active Mobile Objects

The recent explosion of the Internet and the World-Wide-Web originated a new
model of computation that previous methods of specification seems not to address
satisfactorily. Here we will not try to define exactly what are all the necessary
abstraction mechanisms to support this new model of computation. Instead, we will
propose an abstract framework on which important features of mobile systems may
be reasoned about. This framework eventually may be extended to support more
features related to mobile systems. We hope to demonstrate the facility provided
by the new specification framework.

Perhaps, the main work that has influenced the researches on the formal seman-
tics for mobile systems is m-calculus[11], where the channels of communication can
be transmitted over other-channels, so that a process can dynamically acquire new
channels. The transmission of a channel over another channel gives the recipient
the ability to communicate on that channel. It is becoming a common approach,
the addition of discrete locations to a process calculus and consider failure of those

locations[1][5]. The latter adds a notion of named locations, and a notion of dis

tributed failure; locations form a tree, and subtrees can migrate from one part of the
tree to another, therefore becoming subject to different observable failure patterng
Cardelli, in a recent work[3], argues for a more explictt notion of movement across

boundaries, and defines the ambient caleulus(4)

IIT Simpésio Brasileiro de Linguagens de Programagao 95

. Instead, our approach for mobility is based on the dynamic construction of dis-
tributed active daemons and on the dynamic configuration of the communication
topology between them. Our solution is entirely distributed, in the sense that all
global information may only be inferred by input interactions with the environment.
The location issue is addressed by a local state information. Barriers to mobility
are addressed by pairwise commitment between interacting units. Another differ-
ence of our approach is that it is not based on process algebra. Instead, we use an
operational approach to formalize our ideas.

3 Abstract State Machines

{sztract state machines (ASM) [7] are transition systems whose states are first-order
interpretations of functions symbols defined by a signature T over a non-empty set U
called the super-universe. These states are also called static algebras. The transitiovn
Felation is given by a finite set of transition rules describing the modifications of the
interpretation of the function symbols from one state to another. This is the reason
why ASM were formerly called Evolving Algebras. Before introducing the transition
rules, let us define the auxiliary notions: locations, updates, update set. A localion
| of a state S is a pair (f, z), where f is a function symbol, 7€ U™ and n is the arity
of f. 'An update o over the state S is a pair (I,t), where [is a location and ¢ is a
term in the sense of first-order logic. If v € U is the value for interpreting the term
i on S, then firing @ = ((f,), t) at state S transforms S into S’ such that the result
of interpreting (f,Z) is v and all other locations are not affected. An update set
Updates(R, S) is a set of updates over the state S, collected from the transition rule
R. The update set is consistent if it does not contain any two updates «, o’ such
that ¢ = (I,z) and & = (I,y) and z # y. Otherwise, the update set is inconsistent.
To fire an update set over a state S means to fire simultaneously all its updates and
produce the corresponding state S’. Firing an inconsistent update set means to do
nothing, i.e., means to produce a state S’ = S.
The transition relation of ASM is defined by the following transition rules:
Rintii="" f{ty, ..., t) 1=t

| R;...Ry

| if e then R; else R, endif

| extend U with v R; endextend

| choose v in U satisfying e R endchoose

| var v ranges over U R; endvar
where e is a boolean term, and v is a variable.

The first three kind of rules are called basic rules, respectively, the update rule
[he block rule and the conditional rule. Their semantics are given by means of m;
update set Updates(R, S), i.e., to fire R over a state S fire Updates(R,S). This
npdate set is inductively defined on the structure of R: i

L. if R= f(ty, . tn) 1# ¢ then Updates(R, S) = {(!, S(?))},

where L= (f, (8(t1), 0 8(1))), and S(¢) is the result of interpreting ¢ on 9,
2, ll R = Ry Ry then Updatealt, 8) s UL, Updates(R;, 9); . v
3, 0F Rom 4 e than My alaa Hy andif, then Updates(R, S) {8 defined as:

96 111 Simpésio Brasileiro de Linguagens de Programagdo

if S(e) holds
otherwise.

Updates(R,, S)
Updates(Rz, S)

The last three kind of rules introduce variables, respectively, the extend rule
which produces new fresh elements that are added to the extended universe, the
choose rule which performs non-deterministic choices, and the var rule, which al-
lows a simple form of synchronous parallelism. Note that choose and var resemble,
respectively, the existential and universal quantifiers from first-order logic. Variables
must be bound to some value of a universe belonging to the super-universe. So, the
definition of the update set is extended with an environment p which binds the
variables to values, and a choice function § which determines the variable bindings
for extend and choose rules. The function £ maps the bound variables to elements
of a special universe called Reserve, which is used to produce new elements. The
update set Updates(R, S, p,€) can be defined inductively as well.

Given an initial state So, a run is a sequence of states So, S),... such that the
state S;.1 is obtained as the result of firing the transition relation (represented by
the update set of all rules) at S;.

Finally, let us define a multi-agent ASM, which contains several computational
agents, which execute concurrently a number of programs (called modules). A dis-
tributed ASM consists of a finite indexed set of programs (modules) and finitely
many agents a such that, for some module name v, Mod(a) = v, where the function
name Mod represents the relation between modules names and agents. Each mod-
ule has a corresponding enumerating universe of agents, which can be extended or
contracted as necessary. There is also a nullary function name self that allows the
self-identification of agents: self is interpreted as a by each agent a.

An agent a makes a move from a given state S if the corresponding update set
of a is fired at S resulting a new state S’. Thus, a move can be represented as a
pair (S, S'). Building upon this basic concept of move, a partially ordered notion of
run for distributed ASM can be defined as a triple (M, A,), where:

1. M is a poset (partially ordered set) where its elements are agent moves.

9. Ais a function that, given a move from M, returns the agent performing that
move. It is used to impose that the set {m : A(m) = a} is linearly ordered.

3. o is a function that given an initial segment of M (possibly empty) assigns to it
the corresponding state S. An initial segment of a poset P is a substructure X’
of P such that ifz € X andy < zin P theny € X. Since X isa substructure,
y < zin X if and only if y < = in P whenever z,y € X.

4. The coherence condition: If z is a maximal element in a finite initial segment
X of M and Y = X — z, then A(z) is an agent in ¢(Y"), and o(X) is obtained
from ¢(Y") by firing A(z) at o(¥").

4 Interacting Abstract State Machines

Now we present, our proposed extensions to the method ASM. For the sake of under-
standability, we will present the new language in an informal way, The interested
reader may find the formal translation of the Internctive Abatract State Machines
(IASM) Tanguage to the pure ASM notation in (]

!HIH hasto (||n-|’;|(ux:;

IIT Simpdsio Brasileiro de Linguagens de Programagio 97

1 o= function_name -> u_name
| term:label -> u_name

| buffered_var <-- u_name.pub_name

| function_.name <- u_name.pub_name
| connect wunit:U.s in ¢ endconnect

| new unit: U

| destroy unit: U

| I R A R I

| waiting(name)

|

if guard then 17 endif

Figure 1: Interaction Rule

A specification is defined as a set of unit definitions and unit instances. The
intention of describing a system as a set of units is to encapsulate smaller pieces
of specification. Unit definitions and unit instances are based on the concept of
pure ASM modules and agents, respectively. Each unit definition corresponds to
an ASM module, and each unit instance.is an agent derived from the ASM module
corresponding to the respective unit définition.

A unit definition has several sections:

1. Internal State
The internal state of a unit is represented by the interpretation of the private
r-ary function names. The state can be altered only by local unit rules and
explicit interactions, which will be described soon. The only way the internal
state of a unit can be transmitted to another unit is by an explicit interaction
between them. The purpose is to achieve a high degree of information hiding
and a rigid notion of distributed behavior.

2. Internal Rules
The internal rules of a unit definition have the same syntax as those of the
ASM model. They can refer only to the internal state, i.e., references to the
state of other units are forbidden. A section designated as rules defines all
the internal rules of a unit.

3. Interaction Rules
The interaction section establishes how communication between units can oc-
cur. It does not only define the information interchanging but also the syn-
chronization restrictions imposed between the units.)

i Unit Interactions

It Lhis section, we will present the several rules used to specify the interaction
pibtorn of a unit, In Figure 1 we show the possible interaction rules.

.1 Input and Output Rules

i "

and e pee ueed, regpectively, to send a value to a unit

Cotput) wnd Go recolve wovalue from o ande onto a vartable (input), The semantics ig

98 I Simpésio Brasileiro de Linguagens de Programagio

unit sender

interaction
msgsend:channel -> R

unit receiver

interaction
msgrec <- S.channel

Figure 2: Example of Input and Output Interaction

similar to the usual asynchronous message exchanging model, su.ch that, the sending
of a value is non-blocking, while the reception is blocking. In F}gurc 2 we show the
input/output interaction between two units. The output I‘l‘lle is defined by a term
which denotes the value to be sent (msgsend), a label which specifies tl?e output
channel (channel), and a target unit (R) which will receive th(? corresponding value.
When the term being sent is a function representing a location, the 1‘abel may b.e
omitted, and it will be assumed equals to the function name. The .mput- rule. is
defined by a location which will receive the value (msgrec) and a 1dlent1ﬁcatlon
of the so;lrce of that value. This identification is expressed by the name of the
source unit (S) and the same label of the corresponding output rule (channvel).
The specification must obey the condition that there can not be generated jcwo or
more different outputs for one corresponding input in the same steF. If~7 this case
eventually occurs, then it should be used a buffered input operator <==".

5.2 Unit Instantiation

The instantiation of a unit causes the creation of an agent which executes the re-
spective unit definition. There are two ways of instantiating units:

1. statically: a specification is defined by a set of unit definitions an.disome initial
unit instances. The declaration of a unit in the startup definition .actua.lly
creates statically a unit instance that will live the whole time the specification

is being executed.

9. dynamically: the declaration of a dynamic unit as part of the interngl stat‘u ol
avunit deﬁr;ition does not create any instance. Instead, the declaratpn defincey
a function that will be updated with a unit instance, either a statically or &
dynamically created one. A dynamic unit may be created and destroyed with
the interaction rules new and destroy, respectively.

5.3 Unit Connections

As stated before, a unit declaration inside a unit definition o'nl_v (1()ﬁ1.1c:;. a func
tion. Our intention is that this function should be updated w1t‘h a unit instance,
whose definition contains an internally declared fun(:l',im‘x W}'l'l(',l% is also expected (0
be updated with the former unit instance. This situation indicates an agreemoil
and it is performed with the rile connect u i Ug dn
I orcder to establigh a connae

between the two instances,
endconnect. Consgider two unit instances i and 1 I
tion batween theso two units, inside oncl unlt there must have o eonnact pule, such

III Simpdsio Brasileiro de Linguagens de Programagio 99

that, when both rules are executed, they update the proper internal functions in u,
and u,, with up and u,, respectively, thus completing the connection.

The arguments for this rule are: 1) a function name u corresponding to a unit
instance, 2) the name U corresponding to the unit definiton from which the instance
u was derived, and 3) a function name s declared inside I/ that we expect to be bound
to the current unit instance.

The connect rules may be used in several circumstances:

e the current interaction rule will be waiting for a non-identified unit instance
asking for connection, i.e., the function u is undefined. If the connect rule
omits the function s, it is expected to exist just one possible connection in
U. If the connect rule omits the name of thg other unit definition, then
any unit instance may perform the connection, otherwise only unit instances
derived from the proper unit definition may perform the connection. Inside
the connect rule, the function u denotes the connected instance.

e the connect rule specifies exactly which unit instance has to be connected.
In this case the outer interaction rule will be waiting until that unit instance
agrees with the connection. Just like the previous case, if the connect rule
omits the function s, it is expected to exist just one possible connection in U.

It is necessary a successful connection in order to execute the interaction inside
the connect rule.

5.4 Interaction Composition and Runs

The notion of run for interactive ASMs is the same as that of pure ASMs, ie., a
gocuence of states, where each state is given by the union of all instance states. But.
compared with the pure ASMs, the interaction portion of the specification has a
yome different rules, such as, the connect and input which may be not executed in
Just one step of the run. In order to fit the semantics of these intructions, as much
114 possible, in the context of the pure ASM we can view these rules as conditional
riles. Suppose we need to evaluate the update set of a unit instance in order to
proceed with the step, and we have a connect or an input rule. Before performing
(liose rules we first check if it is possible to complete them. If not, then in the next
iiep they will be checked again.

Definition 1 Parallelism: The interaction section is a block of interaction rules i,

| .. | tn, where each of them is enabled to ezecute just like a block of pure ASM
tules, The operator | may be omitted.

Definition 2 Sequence: If there is an enabled sequence interaction with the follow-
g form: (i;; de;; ++ - 33 o) then one and only one interaction i (1<k<n)is
enabled at each time and all the sequence is executed in the cycle. Note that we use
e aymbol "0 to avoid confusion with the symbol ;" already used in pure ASM.

Dollnition 8 Blocking connection: Suppose there is an enabled interaction with the
Jillowing form: (connect & ;i 1), where § is the body of the connect rule and i
Woan dnteraction rule, Then, the respective connect blocks @, until the connection
plleetively oceury

100 II Simp6sio Brasileiro de Linguagens de Programagio

Definition 4 Blocking input: Suppose there is an enabled intemctio'n witl?, the fol—
lowing form: (@ <= w.b;; i), where a is a function name, and u.b is an incoming
value from the function name b of the unit u. Then, the respective input blocks 1,
until the input effectively occurs.

5.5 Synchronization of Internal Rules and Interactions

Unit internal rules are just like ASM rules and their semantics is exactly the same.
The interaction and internal rules are fired simultaneously by the same agent dae-
mon. In order to guarantee appropriated synchronization when executing these
rules, the IASM method provides:

1. A waiting rule used in the interaction section. This rule defines a.boole_an
function waiting. The rule, whenever executed, updates the function w1th
true and freezes the execution of the current node in a interaction cycle until
the function is updated with false.

[

_ All interactions may be labeled, for example:
msgrec <- S.msgsend : nb._revd_msgs
The corresponding label denotes an integer value which corresponds to how
many times an interaction has been completed. This value can be used by the
intervnal rules.

6 Reasoning Capability

Let us give a problem to be specified. This will. be usefulliwhen COI?pari}I}lg this
approach with others and for illustrating its reasoning capability. FOUO\\-lngt e p;%re
ASM philosophy we do not plan to introduce a logical calculus tF) prove pr(?perblei
about the specification. Instead, we make rigorous, mathematical reasoning bu
3! ssociated formal system. .
mc}’ll"ol?et }?Iilgiizog reproduces vérbatim a simplified and eventuall.y modiﬁesi ve1;s1on
of the problem consisting in managing a virtual program committee meeting for a
conference. The problem was presented as a challenge in (3]

Now we will give a partial Interactive ASM semantics for this probl.em. For th(;
sake of conciseness, we will focus on the interaction section of the specification ax.l(‘
will omit the declaration of the internal state and the the internal rules of e:_ich unit.
We will also omit the delimiters endif, endconnection in favour of an indented
i rltlll?%lsgjllree 4, we present the unit definition Author which models the belflav"ior an
author must have in order to correctly participate of a call for papers. It has the
following three parallel actions:

1. Whenever there is a paper ready to be submitted, the location wandts ‘l.u,.«:'u,lwinnl‘/,
(supposed to be initiated with false) will be set (o true and the first action

i his acti oquires aoo i Ath any ingtance derived
will be enabled. This action requires v connaciion with any ing

) i i Ll paper and respective 3
from Submission, and then @) perfopmu mn Ouipu [i |

III Simpé6sio Brasileiro de Linguagens de Programagio 101

A conference is announced, and an electronic submission form is publicized. Fach
author fetches the form and activates it. Fach author fills an instance of the form
with the required data and attaches a paper. The form checks that none of the
required fields are left blank and sends the data and the paper to the program chair.
The program chair collects the submission forms and assigns the submissions to
the committee members, by instructing each submission form to generate a review
form for each assigned member. Each assigned member is a reviewer, and may
decide to review the paper directly or to send it to another reviewer. The review
form keeps track of the chain of reviewers. FEuventually, a review is filled and it
finds its way back to the program chair. The program chair collects all review
forms. The chair merges all review forms for each paper in a paper report form.
Then the chair declares each report form an accepted paper report form, or a
rejected paper review form, and finally returns this form to each author. All
accepted paper report forms are required to gemerate final version forms on which

the author attaches the final version of the paper and sends it back to the program
chair.

Figure 3: Problem Specification

unit Author

interaction
if (wants_to_submit) then
connect s : Submission in
data_paper -> s;;
response <= s.response
if (waiting result) then
connect the_chair.author result
. result <- the_chair.result
if (ready final) then
connect the_chair.author_final
nal -> the_chair

Figure 4: Unit Author

data, which are supposed to be consistently updated by the internal rules; i)
and performs an input from the Submission instance indicating if the paper
was properly received.

2. Whenever an author gets a response from a Submission instance, it internally
either decides to re-send the paper, or to stay waiting the result of the sub-
mitted or even to send another paper. All these actions should be specified by
the internal rules. In the case of waiting the result of the submission, all we
know is that the function waiting.result should be set to true. When-
ever this occurs, the second action will be waiting a connection from the
unit the_chair, which is a static instantiated one. Note that the function
the.chair declared inside the unit Awuthor is presumably initiated with the
flatic instance the_chair declared in the main specification defined in the
secuel. Whenever the connection is performed, the action will be waiting the
rerull to be sent from the.chair.

4 Tho thivd action s similar to the previous one: whenever an author gets the
repult 16 decicdes intornally (o send the final version, and so on,

_d

102

II Simpdsio Brasileiro de Linguagens de Programagio

all
all

unit Submission
" interaction .
connect a: Author in
data_paper <- a.data_paper;;
waiting(checking_data);;
if (data-ok) then
7ok :response -> a)
connect the_chair: Chair in
datra_paper -> the_chair;

else N
7 fail” :response -> a

Figure 5: Unit Submission

unit Chair
" interaction e
if (accepting_submissions) then
connect s: Submission in
data_papers <-- s.data_paper
if (data_papers <> nil) then
waiting(one_paper);; waiting(a_reviewer);;
connect reviewer : Reviewer.the_chair_paper in
a_paper —> reviewer : sent_review
if (sent_review > received_review) then
connect r: Reviewer.the_chair review in
review <- r : received_review
if (result-ok) and (not allnotified) then
waiting(a.result);;
connect author_result in
result -> author_result
if (receiving final_versions) then
connect author final in
final <- author_final.final

Figure 6: Unit Chair

The unit definition Submission acts as an intermediary between an author and

the chair. It models an agent that interacts with the author of a paper, getting

necessary information with an attached paper. The internal rules should make
the necessary checking, including the one that prevents papers being submitted

after the deadline. An agent instantiated from Submission performs the following
action:

1. It requests a connection with an author. Note that if there is not any author

wanting a connection, the sequence remains blocked until so. Then) it receives
the paper and respective data from the author, i) waits until the data is
checked, and i) sends a response to the respective author. If the data is
ok, the agent requests a connection with the chair, and sends the paper and
respective data to the chair.

The unit Chair has five parallel actions, each one represented by a guarded rule

evaluated depending only on its internal state.

1. The first action is enabled by an internal function which is presumably initi-
ated with true. It requires a connection with a Submission instance, possibly
attempting a connection, and if there is such one, it receives n paper and the
respective data into a buffered function,

III Simp&sio Brasileiro de Linguagens de Programacio 103

unit Reviewer

interaction
if (receiving from_the_chair) then
connect the_chair_paper in
a_paper <~ the_chair_paper.a_paper endconnect ;;
if (directly review) then
waiting(the_review);;
connect the_chajr_review in
review -> the_chair review
else
waiting(a_reviewer);;
connect 1: Reviewer.other in
firsthistory : history -> r
a_paper > r |
review ->r
if (receivingfrom_others) then
connect other: Reviewer in
history2 <- other.history |
a_paper2 <- other.a_paper |
review2 <- other.review endconnect ;;
if (review2 <> blank) and (head(history2) = the_chair review) then
connect_the_chair review in
review? : review -> the_chair
elseif (review2 <> blank or directly_review) then
if (directly review) then
wait(the review?2) ;;
connect head(history2) : Review.other in
tail(history2) : history -> head(history2) |
a_paper?2 : a_paper -> head(history2) |
review2 : review -> head(history?2)
else
connect r: Reviewer.other in
cons(self, history2) : history -> r |
a_paper2 : a_paper -> r |
review?2 : review ->r

]

0

b,

Figure 7: Unit Reviewer

The second action checks if the buffer for papers is not empty and then waits
an internal selection of a pair paper/reviewer and dispatches the respective
paper. Note that the channel that will receive the paper in the Review unit is
the_chair_paper.

. The third action action checks if still there are papers that were not sent

back by the reviewers. This checking is made easily, because we have labels
counting the sent and received papers, sent_review and received.review,
respectively. Note that the channel that will send the paper in the Review
unit is the_chair_review.

4. The fourth action waits an internal processing of the results (represented by

(he guard result_ok) and will be enabled only if there is any author that was
nob notified (represented by the not all notified).

[Minally the last action connects to the authors that wants to send the final
version of the paper and receives the respective version.

{22} ! (3 r . .
3 [l unit Reviewer has an elaborated scheme for creating the dynamic commu-
dliatlon botween the reviewers, An agent instantiated from the unit Reviewer has

S lsleally two interaction tasks:

i

I gats o paper from the chinde and, either directly reviews the paper, or sends
I to another reviewar togethor with n blank review form,

111 Simpésio Brasileiro de Linguagens de Programagio

There are some new features in this action.) it is opened two connections
to the same unit instance. This is necessary because the_chair can be con-
nected in the same step with two different reviewers: one that receives a paper
for review and other that returns a reviewed paper. In order to solve this
situation the_chair connects to different function names in unit Reviewer,
namely the_chair_paper and the_chair review. Whenever a paper is sent
from a reviewer to another, it is managed a list of reviewers which forwarded
the paper and the respective review. The function firsthistory is internally
defined to be a list with only one element: the_chair. Note the use of labels
that makes the input/output matching possible.

2. The agent receives a paper from another reviewer and if the paper is already

reviewed, the agent either passes the paper back to the chair, or passes it to
the appropriate reviewer. If the paper is not reviewed, the agent either directly
reviews the paper and passes it to the appropriate reviewer or just sends the
paper to another reviewer. Note that when passing a paper forward, the agent
adds its identification to the history of the reviewers for that paper. When
passing a paper backward in the history, it removes a reviewer from the list
being sent backward with the review.

One of the new features in this action is the use of terms in the connect and
output rules. Note that the function name other is crucially used by other
connect rules when passing a paper forward or backward. After receiving a
paper from another reviewer, the current one redirects the paper and respective
review through three possible rules. Note that while redirecting the paper, the
history is also being handled.

At last, we may specify the startup specification creating some initial unit in-

stances. Other instances must have to be created dynamically by some Authorization
unit, intentionally not specified. Now, we are going to present a proposition about
the previous example and show its validity to illustrate the reasoning mechanism.

Proposition 1 All submissions received by the chair generate a report form to the
author if, and only if, there is a reviewer that directly reviews the paper.

Pr

oof:

1. If, for each paper, there is a direct reviewer for it, then all submissions generates
a report form. We have that all the papers received by the chair are sent to a
reviewer. This is guaranteed by the second guard of the unit definition Chair,
that dispatches any submission that has not been sent to any reviewer. Since
this guard is parallel with all the others, it will be executed without being
blocked. We suppose that the internal rules are correct, so it will be selected
a pair paper/reviewer. The connection with the appropriate reviewer in the

channel the_chair_paper is guaranteed by assuming that the internal rules of

the unit Review properly sets receiving from_the.chair to true.

If the paper is already reviewed there are fwo possibilities: 4) The chair is the
aimoed to be initinted with the

head of the history list (the_chair review is
slatic instance the_chatr), The connection to (ha chadr is punrantoed boeame

I Simpésio Brasileiro de Linguagens de Programagio 105

f

O

specification
the_chair: unit Chair;
committee_memberl: unit Reviewer;

committee_memberN: unit Reviewer;
end specification

Figure 8: Startup Specification

there is an independent guarded rule in the unit Chair that will be enabled
whenever there is a paper that has not came back. Other important, and
easily Provable, lemma to guarantee the enabling of this rule is that the same
paper is not sent back to the author more than one time. Since the connection
is guaranteed the review reaches the chair.) The chair is not the head of
the history list. It is assumed that since a reviewer instance has the function
receiving_from_others set to true, it will not change this function, and so
the head of the history list will forever be enabled to be connected. S‘ince the
connection is guaranteed the history list is guaranteed to be consumed until

head evaluates to the_chair, because by definition first element of the history
1S the_chair.

If the paper is not reviewed there are two possibilities: i) The reviewer directly
reviews the paper and send it back through the history list. The review Wiil
certainly reaches the chair, and this is guaranteed in the same way of the
previous item. iz The reviewer does not review the paper. But, by aSSL;mption.
Fhere will be a reviewer that directly reviews the paper. So, bwv the previoﬁ
item, the paper will certainly be sent back through its history when reviewed.

Finally, assuming that the internal behavior of the_chair produces the final
result when all the reviews of the paper had come back, then by the fourth
guard of the unit Chair, we can guarantee that all results are sent back to
the authors, if the connection is successfully established. Assuming the guard
waiting result in the unit Author will be enabled, the connection between
the author and the chair will successfully occur.

. All submissions would have back the result report, only if there is a reviewer

that directly reviews each paper.

.Ikiuppose if, for a certainly review, there is not a reviewer that directly reviews
it. Then, that review will never be sent to the chair, and consequently, will
not be sent to the author.

Depending on the internal behavior of the chair when preparing the result, it
may happen that none of the authors receives the review, but this situation
has to be addressed elsewhere.(]

Conclusions

:l:hn language presented is suitable for producing clear mobile ASM specifications
['he dden of explicitly isolating the interaction between computing units with dif—.
[rent purposes make cloarer their interdopendencies, and provides a independent
diechnntam (or rensoning about the agent interactions, ‘

106 III Simp6sio Brasileiro de Linguagens de Programagao

The explicit interaction for connecting agents, even with a simple meaning, has
several usages: binds internal names dynamically, provides dynamic communica-
tion topology useful for specifying a wide spectrum of concurrent programs. and
resembles Web connections. The application migration is not modeled by a code
movement, but only by an update on the connection.

We have shown the reasoning capability of the method for a simplified example,
but the high modularization degree and the emphasis given to the interaction part
make us believe that the method will scale up to bigger specifications. Since the
proof has not an associated mechanized deduction, it is subject to errors, but the
chances of correctness for this specification is much higher than for totally informal
ones.

There are still some aspects that must be further studied:

1. from the software engineering point of view, issues such refinement and reuti-
lization, and,

9. from the Web usage point of view, failure and security issues.

References

[1] R. Amadio. An asynchronous model of locality, failure, and process mobil-
ity. In Proceedings of COOR INATION 97, volume 1282 of Lecture Notes in
Computer Science. Springer Verlag, 1997.

. Berry and G. Boudol. The Chemical stract Machine. Theoretical Com-
2] G.B d G. Boudol. The Chemical Ab Machi Th ical C
puter Science, 96(1):217-248, 1992.

[3] L. Cardelli. Abstractions for mobile computation. Position Paper, http: //www.
luca.demon.co.uk/Papers.html, May 1998.

[4] L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Founda-
tions of Software Science and Computational Structures, volume 1378 of Lecture
Notes in Computer Science, pages 140-155. Springer Verlag, 1998.

[5] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In Proc. 7th International Conference on Concurrency Theory
CONCUR 96, pages 406-421, 1996.

[6] P. Glavan and D. Rosenzweig. Communicating Evolving Algebras. In E. Borger,
H. Kleine Biining, G. Jiger, S. Martini, and M. M. Richter, editors, Computer
Science Logic, volume 702 of Lecture Notes in. Computer Science, pages 182
215. Springer, 1993.

[7] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Bérger, editor, Spec
ification and Validation Methods, pages 9-36. Oxford University Press, 1995.

[8] M. Maia and R. Bigonha. The Formal Specification of the In
teractive Abstract State Machine Language. Technical Report
006/98, Universidade Federal do Minas Clorais, Brazil, 1008
hl,lq)://www.d(:u,u('mp;.ln-/ “maremain/ingmlor il af

II Simpésio Brasileiro de Linguagens de Programacio 107

[9] M. Maia, V. Jorio, and R. Bigonha. Interacting Abstract State Machines. In

Proceedings of the 28th A !
Science, 1998, nnual Conference of the German Society of Computer

[10] }V;;IS; Speci’f):ing Complex and Structured Systems with Evolving Algebras
n SOFT’97: Theory and Practice of Software Development, 7Tth]m‘erna;

tional Joint Conference CAAP/F. i J
S e /FASE, number 1214 in LNCS, pages 535-549.

[11] R. Milner, J. Parrow, and D. Wi
L J. , . Walker. A calculus of mobil :
and II). Information and Computation, 100:1-77, 1992. RS e

	Scan 0
	Scan 1
	Scan 2
	Scan 3
	Scan 4
	Scan 5
	Scan 6
	Scan 7.pdf

