Abstractions for Mobile Computation in ASM

Marco Thlio de Oliveira Valente, Roberto da Silva Bigonha,
Antonio Alfredo Ferreira Loureiro, Marcelo de Almeida Maia

Department of Computer Science
University of Minas Gerais

30161-970 - Belo Horizonte - MG - Brazil
E-mail: {mtov,bigonha,loureiro,marcmaia}@dcc.ufmg.br

Abstract

In this paper we present a formal method for the specification of mobile systems
using Abstract State Machines (ASM). The method is based on the Ambient Cal-
culus, a process calculus developed to express mobility. In the work we show that
the fundamental abstractions of the Ambient Calculus can be expressed in ASM
without difficulty. In order to exhibit the feasibility of the proposed method, we
also show as a case study an ASM specification of a mobile system for electronic
commerce.

Keywords: mobile computation, ASM, formal methods

1 Introduction

Recently mobile systems are emerging as an alternative to increase the computational use
of the Web [1]. In the systems designed following this model, a computation can move
from one network host to another, where for example the resources needed to perform
its task are locally available. It is argued that this kind of system reduces network load
and latency and makes it easier to design more robust and fault tolerant systems [4].
Numerous packages are currently available to deploy mobile systems, most of them based
on Java. Among those packages, we can mention Telescript [8], Aglets [4], Voyager [6]
and Ajanta [7].

As this computational model becomes a reality, it raises the need to develop formal
methods for the specification of mobile systems. Through these formalisms, it will be
possible to correctly understand the behavior of those systems, to prove properties about
them and also to design new environments and programming languages to support their
development. Recently, some formal methods are being proposed with this intention.
Among them, the Ambient Calculus [1, 2] is the most prominent one, probably because
it has been originally designed having in mind the specification of mobile computation.

In this work, we show that the fundamental abstractions for mobile computation
presented in the Ambient Calculus can be mapped without difficulty to Abstract State

Machines (ASM) [3]. ASM is a formalism that has been successfully used to specify a vari-
ety of systems, including programming languages, computer architectures and distributed
and real time systems. We hope that with the method proposed in this paper ASM can
also start to be used in the specification of mobile systems.

This paper is organized as follows. In section 2, the main ideas proposed by the
Ambient Calculus are described. Section 3 presents Abstract State Machines and section
4 describes how the main abstractions of the Ambient Calculus can be expressed in ASM.
Section 5, formalizes the notion of mobile computation in ASM. In section 6, we show as
a case study the specification in ASM of a mobile system for electronic commerce. We
also prove in this section two propositions about this system. Finally, section 7 concludes
the paper and discusses possibilities for future work.

2 Ambient Calculus

Being the Web in large scale a global distributed system, there are some proposals to
express mobility in the Web using the already established formalisms to model distributed
and concurrent systems. Among these formalisms, one of the most used is the m-calculus
[5], which is based in the notion of processes communicating over channels, with the
ability to create new channels and to exchange channels over other channels. However,
such facilities are not enough to capture the notion of mobility as it is used in mobile
systems. In those systems mobility is related with a change in the execution environment
of a process and not in its number of channels. In this sense, it seems more correct to say
that in 7-calculus we have channel mobility and not process mobility.

Inspired in the 7-calculus, the Ambient Calculus [1, 2] has been proposed as process
calculus that focuses primarily on process mobility rather than process communication.
An ambient is a bounded place that has a name and that may contain processes and
subambients. An ambient can also move inside or outside another ambient. This property
is regulated by capabilities that the processes must possess. Being a bound place with
established borders, it is easy to determine what is moved together with an ambient.
Then in the Ambient Calculus, mobility is associated with the notion of crossing barriers
that delimit ambients, which can be hierarchically organized, forming a tree structure.

An ambient is written n/P], where n is the name of the ambient and P is the processing
running inside the ambient. The process P can be the parallel composition of several
processes. We also have operations to change the hierarchical structure of ambients.
These operations are restricted by capabilities. The process M.P executes an action
regulated by the capability M and then continues as the process P. There are three kinds
of capabilities: for entering, exiting and opening ambients.

The capability in m, used in an action #n m.P, instructs the surrounding ambient to
enter a sibling ambient named m. If m can not be found, the operation remains blocked
until a time when such ambient becomes available. If more than one ambient exists with
this name, either one can be chosen. The capability out m, used in an action out m.P,
instructs the surrounding ambient to exit its parent ambient named m. If the parent
ambient is not named m, the operation blocks until a time when such parent exists.
Finally, an open capability open m can be used in an action open m.P. This capability

provides a way of dissolving the boundaries of an ambient named m located at the same
level as open. If no ambient m can be found, the operation blocks until a time when such
an ambient exists. If more than one ambient m exists, any one of them can be chosen.

In the Ambient Calculus, we also have actions to replicate a process P, denoted by
/P, and to create a new name n in the scope P, denoted by (v n)P.

3 Abstract State Machines

Abstract State Machines [3] are a computational model where any sequential algorithm
can be specified in its natural abstraction level. In ASM, a state S is an algebra defined
by a vocabulary T of function and relation names, a set X called the superuniverse and a
interpretation function Val of vocabulary names into functions X* — X. Transition rules
are used to modify the interpretation of names from one state to another. The execution
of an ASM program is a sequence of transition rules fires that changes the machine state.

In ASM there are three basic transition rules: an update rule, a conditional rule and
a block construction rule.

An update rule has the form f(t,...,t;) := to, where j is the arity of f and #o,,

are terms. The fire of this rule in a state S, where the terms t,...,¢; are evaluated to
ao, . . ., a; respectively, gives a new state S’ where the function interpreted by the name f
has value ag in the point a4, ..., qa;.

A conditional rule has the following form: if ¢ then R; else R, endif, where ¢ is a
boolean term and R; and R, are rules. The semantics of this rule is trivial: if the term
¢ evaluates to true, then the next state is the result of firing rule R;; otherwise, it is the
result of firing R,.

Finally, a block construction rule has the form Ry, ..., R, and the following semantics:
the next state is the result of firing all the rules R; in parallel.

An ASM specification defines a initial state Sy and a transition rule R. The execution
of a specification is a sequence of states (S, : n > 0), where each S; is obtained firing the
rule R in S;_;.

4 Abstractions for Mobile Computation

The main abstraction for mobile computation proposed in Cardelli’s work was the notion
of ambient, defined as a “bounded place where computation happens”[1]. In ASM we also
have the notion of ambient (called environment in the method definition), but with the
aim of making available external functions used by the machine in its computation [3].
Among other applications, external functions are used to model input/output, to express
non-determinism and to provide information hiding.

In this work, we propose that ASM environments, from now named ambients, are used
not only to provide external functions but also as a reference location for the computation
executed by the machine. Then we propose that mobility in ASM can be characterized as
the capability to change the state of a machine (i.e., its vocabulary T, its superuniverse
X and its interpretation function Valg: T — X* — X)) from an ambient to another.

We still propose that besides external functions an ambient also has the following
characteristics:

Each ambient has a name, that is used to control access to the ambient.

Each ambient has a set of ASMs.

Each ambient has a set of subambients, i.e., ambients are hierachically structured.
Each ambient provides an atomic operation called move to the machines in its
boundary.

Suppose that the machine M is in an ambient m and its current state is S;. Then the
fire of a transition rule including the operation move n makes the next machine state,
Sit1, to be located in the ambient named n. If this ambient is not available, the execution
of M becomes locked in S; until the transition to S;;; can occur. Therefore this external
operation adds the notion of state mobility to ASM, where the notion of state is the same
as in the original definition of the method.

As an ASM computation can now roam over ambients, we define that the binding
between the call of an external functional and its implementation in an ambient is totally
dynamic.

To make it possible for an ASM to know its current execution environment, we also
introduce a zero argument function called here, which returns the name of the ambient
where the machine is executing.

5 Formal Definition of Mobile Computation

Now we show how a specification using the abstractions for mobile computation presented
in the previous section can be translated to a standard ASM specification. Basically, we
supose that a mobile system is composed by a set of agents. We also supose that the
ambient name is an element of the superuniverse. This element defines the location of an
agent in the system. The modules associated with each agent should obey the following
restrictions:

e The agents derived from a module can access only their local state. Note that this
restriction does not exist in an multi-agent ASM, where the state is a global entity.

e All external functions are defined over the ambient where they are executed.

e An ambient can be unavailable and in this case all move operation having the
ambient as destination should be blocked until the recovery of the ambient.

An ambient name a is the name of a zero-argument function member of the vocabulary
of a mobile ASM. Different ambient names should be interpreted as different values of
a set of ambients A C X. There is a function name here: A that is interpreted as the
current ambient. In the translation of the move rule, the following auxiliary functions are
used:

e _up: A — {true, false}: this external function tells if an ambient is available or not.

‘ ‘ Mobile ASM ‘ Multi-Agent ASM ‘

Vocabulary
External Functions | fo : X7 — X | fem : X™7P = X
Special Functions | here here (self)
ambient_name | ambient_name
Terms
External Functions | fey(t1,...,t) | feat(here ty, ... ;)
Rules move (ambient) | if _up(ambient) then
here(self) := ambient
else
_blocked(self) := true
_down(self) := ambient;
Modules P if not _blocked(self)then
P
else if _up(_down(self))
_blocked(self) := false
here(self) :=_down(self);

Figure 1: Translation of a mobile ASM specification to a multi-agent specification

e Dblocked: X — {true, false}: this function indicates if the execution of an agent
is blocked or not.

e _down: X — A: this function saves the name of the unavailable ambient the agent
is trying to move to.

Proposition 1 When an agent a ezxecutes a rule move (amb) to an unavailable ambient
amb, the agent remains blocked until this ambient becomes available.

Proof: By the guard inserted in the program of an agent a, we have that a executes its
original program P in a state S if, and only if, Valgs(_blocked (a)) = false. Besides, when
the agent a executes a move to an unavailable ambient, Valg(_blocked(a)) becomes true.
This value only returns to false when the ambient becomes available again. In this case,
we unblock program P. []

6 Case Study

In this section we show the specification of a mobile system for electronic commerce. This
system searchs the price of a certain book in a collection of Internet bookstores. We
suppose that the system starts its execution in an ambient named home and then roams
over a set of bookstores, each of then represented by an ambient. In each bookstore the
system (an ASM computation) locally searchs the price of the book and, if found, stores
the price in its state. After visiting the last bookstore, the system returns to the home
ambient, where it locally determines which bookstore has the lowest price.

machina book_search_agent;

external

number_books: Integer; // Total number of available books in the bookstore
book_list (Integer): String; // List with the names of the available books
price list (Integer): String; // List with the price of the available books
book_requested: String; // Name of the book requested by the user
vocabulary

Ambient; // Universe of ambient names
book_name: String; // Name of the book to search for
bookstore: List of Ambient; // Bookstores to visit
price: Ambient — Real; // Price of the book in each bookstore

status: enum { initial, travelling, searching, found, not_found, final };
index: Integer;

init
book_name=:= book_requested;

bookstore:= [Amazon, Bookpool, BarnesAndNobles |;
status:= initial;

rule

if (status = initial) then // rule 1
status:= travelling, bookstore:= tail (bookstore), move head (bookstore)

elsif (status = travelling) then // rule 2
status:= searching, index:= 1

elsif (status = searching) then // rule 3

if index > number_books then
status:= not_found
elsif book list (index) = book_name then
price (here):= price_list (index), status:= found

endif,
index:= index + 1
elsif (status = found) or (status = not_found) then // rule 4
bookstore:= tail (bookstore),
if head (bookstore) = [] then // rule 4.1
status:= final, move home
else
status:= travelling, move head (bookstore)
endif
elsif (status = final) // rule 5

// Transitions to search for the lowest price found in the “travel”

end;

)

We prove below two properties about this system.
Proposition 2 The search executed by the system in a certain bookstore always finish.

Proof: We need to prove that if Valg, (status) = searching, there is a j > 4, such that
Vals, (status) = final or Valg, (status) = travelling.

Suppose that Valg, (status) = searching. In this case, the rule 3 will be fired. This
rule can change the value of status in two ways: (i) when the book is found, the value of
status changes to found; (ii) when the book is not found, the value of status changes to
not_found. As in every transition a new book is inspected, we have that in some state
Sk, case (i) or case (ii) will occur, and then Valg, (status) = found or Valg, (status) =
not_found. So, in S; the only rule that can be fired is the rule 4, which produces a state
S; where Valg, (status) = final or Vals, (status) = travelling. [J

Proposition 3 In the absence of locks, the search in all the bookstores finishes and the
system returns to home ambient.

Proof: We need to prove that if Valg, (status) = initial and Valg, (here) = home, then
there is a j > 0 such that Valg, (status) = final and Valg, (here) = home.

In the initial state Sy, by direct inspection of the specification text, we have that
Vals, (status) = initial and Valg, (here) = home. Then rules 1 and 2 are fired and we
have a state Sy, where Valg, (status) = searching. By proposition 1, the system will

reach a state S;,, where two cases can happen:

1. Vals, (status) = final: In this case, we have Vals; (here) = home, because the only
rule that can be fired to reach this state is rule 4.1. So the proposition is verified.

2. Vals; (status) = travelling: In this case, the state Sj, was reached by firing rule
4, which also removes an ambient from the bookstore list. Next, we fire rule 2,
reaching a state S;,, where Vals, (status) = searching. Then, by proposition 1, we
have case 1 above or this own case again.

By induction on the length of the bookstore list, we have that in some state S;, case
1 will be choose and the proposition will be verified. [

7 Conclusions

In this paper we show a formal method for the specification of mobile systems using
Abstract State Machines and inspired in the main abstractions for mobile computation
proposed in the Ambient Calculus.

Compared against the Ambient Calculus, the specification of mobile systems in ASM
has the following benefits:

e ASM is a formal method easy to learn and to use, requiring only basic mathematical
knowledge from the users.

e ASM has already been used to specify a variety of systems. We hope that with this
paper they can also start to be used in the specification of mobile systems.

e ASM specifications can be directly executed, allowing the user not only to specify
a system but also to simulate its behavior.

Formal specification of mobile systems is a novel research area and therefore offers

many possiblities of further work, focusing problems not analysed in this paper. Among
them we can include security, communication between mobile systems, exception handling
and type systems to control mobility.

References

1]

L. Cardelli. Abstractions for mobile computation. In J. Vitek and C. Jensen, editors,
Secure Internet Programming: Security Issues for Mobile and Distributed Objects,
volume 1603 of Lecture Notes in Computer Science, pages 51-94. Springer-Verlag,
1999.

L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Foundations of Soft-
ware Science and Computational Structures, volume 1378 of Lecture Notes in Com-
puter Science, pages 140-155. Springer-Verlag, 1998.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specification
and Validation Methods. Oxford University Press, 1995.

D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, 1998.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Univer-
sity Press, 1999.

Object Space. Voyager core package technical overview. Technical report, Object
Space Inc., 1997.

A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. D. Singh. Ajanta - a mobile agent
programming system. Technical Report TR98-016 (revised version), Department of
Computer Science, University of Minnesota, 1999.

J. E. White. Mobile agents. In J. Bradshaw, editor, Software Agents, pages 437-472.
AAAI Press/MIT Press, 1997.

