
Abstractions for Mobile Computation in ASMMarco T�ulio de Oliveira Valente, Roberto da Silva Bigonha,Antônio Alfredo Ferreira Loureiro, Marcelo de Almeida MaiaDepartment of Computer ScienceUniversity of Minas Gerais30161-970 - Belo Horizonte - MG - BrazilE-mail: fmtov,bigonha,loureiro,marcmaiag@dcc.ufmg.brAbstractIn this paper we present a formal method for the speci�cation of mobile systemsusing Abstract State Machines (ASM). The method is based on the Ambient Cal-culus, a process calculus developed to express mobility. In the work we show thatthe fundamental abstractions of the Ambient Calculus can be expressed in ASMwithout di�culty. In order to exhibit the feasibility of the proposed method, wealso show as a case study an ASM speci�cation of a mobile system for electroniccommerce.Keywords: mobile computation, ASM, formal methods1 IntroductionRecently mobile systems are emerging as an alternative to increase the computational useof the Web [1]. In the systems designed following this model, a computation can movefrom one network host to another, where for example the resources needed to performits task are locally available. It is argued that this kind of system reduces network loadand latency and makes it easier to design more robust and fault tolerant systems [4].Numerous packages are currently available to deploy mobile systems, most of them basedon Java. Among those packages, we can mention Telescript [8], Aglets [4], Voyager [6]and Ajanta [7].As this computational model becomes a reality, it raises the need to develop formalmethods for the speci�cation of mobile systems. Through these formalisms, it will bepossible to correctly understand the behavior of those systems, to prove properties aboutthem and also to design new environments and programming languages to support theirdevelopment. Recently, some formal methods are being proposed with this intention.Among them, the Ambient Calculus [1, 2] is the most prominent one, probably becauseit has been originally designed having in mind the speci�cation of mobile computation.In this work, we show that the fundamental abstractions for mobile computationpresented in the Ambient Calculus can be mapped without di�culty to Abstract State

Machines (ASM) [3]. ASM is a formalism that has been successfully used to specify a vari-ety of systems, including programming languages, computer architectures and distributedand real time systems. We hope that with the method proposed in this paper ASM canalso start to be used in the speci�cation of mobile systems.This paper is organized as follows. In section 2, the main ideas proposed by theAmbient Calculus are described. Section 3 presents Abstract State Machines and section4 describes how the main abstractions of the Ambient Calculus can be expressed in ASM.Section 5, formalizes the notion of mobile computation in ASM. In section 6, we show asa case study the speci�cation in ASM of a mobile system for electronic commerce. Wealso prove in this section two propositions about this system. Finally, section 7 concludesthe paper and discusses possibilities for future work.2 Ambient CalculusBeing the Web in large scale a global distributed system, there are some proposals toexpress mobility in the Web using the already established formalisms to model distributedand concurrent systems. Among these formalisms, one of the most used is the �-calculus[5], which is based in the notion of processes communicating over channels, with theability to create new channels and to exchange channels over other channels. However,such facilities are not enough to capture the notion of mobility as it is used in mobilesystems. In those systems mobility is related with a change in the execution environmentof a process and not in its number of channels. In this sense, it seems more correct to saythat in �-calculus we have channel mobility and not process mobility.Inspired in the �-calculus, the Ambient Calculus [1, 2] has been proposed as processcalculus that focuses primarily on process mobility rather than process communication.An ambient is a bounded place that has a name and that may contain processes andsubambients. An ambient can also move inside or outside another ambient. This propertyis regulated by capabilities that the processes must possess. Being a bound place withestablished borders, it is easy to determine what is moved together with an ambient.Then in the Ambient Calculus, mobility is associated with the notion of crossing barriersthat delimit ambients, which can be hierarchically organized, forming a tree structure.An ambient is written n[P], where n is the name of the ambient and P is the processingrunning inside the ambient. The process P can be the parallel composition of severalprocesses. We also have operations to change the hierarchical structure of ambients.These operations are restricted by capabilities. The process M.P executes an actionregulated by the capabilityM and then continues as the process P . There are three kindsof capabilities: for entering, exiting and opening ambients.The capability in m, used in an action in m.P, instructs the surrounding ambient toenter a sibling ambient named m. If m can not be found, the operation remains blockeduntil a time when such ambient becomes available. If more than one ambient exists withthis name, either one can be chosen. The capability out m, used in an action out m.P,instructs the surrounding ambient to exit its parent ambient named m. If the parentambient is not named m, the operation blocks until a time when such parent exists.Finally, an open capability open m can be used in an action open m.P. This capability

provides a way of dissolving the boundaries of an ambient named m located at the samelevel as open. If no ambient m can be found, the operation blocks until a time when suchan ambient exists. If more than one ambient m exists, any one of them can be chosen.In the Ambient Calculus, we also have actions to replicate a process P , denoted by!P, and to create a new name n in the scope P , denoted by (� n)P .3 Abstract State MachinesAbstract State Machines [3] are a computational model where any sequential algorithmcan be speci�ed in its natural abstraction level. In ASM, a state S is an algebra de�nedby a vocabulary � of function and relation names, a set X called the superuniverse and ainterpretation function Val of vocabulary names into functions X� ! X. Transition rulesare used to modify the interpretation of names from one state to another. The executionof an ASM program is a sequence of transition rules �res that changes the machine state.In ASM there are three basic transition rules: an update rule, a conditional rule anda block construction rule.An update rule has the form f(t1; : : : ; tj) := t0, where j is the arity of f and t0; : : : ; tjare terms. The �re of this rule in a state S, where the terms t0; : : : ; tj are evaluated toa0; : : : ; aj respectively, gives a new state S 0 where the function interpreted by the name fhas value a0 in the point a1; : : : ; aj.A conditional rule has the following form: if ' then R1 else R2 endif, where ' is aboolean term and R1 and R2 are rules. The semantics of this rule is trivial: if the term' evaluates to true, then the next state is the result of �ring rule R1; otherwise, it is theresult of �ring R2.Finally, a block construction rule has the form R1; : : : ; Rn and the following semantics:the next state is the result of �ring all the rules Ri in parallel.An ASM speci�cation de�nes a initial state S0 and a transition rule R. The executionof a speci�cation is a sequence of states hSn : n � 0i, where each Si is obtained �ring therule R in Si�1.4 Abstractions for Mobile ComputationThe main abstraction for mobile computation proposed in Cardelli's work was the notionof ambient, de�ned as a \bounded place where computation happens"[1]. In ASM we alsohave the notion of ambient (called environment in the method de�nition), but with theaim of making available external functions used by the machine in its computation [3].Among other applications, external functions are used to model input/output, to expressnon-determinism and to provide information hiding.In this work, we propose that ASM environments, from now named ambients, are usednot only to provide external functions but also as a reference location for the computationexecuted by the machine. Then we propose that mobility in ASM can be characterized asthe capability to change the state of a machine (i.e., its vocabulary �, its superuniverseX and its interpretation function ValS : �! X� ! X) from an ambient to another.

We still propose that besides external functions an ambient also has the followingcharacteristics:� Each ambient has a name, that is used to control access to the ambient.� Each ambient has a set of ASMs.� Each ambient has a set of subambients, i.e., ambients are hierachically structured.� Each ambient provides an atomic operation called move to the machines in itsboundary.Suppose that the machine M is in an ambient m and its current state is Si. Then the�re of a transition rule including the operation move n makes the next machine state,Si+1, to be located in the ambient named n. If this ambient is not available, the executionof M becomes locked in Si until the transition to Si+1 can occur. Therefore this externaloperation adds the notion of state mobility to ASM, where the notion of state is the sameas in the original de�nition of the method.As an ASM computation can now roam over ambients, we de�ne that the bindingbetween the call of an external functional and its implementation in an ambient is totallydynamic.To make it possible for an ASM to know its current execution environment, we alsointroduce a zero argument function called here, which returns the name of the ambientwhere the machine is executing.5 Formal De�nition of Mobile ComputationNow we show how a speci�cation using the abstractions for mobile computation presentedin the previous section can be translated to a standard ASM speci�cation. Basically, wesupose that a mobile system is composed by a set of agents. We also supose that theambient name is an element of the superuniverse. This element de�nes the location of anagent in the system. The modules associated with each agent should obey the followingrestrictions:� The agents derived from a module can access only their local state. Note that thisrestriction does not exist in an multi-agent ASM, where the state is a global entity.� All external functions are de�ned over the ambient where they are executed.� An ambient can be unavailable and in this case all move operation having theambient as destination should be blocked until the recovery of the ambient.An ambient name a is the name of a zero-argument function member of the vocabularyof a mobile ASM. Di�erent ambient names should be interpreted as di�erent values ofa set of ambients A � X. There is a function name here: A that is interpreted as thecurrent ambient. In the translation of the move rule, the following auxiliary functions areused:� up: A! ftrue; falseg: this external function tells if an ambient is available or not.

Mobile ASM Multi-Agent ASMVocabularyExternal Functions fext : Xr ! X fext : Xr+1 ! XSpecial Functions here here(self)ambient name ambient nameTermsExternal Functions fext(t1; : : : ; tr) fext(here; t1; : : : ; tr)Rules move(ambient) if up(ambient) thenhere(self) := ambientelseblocked(self) := truedown(self) := ambient;Modules P if not blocked(self)thenPelse if up(down(self))blocked(self) := falsehere(self):= down(self);Figure 1: Translation of a mobile ASM speci�cation to a multi-agent speci�cation� blocked: X ! ftrue; falseg: this function indicates if the execution of an agentis blocked or not.� down: X ! A: this function saves the name of the unavailable ambient the agentis trying to move to.Proposition 1 When an agent a executes a rule move(amb) to an unavailable ambientamb, the agent remains blocked until this ambient becomes available.Proof: By the guard inserted in the program of an agent a, we have that a executes itsoriginal program P in a state S if, and only if, V alS(blocked (a)) = false. Besides, whenthe agent a executes a move to an unavailable ambient, V alS(blocked(a)) becomes true.This value only returns to false when the ambient becomes available again. In this case,we unblock program P. �6 Case StudyIn this section we show the speci�cation of a mobile system for electronic commerce. Thissystem searchs the price of a certain book in a collection of Internet bookstores. Wesuppose that the system starts its execution in an ambient named home and then roamsover a set of bookstores, each of then represented by an ambient. In each bookstore thesystem (an ASM computation) locally searchs the price of the book and, if found, storesthe price in its state. After visiting the last bookstore, the system returns to the homeambient, where it locally determines which bookstore has the lowest price.

machina book search agent;externalnumber books: Integer; // Total number of available books in the bookstorebook list (Integer): String; // List with the names of the available booksprice list (Integer): String; // List with the price of the available booksbook requested: String; // Name of the book requested by the uservocabularyAmbient; // Universe of ambient namesbook name: String; // Name of the book to search forbookstore: List of Ambient; // Bookstores to visitprice: Ambient ! Real; // Price of the book in each bookstorestatus: enum f initial, travelling, searching, found, not found, �nal g;index: Integer;initbook name=:= book requested;bookstore:= [Amazon, Bookpool, BarnesAndNobles];status:= initial;ruleif (status = initial) then // rule 1status:= travelling, bookstore:= tail (bookstore), move head (bookstore)elsif (status = travelling) then // rule 2status:= searching, index:= 1elsif (status = searching) then // rule 3if index > number books thenstatus:= not foundelsif book list (index) = book name thenprice (here):= price list (index), status:= foundendif,index:= index + 1elsif (status = found) or (status = not found) then // rule 4bookstore:= tail (bookstore),if �head (bookstore) = [] then // rule 4.1status:= �nal, move homeelse status:= travelling, move head (bookstore)endifelsif (status = �nal) // rule 5// Transitions to search for the lowest price found in the \travel"end;

We prove below two properties about this system.Proposition 2 The search executed by the system in a certain bookstore always �nish.Proof: We need to prove that if ValSi(status) = searching, there is a j > i, such thatValSj(status) = final or ValSj(status) = travelling.Suppose that ValSi(status) = searching. In this case, the rule 3 will be �red. Thisrule can change the value of status in two ways: (i) when the book is found, the value ofstatus changes to found; (ii) when the book is not found, the value of status changes tonot found. As in every transition a new book is inspected, we have that in some stateSk, case (i) or case (ii) will occur, and then ValSk(status) = found or ValSk(status) =not found. So, in Sk the only rule that can be �red is the rule 4, which produces a stateSj where ValSj(status) = final or ValSj(status) = travelling. �Proposition 3 In the absence of locks, the search in all the bookstores �nishes and thesystem returns to home ambient.Proof: We need to prove that if ValS0(status) = initial and ValS0(here) = home, thenthere is a j > 0 such that ValSj(status) = final and ValSj(here) = home.In the initial state S0, by direct inspection of the speci�cation text, we have thatValS0(status) = initial and ValS0(here) = home. Then rules 1 and 2 are �red and wehave a state S2, where ValS2(status) = searching. By proposition 1, the system willreach a state Sj1, where two cases can happen:1. ValSj1 (status) = final: In this case, we have ValSj1 (here) = home, because the onlyrule that can be �red to reach this state is rule 4.1. So the proposition is veri�ed.2. ValSj1 (status) = travelling: In this case, the state Sj1 was reached by �ring rule4, which also removes an ambient from the bookstore list. Next, we �re rule 2,reaching a state Si2, where ValSi2 (status) = searching. Then, by proposition 1, wehave case 1 above or this own case again.By induction on the length of the bookstore list, we have that in some state Sj, case1 will be choose and the proposition will be veri�ed. �7 ConclusionsIn this paper we show a formal method for the speci�cation of mobile systems usingAbstract State Machines and inspired in the main abstractions for mobile computationproposed in the Ambient Calculus.Compared against the Ambient Calculus, the speci�cation of mobile systems in ASMhas the following bene�ts:� ASM is a formal method easy to learn and to use, requiring only basic mathematicalknowledge from the users.� ASM has already been used to specify a variety of systems. We hope that with thispaper they can also start to be used in the speci�cation of mobile systems.

� ASM speci�cations can be directly executed, allowing the user not only to specifya system but also to simulate its behavior.Formal speci�cation of mobile systems is a novel research area and therefore o�ersmany possiblities of further work, focusing problems not analysed in this paper. Amongthem we can include security, communication between mobile systems, exception handlingand type systems to control mobility.References[1] L. Cardelli. Abstractions for mobile computation. In J. Vitek and C. Jensen, editors,Secure Internet Programming: Security Issues for Mobile and Distributed Objects,volume 1603 of Lecture Notes in Computer Science, pages 51{94. Springer-Verlag,1999.[2] L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Foundations of Soft-ware Science and Computational Structures, volume 1378 of Lecture Notes in Com-puter Science, pages 140{155. Springer-Verlag, 1998.[3] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor, Speci�cationand Validation Methods. Oxford University Press, 1995.[4] D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents withAglets. Addison-Wesley, 1998.[5] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Univer-sity Press, 1999.[6] Object Space. Voyager core package technical overview. Technical report, ObjectSpace Inc., 1997.[7] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. D. Singh. Ajanta - a mobile agentprogramming system. Technical Report TR98-016 (revised version), Department ofComputer Science, University of Minnesota, 1999.[8] J. E. White. Mobile agents. In J. Bradshaw, editor, Software Agents, pages 437{472.AAAI Press/MIT Press, 1997.

