A Self-Applicable Partial Evaluator for ASM

Vladimir O. Di Iorio!, Roberto S. Bigonha?, and Marcelo A. Maia3

Universidade Federal de Vigosa, email: vladimir@dcc.ufmg.br
? Universidade Federal de Minas Gerais, email: bigonha@dcc.ufmg.br

3 Universidade Federal de Ouro Preto, email: marcmaia@dcc.ufmg.br

Abstract. This paper presents an offline partial evaluator for Abstract
State Machines. Self-application is possible by means of a simplified ver-
sion of the partial evaluator written in ASM itself. Using self-application,
we have generated compilers for small languages from their interpreter
definitions. We also present techniques for describing the semantics of
programming languages, in a way suitable for partial evaluation.

1 Introduction

Partial evaluation is a source-to-source program transformation technique for
specializing programs with respect to parts of their input [10]. The main goal
is efficiency improvement, so it is expected that the specialized program runs
faster than the original one. Partial evaluators have been successfully built for
functional [2,12], logical [14] and imperative [1] languages.

An interpreter for a language L is usually a program with two inputs: a source
program S, written in L, and the input data for S. Specializing the interpreter
with respect to a given source program yields a compiled program, i.e., a program
written in the interpreter’s implementation language, with the semantics of the
source program. A partial evaluator is also a program with two inputs: the
program to be specialized and part of its input. So a partial evaluator itself
can be specialized (self-application). The specialization of a partial evaluator
with respect to an interpreter yields a compiler. Finally, specializing a partial
evaluator with respect to itself yields a compiler generator.

Abstract State Machines are a formal specification method created by Yuri
Gurevich with the goal of simulating algorithms in a direct and coding-free
way [6]. ASM has been used to describe the semantics of several programming
languages [3,7,16]. The description usually consists of an interpreter for the
programming language.

Huggins and Gurevich present an offline partial evaluator for ASM in [8,9],
which allows the specialization of conditional instructions and update blocks.
This paper presents a partial evaluator which extends that work mainly in two
aspects: it allows the specialization of user-defined functions (derived functions
[4]) and the self-application is possible, due to a version of the partial evaluator
written in ASM itself. In addition, this paper presents some suggestions on how
to describe the semantics of programming languages in ASM, in a way suitable
for partial evaluation.



out = [P]g(in1,ins) target = [miz](int, P)
Pip, = [miz] (P, in1) compiler = [miz](miz, int)
out = [Pin, ] (in2) cogen = [miz](miz, miz)
(a) Equational Definition of mizx. (b) Futamura Projections.

Fig. 1. Partial evaluation equations.

2 Partial Evaluation

A partial evaluator, when given a program and some of its input data, produces a
so-called residual or specialized program [10]. In other words, a partial evaluator
is a program specializer. The parts of the subject program’s input data used in
the specialization process are known as static data. The remaining input data
are known as dynamic data.

A partial evaluator performs a mixture of code execution and code genera-
tion, so it is sometimes called miz. Let P be a program with two inputs, in; and
iny, written in a language S. Let [P] g represent the semantics of P. Figure 1(a)
presents an equational definition of a partial evaluator miz for S-programs.

The languages involved are S (the language of the programs processed by
the partial evaluator), L (mix implementation language) and T (the language of
the programs produced by miz). S and T are usually the same language. Pjy,,
is the residual program, i.e., the result of the specialization of P with respect to
the first input in;.

2.1 Compilation and Compiler Generation

Futamura was the first to realize that partial evaluation can be used for com-
pilation and compiler generation [10]. Let int be an interpreter for a language
Ljn:, written in a language S. Let miz be a partial evaluator for S-programs.
The equations presented in Figure 1(b) are known as the Futamura Projections.

The First Futamura Projection shows compilation by the partial evaluation
of an interpreter with respect to a given source program. The Second Futamura
Projection shows how a compiler can be generated by the self-application of
a partial evaluator. The Third Futamura Projection shows the generation of
a compiler generator cogen by specializing a partial evaluator with respect to
itself. The second and third equations require that mix be written in its own
input language.

2.2 Online and Offline Partial Evaluation

The specialization process can be carried out either following the online or the
offline approach. If the values computed during program specialization can affect



the execution flow of the partial evaluator, the strategy is online, otherwise it
is offline [10]. In practice, in the online approach, specialization is performed in
a single stage. Almost all offline partial evaluators, on the other hand, perform
specialization in two stages.

The first stage of an offline partial evaluator is called binding time analysis
(BTA). An annotated program is produced, with all structures marked either as
dynamic or static, according to their dependence on the input data. The second
stage is the specialization itself. The annotations are strictly followed to produce
the residual program.

The first partial evaluators were all online [10], but they did not produce good
results on compiler generation by self-application. Offline partial evaluation was
invented in 1984 and made self-application feasible in practice [11].

2.3 Partial Evaluation and ASM

Huggins and Gurevich present an offline partial evaluator for sequential ASM
in [8,9], written in C. It performs specialization of basic ASM rules, but self-
application is not addressed.

Our partial evaluator has been written in Java. It performs partial evalu-
ation of sequential ASM specifications containing basic rules and also derived
functions [4]. Derived functions are a mechanism to define functions by giving
an expression to calculate them. This definition can be recursive, but side effects
are not allowed. The implementation of partial evaluation of derived functions
required the use of techniques for specialization of functional programs.

In order to achieve the results of the Second Futamura Projection, we have
built a second partial evaluator in the ASM language itself. We have called those
two partial evaluators Jmix and ASMix, respectively. The partial evaluator ASMix
is a simplified version of Jmix implementing only the specialization phase of an
offline partial evaluation method.

We present Jmix in Section 3. An example of compilation using the First
Futamura Projection is presented in Section 4. In Section 5, we discuss imple-
mentation issues related to ASMix and evaluate the results of compiler generation
(Second Futamura Projection) using small interpreters. We have not investigated
the application of the Third Futamura Projection yet.

3 An Offline Partial Evaluator for ASM

In this section, we present the techniques used to develop an offline partial
evaluator for sequential ASM specifications. The terms static and dynamic are
frequently used in partial evaluation, but they have different meanings in ASM.
To avoid name conflicts with established notation, we will use positive instead
of static, for the parts of the input used in the specialization process, and neg-
ative instead of dynamic, for the remaining input data. This notation has been
suggested by Huggins and Gurevich [8].



Offline Partial Evaluator

Y BTA Y

ASM Specification
— Produce
— u o | Annotated
@ Division BTA Division " Specification

A
@ » Specialization [« Ann. Specification

Residual Specification

Fig. 2. Architecture of an offline partial evaluator for ASM.

The input for the partial evaluator are ASM specifications containing only
basic rules. The input language includes update instructions, conditional com-
mands, blocks and also derived functions. An abstract syntax is presented below,
where the syntactical categories are represented in the following way: f (function
names), t (terms), G (guards) and R (rules).

R == f(ti,...,ty) =t

R ::= if G then Ry else R;

R = R,...R;

derived function f(param,, ..., param,) = t

The partial evaluator assumes that input to ASM specifications is provided
by external (oracle) functions. So each external function must be previously
classified either as positive or negative, indicating which values are known in
advance. The division of the external functions into positive and negative is
called the initial division.

The partial evaluator receives an ASM specification to be specialized, an
initial division and values for the positive external functions. The first stage is
called binding time analysis. All functions used in the ASM specification are clas-
sified either as positive or negative, computing a BTA division. An annotated
specification is generated, with all structures marked either as positive or neg-
ative, according to the BTA division. The second stage is called specialization.
The annotations are strictly followed to produce a residual specification, using
the values of the positive external functions. Figure 2 shows this process.

3.1 Binding-Time Analysis (BTA)

The purpose of the BTA phase is to classify all functions as either positive or
negative, according to their relationship with the input. Then it classifies each
command and function application, generating an annotated specification that
will be used in the subsequent phases.



Binding Time Identification We have implemented an algorithm similar to
that used in [8] to compute the division of functions into positive and negative:

1. Input is done via external (oracle) functions. Initially, the user indicates
which external functions are negative and which are positive. All other func-
tions are left unclassified.

2. A function f is classified as negative if there is an ASM update rule f(¢) := to
such that ¢ or ¢y references a negative function. Both ¢ and ¢y may depend
on derived functions. If, for all updates, every reference in ¢ and ¢y is positive
and f is not already negative, it is classified as positive.

The second step of the algorithm is repeated until a fixpoint is reached.
All remaining unclassified functions are classified as negative. Then this step is
repeated until reaching a fixpoint by the second time.

It is important to classify a sufficient number of functions as negative to
ensure finiteness of the specialization algorithm, but classifying more negative
functions than necessary leads to poor specialization. The problem of finding an
optimal division is not computable [10].

The classification algorithm above does not handle circular dependencies.
The following example, borrowed from [8], illustrates this problem. Consider the
following transition rules:

if Num > O then Num := Num + 1 endif
if MyList # Nil then MyList := Tail(MyList) endif

Supposing that the initial values of Num and MyList are known, there is no
problem in classifying MyList as positive. But classifying Num as positive will
lead the specialization algorithm into an infinite loop, because the number of
different values Num can assume is infinite and the specialization algorithm tries
to generate code using each one of them.

We treat circular dependencies in a way similar to that of [8]. We classify as
positive the functions that depend only upon themselves in a bounded manner.
For example, MyList will eventually be reduced to Nil and remain at that value.
We apply the same criteria to classify as positive the derived functions that
depend upon themselves (recursive) in a bounded manner.

Our division algorithm is not very sophisticated, so we allow users to help
the classification of functions with annotations.

Generation of the Annotated Specification All expressions and commands
are also classified as either positive or negative, generating an annotated speci-
fication. This process is performed observing the following situations:

— a reference to an external function is classified as positive or negative ac-
cording to the user annotations (initial division);

— a term f(t) is classified as negative if any of the terms in ¢ is negative; it is
positive if all terms in ¢ are positive and f is not negative;



— an update command f(t) := to is negative if f is negative, and is positive if
f is positive;

— aconditional command if (condition) then ... isnegative if the boolean
expression condition is negative, and is positive if condition is positive.

When the classification algorithm ends, the entire specification is annotated.
The last step consists of producing different versions of the user-defined (derived)
functions, according to the classification of the expressions used as parameters
in each invocation.

An invocation of a derived function f inside the transition rules of the spec-
ification has the format f(expy,...,expy), where each exp;, 1 < i < k, has
already been classified either as positive or negative. Let (S;, ..., Sg) repre-
sent the classification of those expressions, where S;, 1 < i < k, is either positive
or negative. A different version of f is generated for each different tuple (S,

..» Sg), and the structures inside the derived function expression are classified
according to these values. Each invocation of f is translated into an invocation
of one of the new versions produced.

At the end of the BTA phase, the set of functions referenced in the specifica-
tion has been divided into positive and negative, and an annotated specification
has been produced. The annotated specification contains one or more versions
of each derived function, according to the process described above.

3.2 Pre-Processing

In [8], a pre-processor performs some transformations over the original specifi-
cation, in order to make the specializer simpler. These transformations increase
the specification size, possibly exponentially. At the end of the process, the spec-
ification rules are represented as a binary tree, where leaves are update blocks
and internal nodes are boolean guards.

We have decided to postpone the pre-processing of the specification until after
the BTA phase. The information produced by that phase is used to minimize
code expansion. In the sequel, we explain how transformations are performed.

In each block, all rules are reordered so that all conditional commands lie at
the end of the block. If there are at least two conditional commands in the block,
the last one is removed and inserted simultaneously into the THEN and ELSE
clauses of one of the other conditional commands. This process is recursive and
is repeated until all blocks contain at most one conditional command. At the
last recursion level, a special dummy command is inserted into each block. This
command will be used later by the specializer to indicate the generation of a
new state.

An important difference between our algorithm and that of [8] is that we
avoid many duplications of update instructions. In our algorithm, the innermost
blocks contain a special dummy command indicating the generation of a complete
state, while in [8] they contain all possible update instructions. The purpose of
the dummy command will be clear when we discuss the specializer algorithm in
Section 3.3.



We also avoid the duplication of some conditional commands, with the help
of BTA information. A positive conditional command whose clauses contain only
update instructions is not duplicated, avoiding, in some cases, the code expansion
imposed by the algorithm above.

3.3 Specializer

Specialization is executed over the specification produced by the pre-processor.
Let F'p be the set of functions classified as positive. The specializer works on an
ASM Ap, whose vocabulary is restricted to F'p, trying to establish all possible
states which are reachable from the initial state.

The initial state is represented by the initial values of the positive functions.
In each iteration, the entire specification is analyzed. Code is generated for the
negative structures, and positive update instructions generate new states. Each
new state is processed, producing an associated code and generating more states,
which may have already been processed. This procedure ends when all possible
states have been processed. The way BTA has been done ensures that the proce-
dure will eventually end, unless there is an infinite loop produced by the positive
functions.

To generate the code associated with a state and define the new states to be
processed, transition rules are processed in the following way:

— If the rule is a block, each command in the block is processed.

— A positive update command adds an update to the set of current updates.

— A negative update command f (¢1,...,t;) := to generates code for an update
instruction with all positive information within tg, ..., t; computed.

— In a positive conditional command, first the condition is evaluated. If it is
true, the THEN clause is processed, otherwise the ELSE clause is processed.

— A negative conditional command generates code for a conditional command
where all positive information of the condition expression is computed and
the THEN and ELSE clauses are processed. In this case, however, the set of
current updates is duplicated. A copy of this set will be used when processing
the THEN clause, and the other, when processing the ELSE clause.

— A dummy command indicates the point where all updates that build a new
state have already been processed. All registered updates are fired at the
current state, in parallel, and a (possibly new) state is generated. The gen-
erated code is a dummy command together with information that references
the generated state, as we will show soon.

Let k£ be the number of different generated states. After all states have been
processed, a set of rules {Ry, ..., Ry} has been generated, each rule associated
with a different state. Suppose that R; was produced when processing the initial
state. Each dummy command inside R; contains a reference to one of the states,
describing which are the possible rules to be executed in the next step. The
dummy command defines the dynamic flow of control and could be translated
into a goto, if the language had such a command.



Let pe_flag be a function name that does not belong to the vocabulary of the
original ASM specification submitted to the partial evaluator. Each command
dummy is replaced by pe_flag := i, where i is the state referenced by it. The final
residual specification has the following format:

Initial values:

peflag := 1
Transition rules:

IF pe_flag = 1 THEN R,

IF pe_flag = k THEN Ry

The specialization of the derived functions demands other procedures. Sup-
pose that f is a derived function used inside the transition rules of the specifi-
cation. During BTA, one or more annotated versions of £ have been generated.
Let {f1,...,f,} be this set of annotated versions. For 1 < i < n, suppose
that the number of f; parameters classified as positive is V¢, and build a tuple
(pii, ... ,pf\",f_) with these parameters. The invocations of f; inside {Ry,..., R}
are used to lidentify all possible different values for this tuple. Each different
tuple value originates a new specialized version of f;.

As we have shown, the specialization of derived functions is carried out in
two steps, generating two levels of specialized versions. We have used indexes to
identify each version, so the residual functions associated with a derived function
f usually have names with the format f__j in the residual specification. The
indexes i and j identify the different versions of f.

3.4 Optimizations

The code generated by the specializer is usually very inefficient. There are many
opportunities for code optimizations. Some of them were implemented in [8] and
also in our partial evaluator.

A rule with the format if pe_flag = i then pe_flag := j can be deleted,
if all references to state i are replaced by j. Another important optimization
is combining the code of two rules that would be executed consecutively, but
that can be executed simultaneously without modifying the semantics of the
specification.

The two optimizations listed above are usually known as transition compres-
ston, what, in some imperative languages, would mean elimination of redundant
gotos. We have decided to do transition compression on the fly, i.e., during the
specialization process, instead of doing it as a separate phase after the whole
residual specification has been generated. Although the strategy chosen is more
complicated, it can be much more efficient, due to the great number of superflu-
ous rules that are usually generated by the specialization process. Another good
reason to choose this strategy is that it improves the results of self-application
significantly [10].

The number of residual derived functions is also usually very high. In many
cases, a function is residualized as a simple expression, without recursive calls.



0: if 0 goto 3 if tape(head) = O then

1: right tape (head) := 1

2: goto O else

3: write 1 head := head + 1
(a) Turing Machine Program. (b) Compiled Version.

Fig. 3. Turing Machine Program and Compiled Version.

In these cases, each function call is replaced by the associated expression, with
the correct values substituted for the parameters. The function definition does
not appear in the final residual code.

Suppose that a negative function f with arity n is always used with positive
information for its k-th parameter, 1 < k < n. The residual functions associated
with f will have arity n — 1, and the positive values will be used to build the
names of the new functions. For example, if the first parameter of a negative
function func is always positive, a call func("key”,x) will be residualized as
func key(x). If the values of the parameters are not appropriate to build names,
a different integer number is associated with each different value, and this number
is used to build the new function name. This process can be extended to multiple
positive parameters. The partial evaluator will use as many positive parameters
as possible.

Other simple optimizations have been implemented. Some of them use also
online information.

4 Example: a Turing Machine Interpreter

We will show a very simple example of specializing an interpreter with respect
to a specific source program, which we have borrowed from [10].

Consider a version of the Turing Machine with alphabet {0,1,B} and a pro-
gram [IoI; ...I,], where each I;, 0 < i < n, is one of the following instructions:
right, left, write a, goto i, if a goto ¢. The machine has a tape head indicat-
ing the current scanned tape cell. The semantics of the instructions are: write
a changes the scanned cell to a, right and left move the tape head, if a goto
i causes the next instruction to be I; if the scanned cell contains the value a
and goto 7 is an unconditional jump. The instructions are executed in sequence,
unless a jump is executed.

In Figure 3(a), an example of a TM program is presented. The program
changes the first 0 it finds in the tape to 1, or goes into an infinite loop if no 0
is found.

In Figure 4, we show the ASM transition rules which implement an interpreter
to the language described above. The machine tape is represented by function
tape. The program instructions are fetched by the external functions code, par1
and par2 such that, when given the instruction number, return the code, the
first parameter and the second parameter of the instruction, respectively. The



if code(pc) = "RIGHT” then
pc := pc + 1,
head := head + 1
endif,
if code(pc) = "LEFT” then
pc := pc + 1,
head := head - 1
endif,
if code(pc) = ”GOT0” then
pc := par2(pc)
endif,

if code(pc) = "WRITE” then

pc := pc + 1,
tape (head) := paril(pc)
endif,

if code(pc) = ”IFGOTD” then
if paril(pc) = tape(head) then
pc := par2(pc)
else
pc :=pc +1
endif
endif

Fig. 4. Turing Machine Interpreter Written in ASM.

number of the current instruction is represented by pc and the tape head is
represented by head.

Suppose that the interpreter of Figure 4 is submitted to the partial evaluator,
to be specialized with respect to the TM program presented Figure 3(a). The
external functions code, parl and par2 represent the input TM program, so
they are classified as positive. The BTA phase will classify pc as positive, while
tape and head will be classified as negative. The result of the specialization is
showed in Figure 3(b). We have omitted the initialization code.

The function pe_flag used in Section 3.3 defines an order of execution for the
set of rules. In the example above, the transition compression reduced the number
of rules to 1, so pe_flag was not necessary. The code shown in Figure 3(b) is
exactly that produced by the partial evaluator.

5 Self-Application of the Partial Evaluator

As discussed in Section 2.3, we have built a simplified version of our partial
evaluator in ASM itself. The main partial evaluator, which we have called Jmix, is
divided into two phases: BTA and specialization. The simplified partial evaluator
has been named ASMix and implements only the specialization phase.

5.1 The Simplified Partial Evaluator

ASM specifications are submitted to ASMix in an abstract syntax tree format.
First, they are pre-processed as described in Section 3.2 and receive BTA anno-
tations. The simplified partial evaluator ASMix performs only the specialization
phase of the offline method, analyzing each command and following strictly the
associated annotations.

When ASMix finds a positive command, it behaves like an ASM interpreter.
All the information is computed according to ASM semantic rules. The simplified
partial evaluator needs a complete ASM interpreter to compute the positive



structures. So, before implementing ASMix, we have first built an ASM self-
interpreter, i.e., an interpreter for ASM written in ASM itself. In Section 7 we
discuss how this self-interpreter has been used to evaluate the performance of
the main partial evaluator Jmix.

In this section, we describe how ASMix behaves while processing the three
sections of its input specifications: function declarations, initialization and tran-
sition rules. A detailed description of ASMix can be found in [5].

Function Declarations The first task in ASMix is to determine a list POS of
positive functions used to build the different states. This task is performed while
ASMix process the function declarations of the input specification. If a function
is not updated after initialization, its value remains the same in all states, so it
does not have to be considered in POS, even if it is positive. In the example of
Section 4, the only positive function that is updated by the transition rules is
pc, so POS = ["pc”].

Code is generated for the declarations of negative functions. The residual
declarations have exactly the same format of the input specification, except for
the annotations. All derived functions are residualized, because ASMix does not
handle specialization of derived functions yet.

Initialization An ASM function FVal stores the values of the functions used
in the input specification. FVal associates a function name and a list of values
to another value. Using the example of Section 4, Tape(1) = 0 would be repre-
sented by ASMix as FVal(”Tape”,[1]) = 0. As FVal is updated with the function
values, it is classified as negative. The simplified partial evaluator is built in
such a way that the first parameter of FVal is always positive, so a function call
FVal(”Tape”, [1]) will be residualized as FVal_Tape([1]). This transformation was
described in Section 3.4.

The initial values of the functions are defined by update instructions in the
initialization section. Code is generated for the initialization of negative func-
tions, and the initial values of the positive functions are computed. Using POS,
the initial state for the specialization process is built.

Each state produced by ASMix is represented by a list of values, associated
with the functions listed in POS by their positions. In the example of Section 4,
the initial state would be the list [0], which means that initially pc has value 0.

Transition Rules The states produced during the specialization process are
stored in two sets: PENDING and MARKED. The set PENDING contains the
states for which residual rules have not been generated yet. The set MARKED
indicates the states which have already been processed. Initially, PENDING
contains only the initial state of the input specification.

Sates removed from PENDING are inserted in MARKED and processed.
The specification transition rules are analyzed, with all positive information
computed using the values of the current state removed from PENDING. The



process is very similar to that described in Section 3.3, where the specialization
algorithm of Jmix is presented.

Positive updates are registered in a set of current updates. A negative condi-
tional command makes the set of current updates be duplicated and used when
processing the THEN and ELSE clauses. The dummy commands indicate that
a (possibly new) state will be built by firing the set of current updates at the
current state. The code generation for the negative structures is also similar to
that of Jmix, but the code is generated in an abstract tree format, the same used
for the input specification.

When a new state is produced, it is inserted in PENDING only if it is not
in MARKED. The process stops when PENDING is empty.

The simplified partial evaluator still has some limitations. It does not spe-
cialize derived functions and most of the optimizations present in Jmix (see
Section 3.4) have not been implemented yet.

5.2 Compiler Generation

Suppose that int is an interpreter for a language L;,;, int®"" is an annotated
version of int and source is a program written in L;,;. To satisfy the following
equations, Jmix and ASMix should be equivalent:

compiler = [Jmix],,, . (ASMix, int®"") (1)

[compiler],q,, (source) = [Jmix],,, . (int, source) (2)

Equation 1 shows how a compiler can be generated by means of self-appli-
cation of the partial evaluator. The simplified version ASMix is specialized with
respect to an annotated version of int, yielding a compiler from L;,; to ASM.
The compiler is an ASM specification that receives a program P written in L;,;
and generates an ASM specification with the same semantics of P.

The left hand side of Equation 2 is the result of compiling source to ASM
with a compiler generated by self-application of the partial evaluator. The right
hand side is the result of compiling by means of partially evaluating an inter-
preter with respect to a source code. The right hand side of Equation 2 will
produce better results until optimizations are introduced in ASMix.

Because of the restrictions discussed above, we have only conducted compiler
generation experiments with simple interpreters until now. The compiler gener-
ated by specializing ASMix with respect to the Turing Machine interpreter is
more than six times longer than the interpreter itself. In average, running a TM
program compiled using this compiler is three times faster than interpreting the
same program with the TM interpreter. The quality of the code generated by the
compiler is worse than that generated by specializing the interpreter, specially
because of the lack of transition compression optimizations in ASMix.

We have also conducted some experiments with other small interpreters,
specially the description of a small subset of C. The results produced have been
similar to those described above.



6 Interpreters Suitable for Partial Evaluation

The description of the semantics of programming languages in ASM usually
consists of an interpreter for the language, written in ASM. Important concerns
are correctness and readability [3, 7, 16]. The interpreters are provided on several
abstraction levels which make them easier to understand, but they are usually
not suitable for partial evaluation.

In this section, we discuss how small changes in a specification may achieve
much better specialization results.

6.1 Case Study: Function Return in C

In the example showed in Section 4, all structures related to the TM program
were classified as positive, so none of them appeared in the residual specification.
We will consider now an interpreter for a more sophisticated language, with
definition of recursive functions.

The description of the semantics of the C programming language presented
in [7] includes the definition of C recursive functions. An ASM function CurTask
plays a role similar to pc in the example of Section 4: it indicates the current task
to be performed. Suppose that the interpreter for the C programming language is
specialized with respect to a specific source program. It is desirable that CurTask
be classified as positive, so compiling from C to ASM can achieve results similar
to those of Section 4.

C functions may have several active incarnations at a given moment. In [7],
the next task to be performed after a function returns is stored in a stack. This
is implemented by the following ASM commands:

ReturnTask(StackTop+1l) := CurTask
StackTop := StackTop + 1

where StackTop represents the top of the stack and ReturnTask will indicate
the new value of CurTask when the execution of the current function terminates.
These commands are executed immediately before the flow of control is trans-
fered to the function body. The set of values StackTop can assume is infinite,
so BTA will classify it as negative, and consequently ReturnTask will also be
negative.

When the execution of the current function terminates, the next task to be
performed is on the stack. CurTask is updated with this value. The following
ASM commands are part of the semantics of the C return statement, that
terminates a function execution:

CurTask := ReturnTask(StackTop)
StackTop := StackTop - 1

The first update above will make BTA classify CurTask as negative, creating an
undesirable situation.



if CurListRet = undef then if ReturnTask(StackTop) = ¢y then
CurListRet := RetTasks (NameFRet) { code resulted from specialization }
elseif ReturnTask(StackTop) = { with CurTask = tg }
head (CurListRet) then| StackTop := StackTop - 1
CurTask := head(CurListRet) ..
StackTop := StackTop - 1 elsif ReturnTask(StackTop)

= t1 then
else elsif ReturnTask(StackTop) = ¢, then
CurListRet := tail(CurListRet) R
endif endif
(a) Semantics of C return Statement. (b) Residualized Code.

Fig. 5. Semantics of C return Statement and Residualized Code.

A solution for the problem above is to use a pointwise division in BTA [10].
In a pointwise division, functions can receive different classifications in different
points of the specification submitted to the partial evaluator. CurTask could be
classified as negative in the few points where it is necessary, and positive in the
rest of the specification. The annotations in the specification produced after BTA
would suffer some changes, and the implementation of the specializer would be
more complicated.

6.2 Modifying the C Interpreter

Neither our partial evaluator, nor the one presented in [8] implements pointwise
division. In the example of Section 6.1, it is possible to achieve good specializa-
tion results without pointwise divisions. All that is necessary is to change slightly
the C interpreter. The changes we propose will make BTA classify CurTask as
positive.

We will use [e; .. .ey,] to denote a list with n elements. The associated oper-
ations on lists are head and tail.

Let f be a C function in a program P submitted to the C interpreter. The
places where f is called inside P are all known before the execution of the pro-
gram starts. It is an information that depends only on P, so a list [to t1 ... ty]
of the possible next tasks after f returns can be previously computed. The list
of possible next tasks always takes on finitely many values, so we say that it has
bounded static variation [10].

Let RetTasks be an ASM function that associates a function name with
the list of its possible next tasks after returning. In this case, we would have
RetTasks("f”) = [tg t1 ... tp]- The function whose execution is terminated by
each C return statement is also known before the program starts. Let NameFRet
be an ASM function that represents the name of the C function which is termi-
nated by the current C return statement. Part of the new code for the seman-
tics of the C return statement is presented in Figure 5(a). The ASM function
CurListRet stores the current list of the possible next tasks. We assume that



RetTasks is well built, so it is not necessary to include code to handle the case
where CurListRet becomes empty.

Note that now CurTask is updated with values from CurListRet. The func-
tion RetTasks will be classified as positive because it depends only on static
information from the source program P. Therefore CurListRet and CurTask
will also be classified as positive. The trick of exploiting statically bounded val-
ues can be used in many other situations. It is so commonly used in partial
evaluation that it is known as The Trick [10]. The residual code, as presented in
Figure 5(b), will consist of a sequence of conditional commands, each testing a
possible value for ReturnTask (StackTop).

In [7], the semantics of the C programming language is specialized with re-
spect to the C function strcpy. To achieve the good results showed, only a part
of the semantics of C is considered. The partial evaluator is given an interpreter
that does not describe the semantics of function call and return and automatic
variables. Using the techniques described in this section, we have been able to
specialize the entire semantics of C with good compilation results.

7 Conclusions and Future Work

In order to evaluate the performance of a partial evaluator, a self-interpreter test
is suggested in [10]. Suppose that an interpreter for the partial evaluator’s input
language S is written using the same language S. Specializing this interpreter
with respect to a program P must yield the same program P, if the partial
evaluator is powerful enough to remove all interpretational overhead.

As described in Section 5.1, we have built a self-interpreter for ASM. The self-
interpreter has been specialized with respect to many long ASM specifications.
The residual specifications produced have been exactly the same given as input,
except for some function renaming.

Results similar to those presented in Section 4 have been achieved with more
complex languages. Compilation of the entire semantics of C and a small subset of
Java, using the First Futamura Projection, have produced very good results. To
accomplish this, the techniques presented in Section 6 have played a fundamental
role. On the other hand, experiments with compiler generation using the Second
Futamura Projection have not produced good results yet.

The Third Futamura Projection shows how a compiler generator cogen can
be generated using self-application of a partial evaluator. For strongly typed
languages, better results in compiler generation may be achieved using a hand-
written cogen instead of a partial evaluator. In this case, cogen is known as a
generating extension generator [15]. We intend to build a generating extension
generator cogen for a strongly typed version of the ASM language. With this
new approach, we expect much better results on semantics-directed compiler
generation using ASM and partial evaluation techniques.

Partial evaluation of concurrent and parallel programs may also be a great
source of research. Our future plans include extending the partial evaluator to
deal with ASM extensions such as Distributed [6] and Interactive ASM [13].



References

1.

10.

11.

12.

13.

14.

15.

16.

L. Andersen. Self-applicable C program specialization. In Partial Evaluation
and Semantics-Based Program Manipulation, San Francisco, California, June 1992
(Technical Report YALEU/DCS/RR-909), pages 54-61. New Haven, CT: Yale Uni-
versity, June 1992.

L. Birkedal and M. Welinder. Partial evaluation of Standard ML. Master’s thesis,
DIKU, University of Copenhagen, Denmark, 1993. DIKU Research Report 93/22.
E. Borger and W. Schulte. Programmer Friendly Modular Definition of the Se-
mantics of Java. In J. Alves-Foss, editor, Formal Syntaz and Semantics of Java,
LNCS. Springer, 1998.

G. Del Castillo. The ASM Workbench: an Open and Extensible Tool Environment
for Abstract State Machines. In Proceedings of the 28th Annual Conference of the
German Society of Computer Science. Technical Report, Magdeburg University,
1998.

V. O. Di Iorio and R. S. Bigonha. An ASM Implementation of a Self-Applicable
Partial Evaluator. Technical Report LLP-004-2000, Programming Languages Lab-
oratory, DCC, Universidade Federal de Minas Gerais, 2000.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

Y. Gurevich and J. Huggins. The Semantics of the C Programming Language. In
E. Borger, H. Kleine Biining, G. Jager, S. Martini, and M. M. Richter, editors,
Computer Science Logic, volume 702 of LNCS, pages 274-309. Springer, 1993.

Y. Gurevich and J. Huggins. Evolving Algebras and Partial Evaluation. In
B. Pehrson and I. Simon, editors, IFIP 13th World Computer Congress, volume I:
Technology/Foundations, pages 587-592, Elsevier, Amsterdam, the Netherlands,
1994.

J. Huggins. An Offline Partial Evaluator for Evolving Algebras. Technical Report
CSE-TR-229-95, EECS Dept., University of Michigan, 1995.

N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Englewood Cliffs; NJ: Prentice Hall, 1993.

N. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial evaluation:
The generation of a compiler generator. In J.-P. Jouannaud, editor, Rewriting
Techniques and Applications, Dijon, France. (Lecture Notes in Computer Science,
vol. 202), pages 124-140. Berlin: Springer-Verlag, 1985.

J. Jorgensen. Compiler generation by partial evaluation. Master’s thesis, DIKU,
University of Copenhagen, Denmark, 1992. Student Project 92-1-4.

M. Maia, V. Iorio, and R. Bigonha. Interacting Abstract State Machines. In
Proceedings of the 28th Annual Conference of the German Society of Computer
Science. Technical Report, Magdeburg University, 1998.

T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Pro-
log. In K.-K. Lau and T. Clement, editors, LOPSTR 92. Workshops in Computing.
Berlin: Springer-Verlag, Jan. 1993.

T. E. Mogensen and P. Sestoft. Partial evaluation. In A. Kent and J. G. Williams,
editors, Encyclopedia of Computer Science and Technology, volume 37, pages 247—
279. Marcel Dekker, 270 Madison Avenue, New York, New York 10016, 1997.

C. Wallace. The Semantics of the C++ Programming Language. In E. Borger,
editor, Specification and Validation Methods, pages 131-164. Oxford University
Press, 1995.



